- 无标题文档
查看论文信息

论文中文题名:

 青藏高原南缘的断层倾角及其构造演化解释    

姓名:

 陈姿戎    

学号:

 20210226094    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘工程    

研究方向:

 地震大地测量学    

第一导师姓名:

 段虎荣    

第一导师单位:

 西安科技大学    

第二导师姓名:

 张双成    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-04    

论文外文题名:

 Fracture zone dip and tectonic evolution interpretation on the southern margin of the Tibetan Plateau    

论文中文关键词:

 断层倾角 ; 震源机制解 ; 东西向俯冲断层 ; 南北向正断层    

论文外文关键词:

 Fault dip ; Focal mechanism solution ; E-W subduction fault ; N-S normal fault    

论文中文摘要:

       长期以来,印度板块与欧亚板块的持续碰撞和挤压导致了青藏高原的形成。青藏高原南缘断裂带是该区域最显著的构造特征之一,研究该断裂带的倾角有助于揭示该地区构造演化的历史和机制。不同领域的学者采用不同的方法对东西向断裂带的东段、中段、西段及南北向断裂带的倾角进行了研究,然而他们的结果差异较大,并且有关南北向正断层倾角的研究较为鲜见。近年来随着地震精定位技术的发展和地震台站数量的增多,已经为青藏高原倾角的研究提供了大量数据资料。本文简化了南缘东西向断裂为8个子断层,概括南北向断裂为7个子断层,并利用地震数据计算了各子断层的倾角。结合青藏高原南缘的隆升速率、区域应变以及地质构造形成过程,对各子断层倾角的结果进行了解释,以期为该地区的地震活动性的预测和评估提供重要参考。本文的主要研究成果如下:

       (1)青藏高原南缘东西向断裂带的倾角并非是单一值,而是具有两端大、中间小的特点。南北向正断层均表现为40~60°的高倾角且具有西侧大于东侧的特点。东西向断裂带的8个子断层F1、F2、…、F8的倾角依次为44.8±5.5°、41.5±1.8°、30.6±1.0°、27.7±1.6°、23.7±1.0°、24.3±3.3°、8.9±1.0°和26.7±8.6°,在90°E附近达到最小,其值为8.9°。南北向断裂带的7个子断层SN_F1、SN_F2、…、SN_F7的倾角依次为58.7±2.9°、59.3±1.6°、53.4±3.2°、50.7±1.0°、47.4±1.3°、46.8±1.5°和49.6±1.7°。

       (2)青藏高原南缘的隆升速率与东西向断裂带倾角呈现明显的线性关系,而与南北向断裂带倾角的关系不明显。东西向各子断层F3、F4、F5、F6所处位置的地壳隆升速率为2.5、2.5、1.2和1.0mm/a,随倾角减小而减小。南北各子断层SN_F1、SN_F3、…、SN_F7所处位置的地壳隆升速率为1.3、1.0、-0.3、1.8、0.1和0.7mm/a,与倾角关系不明显。

       (3)青藏高原的各子区域应变分布影响着南缘断裂带倾角的形成。本文利用GPS数据计算了青藏高原南缘由西到东的挤压应变依次为101.5、130.3、99.5nanostrain/a,东西向俯冲断裂带处于南北向挤压应力状态,利于印度板块向欧亚板块低倾角俯冲;而拉萨地块挤压应变由西到东依次为45.2、43.9、29.3nanostrain/a,南北向正断层断裂相比东西向断裂挤压应力明显减小,表现出南北向挤压应力与东西向拉张应力均衡,利于高倾角正断层形成。

       (4)青藏高原断裂带倾角与喜马拉雅东、西构造结关系紧密。印度板块向欧亚板块俯冲时,东西向断裂带受东、西构造结的阻挡,使得靠近两个构造结的断层(F1、F2、F8)倾角大于两者之间的断层(F4、F5、F6、F7)倾角。现今东构造结顺时针旋转运动趋势明显,靠近东构造结的南北向断裂带受上部地壳阻挡与深部构造拖拽作用,使得SN_F5、SN_F6、SN_F7的倾角比SN_F1,SN_F2的倾角要小。

论文外文摘要:

       For a long time, the continuous collision and compression between the Indian Plate and the Eurasian Plate resulted in the formation of the Qinghai-Tibet Plateau. The southern margin fault zone of the Qinghai-Tibet Plateau is one of the most prominent structural features in the region, and studying the dip angle of this fault zone can help reveal the history and mecha­nisms of tectonic evolution in the area. Scholars from different fields have employed various methods to study the dip angles of the eastern, central, and western sections of the east-west trending fault zone, as well as the north-south trending fault zone. However, their results show significant discrepancies and research on the dip angle of the north-south trending normal fault is relatively scarce. With the development of precise earthquake location techniques and an increase in the number of seismic stations in recent years, a large amount of data has been provided for the study of the inclination of the Tibetan Plateau. This article simplified the east-west trending fault of the southern margin into eight sub-faults and generalized the north-south trending fault into seven sub-faults, and calculated the dip angles of each sub-fault us­ing seismic data. Taking into account the uplift rate, regional strain, and geological tectonic formation process of the southern margin of the Tibetan Plateau, this paper interprets the re­sults of the inclination angles of each sub-fault to provide important reference for predicting and evaluating seismic activity in the region. The main research content of this paper is as fol­lows:

       (1) The dip angle of the east-west trending fault zone in the southern margin of the Tibet­an Plateau is not a single value, but rather has the characteristic of being large at both ends and small in the middle. The dip angle of the north-south trending normal fault is consistently high at 40-60° with a larger dip angle on the west side than on the east side. The dip angles of the 8 sub-faults F1 to F8 of the east-west trending fault zone are 44.8±5.5°, 41.5±1.8°, 30.6±1.0°, 27.7±1.6°, 23.7±1.0°, 24.3±3.3°, 8.9±1.0° and 26.7±8.6°, with the minimum value of 8.9° near 90°E. The inclination angles of the seven sub-faults SN_F1 to SN_F7 of the north-south trending fault zone are 58.7±2.9°, 59.3±1.6°, 53.4±3.2°, 50.7±1.0°, 47.4±1.3°, 46.8±1.5°, and 49.6±1.7°, respectively.

       (2) The uplift rate of the southern margin of the Tibetan Plateau shows a clear linear rela­tionship with the dip angle of the east-west trending fault zone, but the relationship with the dip angle of the north-south trending fault zone is not significant. The crustal uplift rates at the locations of the F3, F4, F5, and F6 sub-faults in the east-west direction are 2.5, 2.5, 1.2, and 1.0 mm/a, respectively, decreasing with decreasing dip angles. The crustal uplift rates at the locations of the southern-northern sub-faults SN_F1, SN_F3,…,SN_F7 are 1.3, 1.0, -0.3, 1.8, 0.1, and 0.7 mm/a, and their relationship with the dip angle is not obvious.

       (3) The distribution of regional strain in each sub-region of the Qinghai-Tibet Plateau in­fluences the formation of the southern margin fault angle. In this paper, the west-to-east com­pressive strain of the southern margin of the Qinghai-Tibet Plateau was calculated using GPS data, with values of 101.5, 130.3, and 99.5 nanostrain/a. The east-west dipping fault zone is in a state of north-south compressive stress, which is conducive to the low-angle subduction of the Indian Plate towards the Eurasian Plate. In contrast, the compressive strain of the Lhasa block from west to east is 45.2, 43.9, and 29.3 nanostrain/a, with significantly reduced com­pressive stress on the north-south trending normal faults compared to the east-west trending faults, demonstrating a state of equilibrium between north-south compressive stress and east-west tension, which is conducive to the formation of high-angle normal faults.

       (4) The dip angle of the fault zones in the southern margin of the Tibetan Plateau is closely related to the structural framework of the East and West Himalayan syntaxes. When the Indian Plate subducts beneath the Eurasian Plate, the east-west trending fault zone is blocked by the East and West Himalayan syntaxes, causing the faults (F1, F2, and F8) near the boundaries to have a higher dip angle than those (F4, F5, F6, and F7) in between. Current­ly, the clockwise rotational trend of the East Himalayan syntaxis is evident. The north-south trending fault zones near the East Himalayan syntaxis are hindered by the upper crust and dragged by deep structures, resulting in smaller dip angles for SN_F5, SN_F6, and SN_F7 compared to SN_F1 and SN_F2.

参考文献:

[1]Molnar P, Tapponnier P.Cenozoic Tectonics of Asia: Effects of a Continental Collision[J].Science,1975, 189 (4201): 419-426.

[2]Sengör A C.Mid-Mesozoic closure of Permo–Triassic Tethys and its implications[J].Nature,1979, 279: 590-593.

[3]Searle M P, Windley B F, Coward M P, et al.The closing of Tethys and the tectonics of the Himalaya[J].GSA Bulletin,1987, 98 (6): 678-701.

[4]Chamberlain C P, Zeitler P K, Erickson E.Constraints on the Tectonic Evolution of the Northwestern Himalaya from Geochronologic and Petrologic Studies of Babusar Pass, Pakistan[J].The Journal of Geology,1991, 99 (6): 829-849.

[5]Kapp P, Decelles P, Leier A, et al.The Gangdese retroarc thrust belt revealed[J].GSA today,2007, 17 (7): 4.

[6]Burg J P, Chen G M.Tectonics and structural zonation of southern Tibet, China[J].Nature,1984, 311 (5983): 219-223.

[7]Yin A, Harrison T M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual review of earth and planetary sciences,2000, 28 (1): 211-280.

[8]Dewey J F, Shackleton R M, Chengfa C, et al.The tectonic evolution of the Tibetan Plateau[J].Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1988, 327 (1594): 379-413.

[9]Searle M, Windley B, Coward M, et al.The closing of Tethys and the tectonics of the Himalaya[J].Geological Society of America Bulletin,1987, 98 (6): 678-701.

[10]Xiao W, Ao S, Yang L, et al.Anatomy of composition and nature of plate convergence: Insights for alternative thoughts for terminal India-Eurasia collision[J].Science China Earth Sciences,2017, 60: 1015-1039.

[11]白玲, 李国辉, Khan N, 等. 青藏高原地区地震的震源深度和震源机制解(英文).2015中国地球科学联合学术年会.中国北京,2015: 22.

[12]闫兵, 贾东. 沿走滑活动断层的基岩河道系统位错——以青藏高原东部为例.地震地质,2017: 16.

[13]Hu X, An W, Garzanti E, et al.Recognition of trench basins in collisional orogens: Insights from the Yarlung Zangbo suture zone in southern Tibet[J].Science China Earth Sciences,2020, 63 (12): 2017-2028.

[14]Jiang S, Jiang Y, Liu Y, et al.The Bangong-Nujiang Suture Zone, Tibet Plateau: Its role in the tectonic evolution of the eastern Tethys Ocean[J].Earth-Science Reviews,2021, 218: 103656.

[15]Nania L, Montomoli C, Iaccarino S, et al.Multi-stage evolution of the South Tibetan Detachment System in central Himalaya: Insights from carbonate-bearing rocks[J].Journal of Structural Geology,2022, 158: 104574.

[16]Hazarika D, Hajra S, Kundu A, et al.Imaging the Moho and Main Himalayan Thrust beneath the Kumaon Himalaya: constraints from receiver function analysis[J].Geophysical Journal International,2021, 224 (2): 858-870.

[17]Patra A, Saha D.Stress regime changes in the Main Boundary Thrust zone, Eastern Himalaya, decoded from fault-slip analysis[J].Journal of Structural Geology,2019, 120: 29-47.

[18]Le Roux-Mallouf R, Ferry M, Cattin R, et al.A 2600-year-long paleoseismic record for the Himalayan Main Frontal Thrust (western Bhutan)[J].Solid Earth,2020, 11 (6): 2359-2375.

[19]Hintersberger, Esther, Thiede, et al.East-west extension in the NW Indian Himalaya[J].Geological Society of America Bulletin,2010.

[20]Thiede R C, Arrowsmith J R, Bookhagen B, et al.Dome formation and extension in the Tethyan Himalaya, Leo Pargil, northwest India[J].Geological Society of America Bulletin,2006, 118 (5-6): 635-650.

[21]Sundell K E, Taylor M H, Styron R H, et al.Evidence for constriction and Pliocene acceleration of east-west extension in the North Lunggar rift region of west central Tibet[J].Tectonics,2013, 32 (5): 1454-1479.

[22]Mitsuishi M, Wallis S R, Aoya M, et al.E–W extension at 19Ma in the Kung Co area, S. Tibet: Evidence for contemporaneous E–W and N–S extension in the Himalayan orogen[J].Earth and Planetary Science Letters,2012, 325-326: 10-20.

[23]Garzione, Carmala, N., et al.High times on the Tibetan Plateau: Paleoelevation of the Thakkhola graben, Nepal[J].Geology,2000, 28 (4): 339-339.

[24]Wolff R, Hetzel R, Dunkl I, et al.High-Angle Normal Faulting at the Tangra Yumco Graben (Southern Tibet) since ∼15 Ma[J].The Journal of Geology,2018, 127 (1): 15-36.

[25]Lee J, Hager C, Wallis S R, et al.Middle to Late Miocene Extremely Rapid Exhumation and Thermal Reequilibration in the Kung Co Rift, Southern Tibet[J].Tectonics,2011, 30 (2).

[26]Hager C, Stockli D F, Dewane T J, et al.Anatomy and crustal evolution of the central Lhasa terrane (S-Tibet) revealed by investigations in the Xainza rift[J].EGU General Assembly Conference Abstracts,2009.

[27]Pan Y, Kidd W S F.Nyainqentanglha shear zone: A late Miocene extensional detachment in the southern Tibetan Plateau[J].Geology,1992, 20 (9): 775-778.

[28]Stockli D F, Taylor M, Yin A, et al. Late Miocene-Pliocene inception of E-W extension in Tibet as evidenced by apatite (U-Th)/He data[C].Geological Society of America Abstracts with Programs,2002: 411.

[29]Edwards M A, Harrison T M.When did the roof collapse? Late Miocene north-south extension in the high Himalaya revealed by Th-Pb monazite dating of the Khula Kangri granite[J].Geology,1997, 25 (6).

[30]Ratschbacher L, Krumrei I, Blumenwitz M, et al.Rifting and strike-slip shear in central Tibet and the geometry, age and kinematics of upper crustal extension in Tibet[J].Geological Society London Special Publications,2011, 353 (1): 127-163.

[31]Cowgill E.Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China[J].GSA Bulletin,2010, 122 (1-2): 145-161.

[32]Sobel E R, Chen J, Schoenbohm L M, et al.Oceanic-style subduction controls late Cenozoic deformation of the Northern Pamir orogen[J].Earth and Planetary Science Letters,2013, 363: 204-218.

[33]Stübner K, Ratschbacher L, Weise C, et al.The giant Shakhdara migmatitic gneiss dome, Pamir, India-Asia collision zone: 2. Timing of dome formation[J].Tectonics,2013, 32 (5): 1404-1431.

[34]Peltzer G, Tapponnier P.Formation and evolution of strike-slip faults, rifts, and basins during the India-Asia Collision: An experimental approach[J].Journal of Geophysical Research: Solid Earth,1988, 93 (B12): 15085-15117.

[35]Strecker M R, Frisch W, Hamburger M W, et al.Quaternary deformation in the Eastern Pamirs, Tadzhikistan and Kyrgyzstan[J].Tectonics,1995, 14 (5): 1061-1079.

[36]Chen H L, Chen Y G, Chen S Q, et al.The Tectonic Processes and Geomorphic Characteristics of Pamir Salient[J].Acta Geoscientica Sinica,2019, 40 (01): 55-75.

[37]Robinson A C.Geologic offsets across the northern Karakorum fault: Implications for its role and terrane correlations in the western Himalayan-Tibetan orogen[J].Earth and Planetary Science Letters,2009, 279 (1): 123-130.

[38]Wang S, Wang C, Phillips R J, et al.Displacement along the Karakoram fault, NW Himalaya, estimated from LA-ICP-MS U–Pb dating of offset geologic markers[J].Earth and Planetary Science Letters,2012, 337-338: 156-163.

[39]Murphy M A, Yin A, Kapp P, et al.Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip[J].Geology,2000, 28 (5): 451-454.

[40]Robinson A C, Yin A, Manning C E, et al.Cenozoic evolution of the eastern Pamir: Implications for strain-accommodation mechanisms at the western end of the Himalayan-Tibetan orogen[J].GSA Bulletin,2007, 119 (7-8): 882-896.

[41]Zhang J, Ji J, Zhong D, et al.Structural pattern of eastern Himalayan syntaxis in Namjagbarwa and its formation process[J].Science in China Series D: Earth Sciences,2004, 47 (2): 138-150.

[42]Xu Z, Ji S, Cai Z, et al.Kinematics and dynamics of the Namche Barwa Syntaxis, eastern Himalaya: Constraints from deformation, fabrics and geochronology[J].Gondwana Research,2012, 21 (1): 19-36.

[43]Butler R W H, Prior D J, Knipe R J.Neotectonics of the Nanga Parbat Syntaxis, Pakistan, and crustal stacking in the northwest Himalayas[J].Earth and Planetary Science Letters,1989, 94 (3): 329-343.

[44]Butler Robert W H.Tectonic evolution of the Himalayan syntaxes: the view from Nanga Parbat[J].Geological Society, London, Special Publications,2019, 483 (1): 215-254.

[45]Dewey J, Cande S, Pitman W C.Tectonic evolution of the India/Eurasia Collision Zone[J].Eclogae Geologicae Helvetiae,1989, 82.

[46]姜枚, 彭淼, 王有学, 等.喜马拉雅东构造结岩石圈板片深俯冲的地球物理证据[J].岩石学报,2012, 28 (6): 1755-1764.

[47]Li C, Van Der Hilst R D, Meltzer A S, et al.Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma[J].Earth and Planetary Science Letters,2008, 274 (1): 157-168.

[48]Zhang J, Ji J, Zhong D, et al.Discussion on the tectonic pattern and formation process of the Nanjabawa tectonic structure in the Eastern Himalayas[J].Science China Earth Sciences,2003 (04): 373-383.

[49]Coleman M, Hodges K.Evidence for Tibetan plateau uplift before 14 Myr ago from a new minimum age for east–west extension[J].Nature,1995, 374 (6517): 49-52.

[50]Chen Y, Li W, Yuan X, et al.Tearing of the Indian lithospheric slab beneath southern Tibet revealed by SKS-wave splitting measurements[J].Earth and Planetary Science Letters,2015, 413: 13-24.

[51]Tapponnier P, Mattauer M, Proust F, et al.Mesozoic ophiolites, sutures, and arge-scale tectonic movements in Afghanistan[J].Earth and Planetary Science Letters,1981, 52 (2): 355-371.

[52]Sun J, Xiao W, Windley B F, et al.Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian Plate with the Kohistan-Ladakh arc at around 47 Ma[J].Tectonics,2016, 35 (2): 315-338.

[53]Tapponnier P, Lacassin R, Leloup P H, et al.The Ailao Shan/Red River metamorphic belt: Tertiary left-lateral shear between Indochina and South China[J].Nature,1990, 343 (6257): 431-437.

[54]Ding L, Zhong D, Yin A, et al.Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis (Namche Barwa)[J].Earth and Planetary Science Letters,2001, 192 (3): 423-438.

[55]Dong H, Xu Z.Kinematics, fabrics and geochronology analysis in the Médog shear zone, Eastern Himalayan Syntaxis[J].Tectonophysics,2016, 667: 108-123.

[56]Booth A L, Zeitler P K, Kidd W S F, et al.U-Pb zircon constraints on the tectonic evolution of southeastern Tibet, Namche Barwa Area[J].American Journal of Science,2004, 304 (10): 889-929.

[57]Seward D, Burg J-P.Growth of the Namche Barwa Syntaxis and associated evolution of the Tsangpo Gorge: Constraints from structural and thermochronological data[J].Tectonophysics,2008, 451 (1): 282-289.

[58]Pan Y, Shen W, Shum C K, et al.Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data[J].Earth and Planetary Science Letters,2018, 502: 12-22.

[59]Shen Z, Jackson D D, Ge B X.Crustal deformation across and beyond the Los Angeles basin from geodetic measurements[J].Journal of Geophysical Research: Solid Earth,1996, 101 (B12): 27957-27980.

[60]Shen Z K, Wang M, Zeng Y, et al.Optimal Interpolation of Spatially Discretized Geodetic Data[J].Bulletin of the Seismological Society of America,2015, 105 (4): 2117-2127.

[61]Wang M, Shen Z.Present-Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications[J].Journal of Geophysical Research: Solid Earth,2020, 125 (2): e2019JB018774.

[62]Lu S, Cai Y, Ding L, et al.The effects of the dip angle and fricti on factor of a collision-rel ated fracture zone on the deformati on caused by the collision between two continental plates[J].Earth Science Frontiers,2006, 13 (03): 044-053.

[63]王勇, 许厚泽.青藏高原印度板块向欧亚大陆俯冲速率的研究——GPS观测资料的反演结果[J].地球物理学报,2003, 46 (2): 185-190.

[64]Zhao W, Nelson K D, Che J, et al.Deep seismic reflection evidence for continental underthrusting beneath southern Tibet[J].Nature,1993, 366 (6455): 557-559.

[65]Klemperer S L, Zhao P, Whyte C J, et al.Limited underthrusting of India below Tibet:3He/4He analysis of thermal springs locates the mantle suture in continental collision[J].Proceedings of the National Academy of Sciences,2022, 119 (12): e2113877119.

[66]Kaneko Y, Katayama I, Yamamoto H, et al.Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the Indian continental crust beneath Asia[J].Journal of Metamorphic Geology,2003, 21 (6): 589-599.

[67]Leech M L, Singh S, Jain A K, et al.The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya[J].Earth and Planetary Science Letters,2005, 234 (1): 83-97.

[68]Elliott J R, Walters R J, England P C, et al.Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology[J].Geophysical Journal International,2010, 183 (2): 503-535.

[69]Zhou H, Murphy M A.Tomographic evidence for wholesale underthrusting of India beneath the entire Tibetan plateau[J].Journal of Asian Earth Sciences,2005, 25 (3): 445-457.

[70]Zhao J, Yuan X, Liu H, et al.The boundary between the Indian and Asian tectonic plates below Tibet[J].Proceedings of the National Academy of Sciences,2010, 107 (25): 11229-11233.

[71]Li J, Song X.Tearing of Indian mantle lithosphere from high-resolution seismic images and its implications for lithosphere coupling in southern Tibet[J].Proceedings of the National Academy of Sciences,2018, 115 (33): 201717258.

[72]Ni J, Barazangi M.Seismotectonics of the Himalayan Collision Zone: Geometry of the underthrusting Indian Plate beneath the Himalaya[J].Journal of Geophysical Research: Solid Earth,1984, 89 (B2): 1147-1163.

[73]Zeng R, Ding Z, Wu Q, et al.Seismological evidences for the multiple incomplete crustal subductions in Himalaya and Southern Tibet[J].Chinese Journal of Geophysics (in Chinese),2000, 43 (6): 825-842.

[74]Duan H, Zhou S, Li R.Estimation of dip angle of Haiyuan faults based on seismic data[J].Chinese Journal of Geophysics (in Chinese),2018, 61 (9): 3713-3721.

[75]Kanamori H.Mechanics of Earthquakes[J].Annual Review of Earth and Planetary Sciences,1994, 22 (1): 207-237.

[76]Aki K, Richards P G.Quantitative seismology : theory and methods / Keiiti Aki, Paúl G. Richards[J].The Journal of the Acoustical Society of America: 1546-1546.

[77]Silver P G, Jordan T H.Optimal estimation of scalar seismic moment[J].Geophysical Journal International,1982, 70 (3): 755-787.

[78]高彬, 周仕勇, 蒋长胜.基于地震活动性资料估计鄂尔多斯块体周缘构造断层面倾角[J].地球物理学报,2016, 59 (07): 2444-2452.

[79]张浪平, 邵志刚, 马宏生, 等.基于地震参数的缅甸弧俯冲带处板块间几何接触方式的研究[J].中国科学:地球科学,2013 (4): 12.

[80]Maruyama T. On Two-Dimensional Elastic Dislocations in an Infinite and Semi-infinite Medium[C],1967.

[81]Freund L B, Barnett D M.A two-dimensional analysis of surface deformation due to dip-slip faulting[J].Bulletin of the Seismological Society of America,1976, 66 (3): 667-675.

[82]Rani S, Singh S J, Garg N R.Displacements and stresses at any point of a uniform half-space due to two-dimensional buried sources[J].Physics of the Earth and Planetary Interiors,1991, 65 (3): 276-282.

[83]Rani S, Singh S J.Static deformation of a uniform half-space due to a long dip—slip fault[J].Geophysical Journal International,1992, 109 (2): 469-476.

[84]Chinnery M A.The stress changes that accompany strike-slip faulting[J].Bulletin of the Seismological Society of America,1963, 53 (5): 921-932.

[85]Hardy R L.Multiquadric equations of topography and other irregular surfaces[J].Journal of Geophysical Research (1896-1977),1971, 76 (8): 1905-1915.

[86]Hardy R L. The application of multiquadric equations and point mass anomaly models to crustal movement studies[C],1978.

[87]张伟, 覃庆炎, 简兴祥.自然邻点插值算法及其在二维不规则数据网格化中的应用[J].物探化探计算技术,2011, 33 (3): 5.

[88]苑希民, 薛文宇, 冯国娜, 等.基于自然邻点插值计算的溃堤洪水二维模型[J].河南水利与南水北调,2016.

[89]Chen Q. Crustal deformation along the San Andreas fault and within the Tibetan plateau measured using GPS[M]. University of Alaska Fairbanks,2002.

[90]蒋溥, 代丽思.用震源机制解资料对中国地震断裂分类和定名[J].地震地质,1985 (01): 41-48.

[91]Storchak D A, Di Giacomo D, Bondár I, et al.Public Release of the ISC–GEM Global Instrumental Earthquake Catalogue (1900–2009)[J].Seismological Research Letters,2013, 84 (5): 810-815.

[92]Storchak D A, Di Giacomo D, Engdahl E R, et al.The ISC-GEM Global Instrumental Earthquake Catalogue (1900–2009): Introduction[J].Physics of the Earth and Planetary Interiors,2015, 239: 48-63.

[93]Verma R K, Mukhopadhyay M, Roy B N.Seismotectonics of the himalaya, and the continental plate convergence[J].Tectonophysics,1977, 42 (2): 319-335.

[94]Dziewonski A M, Chou T-A, Woodhouse J H.Determination of earthquake source parameters from waveform data for studies of global and regional seismicity[J].Journal of Geophysical Research: Solid Earth,1981, 86 (B4): 2825-2852.

[95]Ekström G, Dziewoński A M, Maternovskaya N N, et al.Global seismicity of 2003: centroid–moment-tensor solutions for 1087 earthquakes[J].Physics of the Earth and Planetary Interiors,2005, 148 (2): 327-351.

[96]Chen Q-F, Chen Y, Li L.China Digital Seismic Network improves coverage and quality[J].Eos, Transactions American Geophysical Union,2006, 87 (30): 294-299.

[97]Peterson J, Clark H, Hoffman J, et al.The China Digital Seismograph Network[J].Annals of Geophysics,1987, 37.

[98]Liu R-F, Wu Z-L, Yin C-M, et al.Development of China digital seismological observational systems[J].Acta Seismologica Sinica,2003, 16 (5): 568-573.

[99]Chen Q-F, Chen Y, Li L.China Digital Seismic NetworkImproves Coverage and Quality[J].Eos, Transactions American Geophysical Union,2006.

[100]Felzer K R, Brodsky E E.Decay of aftershock density with distance indicates triggering by dynamic stress[J].Nature,2006, 441 (7094): 735-738.

[101]Shearer P, Hauksson E, Lin G.Southern California Hypocenter Relocation with Waveform Cross-Correlation, Part 2: Results Using Source-Specific Station Terms and Cluster Analysis[J].Bulletin of the Seismological Society of America,2005, 95 (3): 904-915.

[102]Lin G, Shearer P M, Hauksson E.Applying a three-dimensional velocity model, waveform cross correlation, and cluster analysis to locate southern California seismicity from 1981 to 2005[J].Journal of Geophysical Research: Solid Earth,2007, 112 (B12).

[103]Schaff D P, Waldhauser F.Waveform Cross-Correlation-Based Differential Travel-Time Measurements at the Northern California Seismic Network[J].Bulletin of the Seismological Society of America,2005, 95 (6): 2446-2461.

[104]Duan H, Chen S, Li R, et al.Fault geometrical model of Dujiangyan section in Longmenshan fault zone[J].Earthquake Science,2018, 31 (3): 126-136.

[105]饶维龙, 孙文科. 青藏高原水文质量变化及水文负荷对高原隆升的影响[C].2020年中国地球科学联合学术年会,2020: 2.

[106]Floyd M A, Funning G J, Herring T A.Kinematics of Faulting in the Northern San Francisco Bay Region from GPS measurements: Collaborative Research with the Massachusetts Institute of Technology and University of California, Riverside[J].

[107]Herring T, King R, Floyd M, et al.GAMIT-GPS analysis at MIT, reference manual 10.6[J].Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology,2015.

[108]Bertiger W, Bar-Sever Y, Dorsey A, et al.GipsyX/RTGx, a new tool set for space geodetic operations and research[J].Advances in space research,2020, 66 (3): 469-489.

[109]Boehm J, Niell A, Tregoning P, et al.Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data[J].Geophysical Research Letters,2006, 33 (7).

[110]Boehm J, Heinkelmann R, Schuh H.Short Note: A global model of pressure and temperature for geodetic applications[J].Journal of Geodesy,2007, 81 (10): 679-683.

[111]Lagler K, Schindelegger M, Böhm J, et al.GPT2: Empirical slant delay model for radio space geodetic techniques[J].Geophysical Research Letters,2013, 40 (6): 1069-1073.

[112]Singh S J, Kumar A, Singh J.Deformation of a monoclinic elastic half-space by a long inclined strike-slip fault[J].ISET Journal of Earthquake Technology,2003, 20(1): 51-59.

[113]Singh S J, Rani S a F.2-D modelling of crustal deformation associated with strike-slip and dip-slip faulting in the Earth[J].Proceedings of the National Academy of Sciences,1996, 66: 187-215.

[114]李煜航, 郝明, 季灵运, 等.青藏高原东缘中南部主要活动断裂滑动速率及其地震矩亏损[J].地球物理学报,2014, 57 (4): 1062-1078.

[115]Wang W, Dang Y, Zhang C, et al.Monitoring of crustal deformation and gravity variation from terrestrial water loading in the Three Gorges region by the CORS network[J].Chinese Journal of Geophysics (in Chinese),2017, 60 (3): 962-971.

[116]Zeitler P K, Meltzer A, Koons P O, et al.Erosion, Himalayan geodynamics, and the geomorphology of metamorphism[J].Gsa Today,2001, 11: 4-9.

[117]Sandvol E, Ni J, Kind R, et al.Seismic anisotropy beneath the southern Himalayas-Tibet collision zone[J].Journal of Geophysical Research: Solid Earth,1997, 102 (B8): 17813-17823.

[118]Fu Y V, Chen Y J, Li A, et al.Indian mantle corner flow at southern Tibet revealed by shear wave splitting measurements[J].Geophysical Research Letters,2008, 35 (2).

[119]Chen W-P, Özalaybey S.Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures[J].Geophysical Journal International,1998, 135 (1): 93-101.

[120]Huang W-C, Ni J F, Tilmann F, et al.Seismic polarization anisotropy beneath the central Tibetan Plateau[J].Journal of Geophysical Research: Solid Earth,2000, 105 (B12): 27979-27989.

[121]Chen W-P, Martin M, Tseng T-L, et al.Shear-wave birefringence and current configuration of converging lithosphere under Tibet[J].Earth and Planetary Science Letters,2010, 295 (1): 297-304.

[122]Kumar M R, Singh A.Evidence for plate motion related strain in the Indian shield from shear wave splitting measurements[J].Journal of Geophysical Research: Solid Earth,2008, 113 (B8).

[123]Kumar N, Kumar M R, Singh A, et al.Shear wave anisotropy of the Godavari rift in the south Indian shield: Rift signature or APM related strain?[J].Physics of the Earth and Planetary Interiors,2010, 181 (3): 82-87.

[124]Saikia D, Ravi Kumar M, Singh A, et al.Seismic anisotropy beneath the Indian continent from splitting of direct S waves[J].Journal of Geophysical Research: Solid Earth,2010, 115 (B12).

[125]Mcnamara D E, Owens T J, Silver P G, et al.Shear wave anisotropy beneath the Tibetan Plateau[J].Journal of Geophysical Research: Solid Earth,1994, 99 (B7): 13655-13665.

[126]Hirn A, Jiang M, Sapin M, et al.Seismic anisotropy as an indicator of mantle flow beneath the Himalayas and Tibet[J].Nature,1995, 375 (6532): 571-574.

[127]Gao S S, Liu K H.Significant seismic anisotropy beneath the southern Lhasa Terrane, Tibetan Plateau[J].Geochemistry, Geophysics, Geosystems,2009, 10 (2).

[128]Mahéo G, Guillot S, Blichert-Toft J, et al.A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet[J].Earth and Planetary Science Letters,2002, 195 (1): 45-58.

[129]Yin A.Mode of Cenozoic east-west extension in Tibet suggesting a common origin of rifts in Asia during the Indo-Asian collision[J].Journal of Geophysical Research: Solid Earth,2000, 105 (B9): 21745-21759.

[130]Liang X, Shen Y, Chen Y J, et al.Crustal and mantle velocity models of southern Tibet from finite frequency tomography[J].Journal of Geophysical Research: Solid Earth,2011, 116 (B2).

[131]Xiao L, Wang C, Pirajno F.Is the Underthrust Indian Lithosphere Split beneath the Tibetan Plateau?[J].International Geology Review,2007, 49 (1): 90-98.

[132]Xu Z, Cai Z, Zhang Z, et al.Tectonics and fabric kinematics of the Namche Barwa terrane, Eastern Himalayan Syntaxis[J].Acta Petrologica Sinica,1994, 24 (7): 1463-1476.

中图分类号:

 P228    

开放日期:

 2023-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式