论文中文题名: | 青藏高原南缘的断层倾角及其构造演化解释 |
姓名: | |
学号: | 20210226094 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 地震大地测量学 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-04 |
论文外文题名: | Fracture zone dip and tectonic evolution interpretation on the southern margin of the Tibetan Plateau |
论文中文关键词: | |
论文外文关键词: | Fault dip ; Focal mechanism solution ; E-W subduction fault ; N-S normal fault |
论文中文摘要: |
长期以来,印度板块与欧亚板块的持续碰撞和挤压导致了青藏高原的形成。青藏高原南缘断裂带是该区域最显著的构造特征之一,研究该断裂带的倾角有助于揭示该地区构造演化的历史和机制。不同领域的学者采用不同的方法对东西向断裂带的东段、中段、西段及南北向断裂带的倾角进行了研究,然而他们的结果差异较大,并且有关南北向正断层倾角的研究较为鲜见。近年来随着地震精定位技术的发展和地震台站数量的增多,已经为青藏高原倾角的研究提供了大量数据资料。本文简化了南缘东西向断裂为8个子断层,概括南北向断裂为7个子断层,并利用地震数据计算了各子断层的倾角。结合青藏高原南缘的隆升速率、区域应变以及地质构造形成过程,对各子断层倾角的结果进行了解释,以期为该地区的地震活动性的预测和评估提供重要参考。本文的主要研究成果如下: (1)青藏高原南缘东西向断裂带的倾角并非是单一值,而是具有两端大、中间小的特点。南北向正断层均表现为40~60°的高倾角且具有西侧大于东侧的特点。东西向断裂带的8个子断层F1、F2、…、F8的倾角依次为44.8±5.5°、41.5±1.8°、30.6±1.0°、27.7±1.6°、23.7±1.0°、24.3±3.3°、8.9±1.0°和26.7±8.6°,在90°E附近达到最小,其值为8.9°。南北向断裂带的7个子断层SN_F1、SN_F2、…、SN_F7的倾角依次为58.7±2.9°、59.3±1.6°、53.4±3.2°、50.7±1.0°、47.4±1.3°、46.8±1.5°和49.6±1.7°。 (2)青藏高原南缘的隆升速率与东西向断裂带倾角呈现明显的线性关系,而与南北向断裂带倾角的关系不明显。东西向各子断层F3、F4、F5、F6所处位置的地壳隆升速率为2.5、2.5、1.2和1.0mm/a,随倾角减小而减小。南北各子断层SN_F1、SN_F3、…、SN_F7所处位置的地壳隆升速率为1.3、1.0、-0.3、1.8、0.1和0.7mm/a,与倾角关系不明显。 (3)青藏高原的各子区域应变分布影响着南缘断裂带倾角的形成。本文利用GPS数据计算了青藏高原南缘由西到东的挤压应变依次为101.5、130.3、99.5nanostrain/a,东西向俯冲断裂带处于南北向挤压应力状态,利于印度板块向欧亚板块低倾角俯冲;而拉萨地块挤压应变由西到东依次为45.2、43.9、29.3nanostrain/a,南北向正断层断裂相比东西向断裂挤压应力明显减小,表现出南北向挤压应力与东西向拉张应力均衡,利于高倾角正断层形成。 (4)青藏高原断裂带倾角与喜马拉雅东、西构造结关系紧密。印度板块向欧亚板块俯冲时,东西向断裂带受东、西构造结的阻挡,使得靠近两个构造结的断层(F1、F2、F8)倾角大于两者之间的断层(F4、F5、F6、F7)倾角。现今东构造结顺时针旋转运动趋势明显,靠近东构造结的南北向断裂带受上部地壳阻挡与深部构造拖拽作用,使得SN_F5、SN_F6、SN_F7的倾角比SN_F1,SN_F2的倾角要小。 |
论文外文摘要: |
For a long time, the continuous collision and compression between the Indian Plate and the Eurasian Plate resulted in the formation of the Qinghai-Tibet Plateau. The southern margin fault zone of the Qinghai-Tibet Plateau is one of the most prominent structural features in the region, and studying the dip angle of this fault zone can help reveal the history and mechanisms of tectonic evolution in the area. Scholars from different fields have employed various methods to study the dip angles of the eastern, central, and western sections of the east-west trending fault zone, as well as the north-south trending fault zone. However, their results show significant discrepancies and research on the dip angle of the north-south trending normal fault is relatively scarce. With the development of precise earthquake location techniques and an increase in the number of seismic stations in recent years, a large amount of data has been provided for the study of the inclination of the Tibetan Plateau. This article simplified the east-west trending fault of the southern margin into eight sub-faults and generalized the north-south trending fault into seven sub-faults, and calculated the dip angles of each sub-fault using seismic data. Taking into account the uplift rate, regional strain, and geological tectonic formation process of the southern margin of the Tibetan Plateau, this paper interprets the results of the inclination angles of each sub-fault to provide important reference for predicting and evaluating seismic activity in the region. The main research content of this paper is as follows: (1) The dip angle of the east-west trending fault zone in the southern margin of the Tibetan Plateau is not a single value, but rather has the characteristic of being large at both ends and small in the middle. The dip angle of the north-south trending normal fault is consistently high at 40-60° with a larger dip angle on the west side than on the east side. The dip angles of the 8 sub-faults F1 to F8 of the east-west trending fault zone are 44.8±5.5°, 41.5±1.8°, 30.6±1.0°, 27.7±1.6°, 23.7±1.0°, 24.3±3.3°, 8.9±1.0° and 26.7±8.6°, with the minimum value of 8.9° near 90°E. The inclination angles of the seven sub-faults SN_F1 to SN_F7 of the north-south trending fault zone are 58.7±2.9°, 59.3±1.6°, 53.4±3.2°, 50.7±1.0°, 47.4±1.3°, 46.8±1.5°, and 49.6±1.7°, respectively. (2) The uplift rate of the southern margin of the Tibetan Plateau shows a clear linear relationship with the dip angle of the east-west trending fault zone, but the relationship with the dip angle of the north-south trending fault zone is not significant. The crustal uplift rates at the locations of the F3, F4, F5, and F6 sub-faults in the east-west direction are 2.5, 2.5, 1.2, and 1.0 mm/a, respectively, decreasing with decreasing dip angles. The crustal uplift rates at the locations of the southern-northern sub-faults SN_F1, SN_F3,…,SN_F7 are 1.3, 1.0, -0.3, 1.8, 0.1, and 0.7 mm/a, and their relationship with the dip angle is not obvious. (3) The distribution of regional strain in each sub-region of the Qinghai-Tibet Plateau influences the formation of the southern margin fault angle. In this paper, the west-to-east compressive strain of the southern margin of the Qinghai-Tibet Plateau was calculated using GPS data, with values of 101.5, 130.3, and 99.5 nanostrain/a. The east-west dipping fault zone is in a state of north-south compressive stress, which is conducive to the low-angle subduction of the Indian Plate towards the Eurasian Plate. In contrast, the compressive strain of the Lhasa block from west to east is 45.2, 43.9, and 29.3 nanostrain/a, with significantly reduced compressive stress on the north-south trending normal faults compared to the east-west trending faults, demonstrating a state of equilibrium between north-south compressive stress and east-west tension, which is conducive to the formation of high-angle normal faults. (4) The dip angle of the fault zones in the southern margin of the Tibetan Plateau is closely related to the structural framework of the East and West Himalayan syntaxes. When the Indian Plate subducts beneath the Eurasian Plate, the east-west trending fault zone is blocked by the East and West Himalayan syntaxes, causing the faults (F1, F2, and F8) near the boundaries to have a higher dip angle than those (F4, F5, F6, and F7) in between. Currently, the clockwise rotational trend of the East Himalayan syntaxis is evident. The north-south trending fault zones near the East Himalayan syntaxis are hindered by the upper crust and dragged by deep structures, resulting in smaller dip angles for SN_F5, SN_F6, and SN_F7 compared to SN_F1 and SN_F2. |
参考文献: |
[11]白玲, 李国辉, Khan N, 等. 青藏高原地区地震的震源深度和震源机制解(英文).2015中国地球科学联合学术年会.中国北京,2015: 22. [12]闫兵, 贾东. 沿走滑活动断层的基岩河道系统位错——以青藏高原东部为例.地震地质,2017: 16. [46]姜枚, 彭淼, 王有学, 等.喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据[J].岩石学报,2012, 28 (6): 1755-1764. [63]王勇, 许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究——GPS观测资料的反演结果[J].地球物理学报,2003, 46 (2): 185-190. [78]高彬, 周仕勇, 蒋长胜.基于地震活动性资料估计鄂尔多斯块体周缘构造断层面倾角[J].地球物理学报,2016, 59 (07): 2444-2452. [79]张浪平, 邵志刚, 马宏生, 等.基于地震参数的缅甸弧俯冲带处板块间几何接触方式的研究[J].中国科学:地球科学,2013 (4): 12. [87]张伟, 覃庆炎, 简兴祥.自然邻点插值算法及其在二维不规则数据网格化中的应用[J].物探化探计算技术,2011, 33 (3): 5. [88]苑希民, 薛文宇, 冯国娜, 等.基于自然邻点插值计算的溃堤洪水二维模型[J].河南水利与南水北调,2016. [90]蒋溥, 代丽思.用震源机制解资料对中国地震断裂分类和定名[J].地震地质,1985 (01): 41-48. [105]饶维龙, 孙文科. 青藏高原水文质量变化及水文负荷对高原隆升的影响[C].2020年中国地球科学联合学术年会,2020: 2. [114]李煜航, 郝明, 季灵运, 等.青藏高原东缘中南部主要活动断裂滑动速率及其地震矩亏损[J].地球物理学报,2014, 57 (4): 1062-1078. |
中图分类号: | P228 |
开放日期: | 2023-06-21 |