- 无标题文档
查看论文信息

论文中文题名:

 冰楔作用下裂隙扩展的力学机制研究    

姓名:

 丁顺    

学号:

 18204209098    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 岩土工程    

第一导师姓名:

 贾海梁    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Mechanical mechanism of crack propagation induced by frost wedging    

论文中文关键词:

 裂隙岩体 ; 冻融损伤 ; 冰楔作用 ; 冻胀力演化 ; 损伤断裂机制 ; 密封条件    

论文外文关键词:

 Jointed rock mass ; Frost damage ; Frost wedging ; Evolution of frost-heaving pressure ; Damage and fracture mechanism ; The sealing condition    

论文中文摘要:

冻融作用引起裂隙岩体的损伤破坏是导致一系列工程冻害的重要原因。随着人类活动不断向高寒、高海拔地区推进,工程建设将会面临更多的裂隙岩体冻融损伤诱发的灾害问题。裂隙水在冻结过程能否形成冻胀力(即形成冰楔)以及冻胀力如何演化,是决定冻融损伤是否产生的关键前提。为了深入揭示含水裂隙岩体冻融损伤机制,本文以含不同深度裂隙的灰岩为研究对象,实时监测了冻融过程中裂隙水的温度场变化、冰楔的形成过程、冻胀力及冻胀变形的演化过程;同时研究了裂隙深度、裂隙含水量、冻结速率等关键因素的影响;结合冰楔作用下裂隙扩展过程中声发射信号的变化,及对裂隙扩展过程和扩展形态的细观观测结果,讨论了裂隙扩展规律,揭示了其力学开裂机制。主要得到以下几个结论:

1.冻融过程裂隙水的温度变化具有明显的阶段性。不同位置裂隙水在冻结过程均有明显的潜热释放和热弛豫现象;温度场及核磁共振成像结果表明外部裂隙水先发生冻结。冻融过程中冻胀力和冻胀变形演化可分为5个变化阶段,冻结过程中冻胀力萌生出现在水冰相变后期,裂隙中心位置产生的冻胀力值最大。

2.不同裂隙深度、裂隙含水量、冻结速率下裂隙内部的温度变化、冻胀力演化、裂隙端部变形表现出相似的变化规律。其中峰值冻胀力的大小受到的影响最大,随冻结速率的降低初始结冰时间点后移,裂隙深度越深冻胀变形越大,含水率越低热弛豫时间越短。

3.随着冻融次数增加冻胀力的萌生和释放速率增加,而最大冻胀力总体呈下降趋势。声发射信号值的突变与冻胀力演化的关键节点在时间上相对应;通过三维定位结果可以准确地捕捉到裂隙水结冰的动态变化和裂隙的扩展过程。不同深度裂隙的扩展路径不是单一不变的,冰楔作用下裂隙的扩展表现为典型的I型断裂。

4.裂隙上部密封条件的形成是冻胀力产生的前提条件,密封条件的形成主要有两种类型:一是冰塞向两侧拉裂后挤出的未冻水重结晶形成密封条件;二是冰塞向上移动两侧冰层拉断后未冻水向两侧迁移重结晶形成密封条件。

5.裂隙端部开裂后,冻融过程中新生裂隙内部的水(冰)首先冻结(融化)产生(消散)冰压力。裂隙冰中间会和裂隙端部形成贯通的断裂面,融化时融水会沿着断裂面向外渗流。冻融循环过程断裂面上的颗粒碎渣的脱落会加速裂隙的扩展。

本文揭示了冻融过程中含水裂隙内部温度、冻胀力的演化规律,阐明了冰楔作用下岩体裂隙端部的扩展特性和力学开裂机制。本论文的研究结果对于指导寒区工程冻害防护具有重要的理论参考价值。

论文外文摘要:

The damage of joint rock mass caused by freeze-thaw cycle is an important reason for a series of freezing damage. As human activities continues to advance to the alpine and high altitude areas, engineering construction will face more disasters caused by frost damage of joint rock mass. Whether the crack water can form frost-heaving pressure (forming ice wedge) during the freezing process and how the frost-heaving pressure evolves are the key processes to determine whether frost damage occurs. In order to further reveal the frost damage mechanism of water-bearing joint rock mass, this paper takes different depth of limestone as the research object. The temperature field of crack water, the evolution process of ice wedge, the evolution of frost-heaving pressure and frost-heaving deformation were monitored in real time during freeze-thaw process. The influence of key factors, such as crack depth, crack water content and freezing rate, was also studied. Based on the change of AE (acoustic emission) signals in the process of crack propagation under the action of frost wedging and the micro-observation results in the process and morphology of crack propagation. The law of crack propagation was discussed and the mechanical cracking mechanism was revealed. The main conclusions are as follows:

1. In the process of freeze-thaw, the temperature change inside crack water had obvious stages. The crack water at different locations had obvious latent heat release and thermal relaxation during the freezing process.The results of temperature field and nuclear magnetic resonance imaging showed that the external crack water froze first. The evolution of frost-heaving pressure and deformation could be divided into five stages during freeze-thaw cycle. During the freeze process, the frost-heaving pressure initiation appeared in the late phase of water-ice phase transition, and the value of frost-heaving pressure generated in the center of crack was the largest.

2. The change of temperature, the evolution of frost-heaving pressure and the deformation of crack tip showed similar variation rules under different crack depth, crack water content, freezing rate. It was found that the peak frost-heaving pressure was the most affected. The decrease of freezing rate made the time point of water-ice phase transition move back. The deeper the crack depth, the greater the deformation of the crack tip, and the lower the water content, the shorter the thermal relaxation time.

3. With the increase of the number of freeze-thaw cycles, the initiation and release rate of frost-heaving pressure increased, the maximum frost-heaving pressure generally showed a downward trend. The abrupt change of AE signal value corresponded to the evolution of frost-heaving pressure at the time point. The dynamic process of crack water icing and the expansion and evolution process of crack tip can also be accurately captured by the 3D positioning results. The expansion path of crack with different depths was not single and constant, the fracture propagation under of frost wedging showed a typical type I fracture.

4. The formation of sealing conditions on the top of the crack is the premise for the generation of frost-heaving pressure. The forming of sealing conditions mainly have two types: one is that the unfrozen water extruded after the ice plug was cracked to the two sides recrystallized to form sealing condition; The other is that the ice plug moved upward and the unfrozen water migrated to both sides and recrystallized after the ice was pulled off, forming sealing condition.

5. After the fracture at the crack tip, the water (ice) inside the new crack in freeze-thaw cycle first froze (thawed) and produced (dissipated) ice pressure. A penetrating fracture surface was formed in the middle of the crack ice, which was connected to the newly fractured crack, and the meltwater will flow outward along the new crack during thawing. During freeze-thaw cycle, the shedding of particle on the fracture surface will accelerate the crack propagation.

This paper reveals the evolution law of internal temperature and frost-heaving pressure of water-bearing joint rock mass during freeze-thaw process, and expounds the expansion characteristics and mechanical cracking mechanism of joint rock mass under frost wedging. The research results of this paper have important theoretical reference value for the guidance of freezing damage protection in cold area engineering.

参考文献:

[1] Tharp T M. Conditions for crack propagation by frost wedging[J]. Geological Society of America Bulletin, 1987, 99(1): 94-102.

[2] Hall K, Thorn C, Sumner P. On the persistence of ‘weathering’[J]. Geomorphology, 2012, 149: 1-10.

[3] Hall K, Thorn C E, Matsuoka N, et al. Weathering in cold regions: some thoughts and perspectives[J]. Progress in Physical Geography, 2002, 26(4): 577-603.

[4] Brady B H G, Brown E T. Rock mechanics: for underground mining[M]. Springer Science & Business Media. 2013.

[5] Matsuoka N, Sakai H. Rockfall activity from an alpine cliff during thawing periods[J]. Geomorphology, 1999, 28(3): 309-328.

[6] Matsuoka N, Murton J B. Frost Weathering: Recent Advances and Future Directions[J]. Permafrost and Periglacial Processes. 2008. 19: 195-210.

[7] Matsuoka N. Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering[J]. Permafrost and Periglacial Processes. 2001, 12(3): 299-313.

[8] Krautblatter M, Funk D, Günzel F K. Why permafrost rocks become unstable: a rock-ice-mechanical model in time and space[J]. Earth Surface Processes and Landforms. 2013. 38: 876-887.

[9] 贾海梁. 多孔岩石及裂隙岩体冻融损伤机制的理论模型和试验研[D]. 中国地质大学, 2016.

[10] Takagi S. The adsorption force theory of frost-heaving[J]. Cold Regions Science and Technology, 1980, 3(1):57-81.

[11] Mottaghy D, Rath V. Latent heat effects in subsurface heat transport modelling and their impact on palaeotemperature reconstructions[J]. Geophysical Journal International, 2006, 164(1): 236-245.

[12] 刘乃飞, 李宁, 宋战平, 等. 低温裂隙岩体的各向异性传热模型[J]. 岩石力学与工程学报, 2019, 38(S1): 2625-2635.

[13] 申艳军, 杨更社, 王铭, 等. 冻融循环过程中岩石热传导规律试验及理论分析[J]. 岩石力学与工程学报, 2016, 35(12): 2417-2425.

[14] 夏才初, 王岳嵩, 吕志涛, 等. 单向冻结条件下裂隙岩体冻胀特性试验[J]. 同济大学学报(自然科学版), 2019, 47(09): 1268-1276.

[15] 王莉平, 李宁, 刘乃飞, 等. 低温岩体裂隙中水分迁移机理试验研究[J]. 地下空间与工程学报, 2018, 14(04): 999-1006.

[16] 李杰林, 朱龙胤, 周科平, 等. 冻融作用下砂岩孔隙结构损伤特征研究[J]. 岩土力学. 2019. 40(09): 3524-3532.

[17] 徐光苗, 刘泉声, 张秀丽. 冻结温度下岩体THM完全耦合的理论初步分析[J]. 岩石力学与工程学报. 2004. 23(21): 3709–3713.

[18] 谭贤君, 陈卫忠, 贾善坡, 等. 含相变低温岩体水热耦合模型研究[J]. 岩石力学与工程学报. 2008. 27(7): 1455–1461.

[19] 陈卫忠, 谭贤君, 于洪丹, 等. 温及冻融环境下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报. 2011. 30(7): 1318-1336.

[20] 吕志涛, 夏才初, 李强, 等. 单向冻结时开放条件下饱和砂岩冻胀试验及THM耦合冻胀模型[J]. 岩土工程学报, 2019, 41(08): 1435-1444.

[21] 常治国. 力-温度场作用下裂隙岩体损伤机理及边坡时效稳定性分析[D]. 中国矿业大学, 2019.

[22] Jia H, Ding S, Wang Y, et al. An NMR-based investigation of pore water freezing process in sandstone[J]. Cold Regions Science and Technology, 2019, 168: 102893.

[23] Jia H, Zi F, Yang G, et al. Influence of pore water (ice) content on the strength and deformability of frozen argillaceous siltstone[J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 967-974.

[24] 徐拴海, 李宁, 许刚刚, 等. 冻融环境中饱和岩石的热量传递与温度平衡规律[J]. 岩石力学与工程学报, 2016, 35(11): 2225-2236.

[25] 荣腾龙, 申艳军, 杨更社, 等. 冻融过程中岩石内部热传导弛豫特性研究[J]. 采矿与安全工程学报, 2019, 36(01): 207-214.

[26] Jia H, Xiang W, Krautblatter M. Quantifying Rock Fatigue and Decreasing Compressive and Tensile Strength after Repeated Freeze-Thaw Cycles[J]. Permafrost and Periglacial Processes. 2015. 26(4): 368-377.

[27] Bridgman P W. Water, in the liquid and five solid forms, under pressure[C] Proceedings of the American Academy of Arts and Sciences. American Academy of Arts & Sciences, 1912, 47(13): 441-558.

[28] Hallet B. Why do freezing rocks break?[J]. Science, 2006, 314(5802): 1092-1093.

[29] Matsuoka N. Direct observation of frost wedging in alpine bedrock[J]. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 2001, 26(6): 601-614.

[30] Battle W R B. Temperature observations in bergschrunds and their relationship to frost shattering[M]// Lewis W V. editor. Norwegian cirque glaciers. Royal Geographical Society Research series. 1960. 4: 83-95.

[31] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报. 2016. 35(05): 879-895.

[32] Vlahou I, Worster M G. Freeze fracturing of elastic porous media: a mathematical model[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, 471(2175): 20140741.

[33] Sass O. Rock moisture fluctuations during freeze-thaw cycles: preliminary results from electrical resistivity measurements[J]. Polar Geography. 2004. 28(1): 13-31

[34] Taber S. Frost-heaving[J]. The Journal of Geology, 1929, 37(5): 428-461.

[35] Taber S. Intensive frost action along lake shores[J]. American Journal of Science 1950, 248: 784-93.

[36] Mellor M. Phase composition of pore water in cold rocks. United States Army Engineers, Cold Regions Research and Engineering Laboratory Report[R]. 1970: 292.

[37] O'Neill K, Miller R D. Numerical solutions for rigid ice model of secondary frost heave[C]. The 2nd International Conference on Ground Freezing. Trondheim. Norway. 1980.

[38] Gilpin R R. A model of the "liquid-like" layer between ice and a substrate with applications to wire revelation and grain migration[J]. Journal of Colloid and Interface Science. 1979. 68: 235-251.

[39] Fukuda M. The pore water pressure in porous rocks during freezing, in Proceedings[C]. 4th International Conference on Permafrost. Fairbanks. Alaska. Washington D.C. National Academy Press. 1983: 322-327.

[40] Walder J S, Hallet B. A theoretical model of the fracture of rock during freezing[J]. Geological Society of America Bulletin. 1985. 96(3): 336-346.

[41] Hallet B, Walder J S, Stubbs C W. Weathering by segregation ice growth in microcracks at sustained subzero temperatures: Verification from an experimental study using AEs[J]. Permafrost and Periglacial Processes, 1991, 2(4): 283-300.

[42] Akagawa S, Fukuda M. Frost heave mechanism in welded tuff[J]. Permafrost and Periglacial Processes. 1991. 2(4): 301-309.

[43] Murton J B, Peterson R, Ozouf J C. Bedrock fracture by ice segregation in cold regions[J]. Science. 2006. 314(5802): 1127-1129.

[44] 贾海梁, 刘清秉, 项伟, 等. 冻融循环作用下饱和砂岩损伤扩展模型研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3049-3055.

[45] 贾海梁, 项伟, 谭龙, 等. 砂岩冻融损伤机制的理论分析和试验验证[J]. 岩石力学与工程学报, 2016,35(05): 879-895.

[46] Toshev B V. Thermodynamic theory of thin liquid films including line tension effects[J]. Current Opinion in Colloid & Interface Science. 2008. 13(3): 100-106.

[47] Deprez M, De Kock T, De Schutter G, et al. The role of ink-bottle pores in freeze-thaw damage of oolithic limestone[J]. Construction and Building Materials, 2020, 246: 118515.

[48] Davidson G P, Nye J F. A photoelastic study of ice pressure in rock cracks[J]. ColdRegions Science and Technology. 1985. 11(2): 141-153.

[49] Matsuoka N. A laboratory simulation on freezing expansion of a joint rock:preliminary data[R]. Annual Report of the Institute of Geoscience, the University ofTsukuba. 1995. 21: 5-8.

[50] Bost M, Pouya A. Stress generated by the freeze–thaw process in open cracks of rock walls: empirical model for tight limestone[J]. Bulletin of Engineering Geology and the Environment, 2017, 76(4): 1491-1505.

[51] Murton J B, Ozouf J C, Peterson R. Heave, settlement and fracture of chalk during physical modelling experiments with temperature cycling above and below 0 °C[J]. Geomorphology. 2016. 270: 71-87.

[52] Duca S, Alonso E E, Scavia C. A permafrost test on intact gneiss rock[J]. International Journal of Rock Mechanics and Mining Sciences. 2015. 77: 142-151.

[53] Matsuoka N . Mechanisms of rock breakdown by frost action: An experimental approach[J]. Cold Regions Science & Technology, 1990, 17(3):253-270.

[54] Grawe O R. Ice as an agent of rock weathering: a discussion[J]. The Journal of Geology, 1936, 44(2, Part 1): 173-182.

[55] 杨更社. 冻结岩石力学的研究现状与展望分析[J]. 力学与实践. 2009. 31(6): 9-16.

[56] 杨更社, 申艳军, 贾海梁, 等. 冻融环境下岩体损伤力学特性多尺度研究及进展[J].岩石力学与工程学报, 2018, 37(03): 545-563.

[57] 刘泉声, 黄诗冰, 康永水, 等. 裂隙岩体冻胀损伤研究进展与思考[J]. 岩石力学与工程学报. 2015. 34: 452-471.

[58] 杨更社, 张全胜. 冻融环境下岩体细观损伤及水热迁移机制分析[M]. 西安: 陕西科学技术出版社. 2006: 20–45.

[59] 刘艳章, 郭赟林, 黄诗冰, 等. 冻融作用下裂隙类砂岩断裂特征与强度损失研究[J]. 岩土力学. 2018, 39(S2): 62-71.

[60] 刘泉声, 黄诗冰, 康永水, 等. 裂隙冻胀压力及对岩体造成的劣化机制初步研究[J]. 岩土力学. 2016. 37(06): 1530-1542.

[61] 申艳军, 杨更社, 王铭, 等. 冻融–周期荷载下单裂隙类砂岩损伤及断裂演化试验分析[J]. 岩石力学与工程学报, 2018, 37(03): 709-717.

[62] 李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报. 2013. 32(11): 2307-2315.

[63] 刘红岩, 刘冶, 邢闯锋, 等. 循环冻融条件下节理岩体损伤破坏实验研究[J]. 岩土力学. 2014. 35 (6): 1547-1554.

[64] 申艳军, 杨更社, 荣腾龙, 等. 低温环境下含表面裂隙硬岩温度场及冻胀演化过程分析[J]. 岩土力学. 2016. 37(S1): 521-529.

[65] 申艳军, 杨更社, 王婷, 等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(01): 117-128.

[66] 邓红卫, 田维刚, 周科平, 等. 2001~2012 年岩石冻融力学研究进展[J]. 科技导报. 2013. 31(24): 74-79.

[67] 梁家淑. 预制裂隙砂岩力学试验及断裂面分形几何研究[D]. 山东农业大学, 2019.

[68] 赵建军, 解明礼, 余建乐, 等. 冻融作用下含裂隙岩石力学特性及损伤演化规律试验研究[J]. 工程地质学报, 2019, 27(06): 1199-1207.

[69] 李平, 唐旭海, 刘泉声, 等. 双裂隙类砂岩冻胀断裂特征与强度损失研究[J]. 岩石力学与工程学报, 2020, 39(01): 115-125.

[70] 陈国庆, 陈毅, 孙祥, 等. 开放型岩桥裂纹贯通机理及脆性破坏特征研究[J]. 岩土工程学报, 2020, 42(05): 908-915.

[71] Jia H, Leith K, Krautblatter M. Path‐dependent frost‐wedging experiments in fractured, low‐permeability granite[J]. Permafrost and Periglacial Processes, 2017, 28(4): 698-709.

[72] 步凡. 寒区边坡冻融岩体裂隙扩展特性及加固方式试验研究[D]. 成都理工大学, 2017.

[73] 王永岩, 张金龙, 朱思文. 冻融循环下含裂隙类岩石冻胀力的力学模型及实验研究[J]. 山东科学, 2018, 31(02): 113-119.

[74] 鲁祖德. 裂隙岩石水—岩作用力学特性试验研究与理论分析[D]. 中国科学院研究生院(武汉岩土力学研究所), 2010.

[75] 刘昊, 王宇, 王华建, 等. 冻融循环作用下岩石含冰裂隙冻胀力演化试验研究[J/OL].工程地质学报: 1-10[2021-03-18].

[76] Hang L A, Dl A, Cz B , et al. Deterioration of non-persistent rock joints: A focus on impact of freeze-thaw cycles - ScienceDirect[J]. International Journal of Rock Mechanics and Mining Sciences, 135.

[77] 单仁亮, 白瑶, 孙鹏飞, 等. 裂隙红砂岩冻胀力特性试验研究[J]. 煤炭学报, 2019, 44(06): 1742-1752.

[78] 乔趁, 李长洪, 王宇, 等. 冻融循环作用下中部锁固岩桥破坏试验研究[J]. 岩石力学与工程学报, 2020, 39(06): 1094-1103.

[79] Wang P ,Zhou G. Frost-heaving pressure in geotechnical engineering materials during frost process[J]. International Journal of Mining Science and Technology, 2018:287-296.

[80] 黄达, 刘富兴, 杨超, 等.一种岩体裂隙时效扩展的数值模拟方法及验证[J].岩石力学与工程学报, 2017, 36(07): 1623-1633.

[81] Lin H, D Lei, Yong R, et al. Analytical and numerical analysis for frost-heaving stress distribution within rock joints under freezing and thawing cycles[J]. Environmental Earth Sciences, 2020, 79(12).

[82] Lv Z ,Xia C ,Wang Y, et al. Frost heave and frost processes of saturated rock with an open crack under different freezing conditions[J]. Frontiers of Structural and Civil Engineering, 2020(3).

[83] 胡峰. 基于断裂力学和损伤理论的裂隙岩体损伤机理研究[D]. 重庆大学, 2015.

[84] 何强. 岩石裂纹扩展试验与数值模拟研究[D]. 成都理工大学, 2017.

[85] Huang S, Liu Q, Liu Y, et al. Frost heaving and frost cracking of elliptical cavities (fractures) in low-permeability rock[J]. Engineering Geology, 2018, 234: 1-10.

[86] Jia H, Ding S, Zi F, et al. Development of Anisotropy in Sandstone Subjected to Repeated Frost Action[J]. Rock Mechanics and Rock Engineering, 2021: 1-12.

[87] 訾凡. 冻融循环作用下层理砂岩损伤演化规律及横观各向同性特征[D]. 西安科技大学, 2019.

[88] 王永志. 冻融诱发砂岩-混凝土界面损伤脱粘细观机制及力学模型研究[D]. 西安科技大学, 2020.

[89] Jia H, Ding S, Zi F, et al. Evolution in sandstone pore structures with freeze-thaw cycling and interpretation of damage mechanisms in saturated porous rocks[J]. Catena, 2020, 195: 104915.

[90] 吴志军, 卢槐, 翁磊, 等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究[J].岩石力学与工程学报, 2021, 40(02): 263-275.4.

[91] 朱权洁, 张尔辉, 李青松, 等. 岩石破坏失稳的声发射响应与损伤定量表征研究[J].中国安全生产科学技术, 2020, 16(01): 92-98.

[92] Jiang R, Dai F, Y Liu, et al. Frequency Characteristics of AEs Induced by Crack Propagation in Rock Tensile Fracture[J]. Rock Mechanics and Rock Engineering, 2021(3).

[93] Atkinson B K, Rawlings R D. AE during stress corrosion cracking in rocks[J]. Earthquake Prediction. 1981: 605-616.

中图分类号:

 TU458    

开放日期:

 2022-07-07    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式