- 无标题文档
查看论文信息

论文中文题名:

 基于Petri网的装配车间动态计划调度方法研究    

姓名:

 武争利    

学号:

 18205017009    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080201    

学科名称:

 工学 - 机械工程 - 机械制造及其自动化    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械制造及其自动化    

研究方向:

 制造及系统工程    

第一导师姓名:

 王昀睿    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Research on Dynamic Planning and Scheduling Method of Assembly Shop Based on Petri Net    

论文中文关键词:

 计划调度 ; 不确定性 ; 数字孪生 ; Petri网    

论文外文关键词:

 planning and scheduling ; Uncertainty ; digital twin ; Petri net    

论文中文摘要:

装配车间在依据计划调度方案进行产品装配时,会出现设备故障、物料缺失、人员流动等不确定性因素,这些不确定性因素会影响计划调度方案的准确性,使计划调度方案无法准确指导实际装配,影响车间效益。传统车间的计划调度系统在处理这些不确定因素时,由于管控机制不全面、监控数据实时性差、调度智能化水平低,导致装配过程中不确定性因素不能被及时处理。数字孪生技术的出现为解决该问题提供了重要方向。本文将数字孪生技术与计划调度系统进行融合,形成全方位的动态计划调度系统管控机制,并基于Petri网形成装配车间动态计划调度系统,系统的解决管控机制不全面、监控数据实时性差、调度智能化水平低等问题,使装配过程中的不确定性因素能够被实时监控和及时处理。针对管控机制不全面的问题,形成基于数字孪生的装配车间动态计划调度系统管控机制。从装配前、中、后,综合考虑预测技术、仿真技术、全要素的实时数据获取技术,在全装配要素预测的基础上,运用仿真验证和实时数据一致性检验,实现装配计划能够准确指导实际装配的目的。针对监控数据实时性差的问题,研究基于Petri网模型的装配车间计划调度资源主动感知方法。运用Petri网模型进行计划调度资源状态和活动描述,并根据资源类型配置相应RFID设备。将Petri网模型存储至RFID设备,进行计划调度资源之间的交互,同时通过MES获取计划调度资源的实时数据。针对调度智能化水平低的问题,搭建基于Petri网的装配车间动态计划调度模型。对基于Petri网的动态计划调度系统进行分析,找到不确定性因素被发现的条件,以及不确定性因素与计划调度方案的关联关系,以装配车间惩罚费用最小为目标,建立基于Petri网的动态计划调度模型。以A企业为实例对象,首先运用计划调度系统管控机制中的思想,进行计划调度系统的优化,接着运用CPN TOOLS仿真工具获得计划调度资源的实时数据,最后在此基础上搭建含有调度模型的车架厂动态计划调度系统,进行车架厂不确定因素的实时监控和及时处理。这为车架厂带来了良好的经济效益。

论文外文摘要:

When the assembly workshop assembles the products according to the planning and scheduling scheme, there will be some uncertain factors such as failure of equipment, lack of material and flow of personnel. These uncertain factors will affect the accuracy of the planning and scheduling scheme, making the planning and scheduling scheme can not accurately guide the actual assembly, thus affecting the efficiency of the assembly workshop. In the traditional workshops, the planning and scheduling system of traditional workshops dealing with these uncertain factor, due to the incompleteness of management and control mechanisms, poor real-time capability of monitoring data, and low level of intelligence in scheduling, the uncertain factors in the assembly process cannot be immediate treatment. The emergence of digital twin technology provides an important direction for solving this problem. This paper integrate the digital twin technology with the planning and scheduling systems to form a comprehensive management and control mechanisms of the dynamic planning and scheduling system, and a dynamic planning and scheduling system for assembly workshop based on the Petri net is formed, which solves the problems of incompleteness of management and control mechanisms, poor real-time capability of monitoring data, and low level of intelligence in scheduling, so that the uncertainty factors in assembly can be monitored and processed in real time. In response to the incompleteness of management and control mechanisms, the management and control mechanisms of dynamic planning and scheduling system based on digital twin was formed. From before, during and after the assembly, the prediction technology, simulation technology and real-time data acquisition technology of all elements are considered  comprehensively. Based on the prediction of all assembly elements, the simulation verification and consistency test of real-time data are used to achieve the purpose that the assembly plan can accurately guide the actual assembly. In response to the poor real-time capability of monitoring data, the active sensing method of planning and scheduling resources in assembly shop based on the Petri net model is studied. The Petri net model is used to describe the state and activity of the planning and scheduling resources, and the corresponding RFID equipment is configured according to the resource type. The Petri net model is stored in the RFID device for the interaction of the planning and scheduling resources, and the real-time data of the planning and scheduling resources are obtained through MES. In response to the low level of intelligence in scheduling, the dynamic planning and scheduling model for assembly workshop based on Petri net is built. The dynamic planning and scheduling system based on Petri net is analyzed to find the conditions for the discovery of uncertain factors and the correlation between uncertain factors and planning and scheduling schemes. The planning and scheduling model based on Petri net is established with the minimum penalty cost of assembly workshop as the goal. The enterprise of A is taken as an example. Firstly, the planning and scheduling system is optimized by using the idea of the management and control mechanisms of dynamic planning and scheduling system. Then, the real-time data of the planning and scheduling resources is obtained by using the CPN TOOLS simulation tool. Finally, on this basis, the dynamic planning and scheduling system of the vehicle frame plant with the scheduling model is built to conduct real-time monitoring and timely processing of uncertain factors in the vehicle frame plant. This has brought good economic benefits to the vehicle frame plant.

参考文献:

[1]杜晓敬.金融危机下我国制造业资本结构优化研究[D].湖南大学,2010.

[2]单继东,曹增义,王昭阳.航空发动机制造企业智能工厂建设[J].航空制造技术,2018,61(15):70-77.

[3]王宇.制造业发展中的管理创新模式研究[D].中南财经政法大学,2017.

[4]彭席席.欧美制造业强势回归对“中国制造2025”的若干启示[J].现代营销,2016,6:18.

[5]周晓晓.我国智能制造的发展战略和体制保障[D].天津师范大学,2018.

[6]汪应洛,刘子晗.中国从制造大国迈向制造强国的战略思考[J].西安交通大学学报,2013,33(6):1-6.

[7]凌秀洪.基于ERP的物料采购管理系统的应用研究[D].华南理工大学,2016.

[8]刘洪伟,段宏亮,等.集团分布式制造模式下生产计划与调度研究[J].组合机床与自动化加工技术,2014,4:146-149.

[9]谢金平.基于ERP-MES集成系统在主生产计划模拟与交期预测方面的运用[J].现代经济信息,2015,12:79-80.

[10]Glaessgen E,Stargel D. The digital twin paradigm for future NASA and US Air force vehicles[C]//Proceedings of the 53rd Structures Dynamics and Materials Conference. Special Session on the Digital Twin. Reston, Va., USA, AIAAA, 2012:1-14.

[11]Fong yuen Dinga, in Zhub, Hui Suna. Comparing two weighted approaches for sequencing mixed-model assembly lines with multiple objectives[J]. Int. J. Production Economics, 2006. 102:108-131.

[12]A. R. Rahimi-vahed, M Rabbani, R. Tavakkoli-moghaddam, et al. A Multi- objective scatter search for a mixed-model assembly line sequencing problem[J]. Advanced Engineering Informatics, 2007, 21:85-99.

[13]Manavizadeh N, Rabbani M, Radmehr F. A new muti-objective approach in order to balancing and sequencing U-shaped mixed model assembly line problem:a proposed heuristic algorithm[J]. The International Journal of Advanced Manufacturin- g Technology, 2015, 79(1-4):415-425.

[14]Ham A. Flexible job shop scheduling problem with parallel batch processing machine[C]//Proceedings of the 2016 Winter Simulation Conference, 2016:2740-2749.

[15]Shokouhi E. Integrated multi-objective process planning and flexible job shop scheduling considering precedence constraints. International Journal of Production & Manufacturing Research, 2018, 6(1):61-89.

[16]黄健,刘亮,齐二石.考虑生产线平衡的多目标混流装配线排程问题研究[J].组合机床与自动化加工技术,2014(8):156-160.

[17]Alaykýran K, Engin O, Döyen A. Using ant colony optimization to solve hybrid flow shop scheduling problems[J]. The International Journal of Advanced Manufact- uring Technology, 2007, 35:541-550.

[18]Gujjula R, Werk S, Günther H.O.A Novel Heuristic for Sequencing Mixed-Model Assembly Lines[J]. Computer Integrated Manufacturing Systems, 2013, 15:2350-23 18 .

[19]Zhou BH, Kang XY, A multiobjective hybrid imperialist competitive algorithm for multirobot cooperative assembly line balancing problems with energy awareness [J]. Proc IMechE Part C: J Mechanical Engineering Science, 2019, 233:2991-3003.

[20]安玉伟,严洪森.柔性作业车间生产计划与调度集成优化求解策略[J].自动化学报,2013,39(9):1476-1491.

[21]马永远.基于遗传算法的服装智能制造系统生产调度优化研究[D].中原工学院,2019.

[22]梁艳杰,杨明顺,高新勤,等.加工与装配车间集成调度的多目标优化模型[J].计算机工程与应用,2016,52(10):247-253.

[23]张立伟,张玲.利用嵌套L—型分解算法求解生产计划多阶段随机规划模型[J].山东大学学报(理学版),2007(04):67-70.

[24]Li W, Hui C W, Li P, et al. Refinery Planning under Uncertainty[J]. Industrial & Engineering Chemistry Research, 2004, 43(21):6742-6755.

[25]Lin F T. Constructing a job-shop scheduling model based on imprecise data [C]//The IEEE International Conference on Fuzzy Systems, 2003:1374-1379.

[26]Lei DM, Guo XP. Solving fuzzy flexible job shop scheduling problems using genetic algorithm[C]//Machine Learning and Cybernetics, 2008 International Confer- ence on IEEE, 2008:1014-1019.

[27]夏凯.遗传算法在流水车间调度问题中的研究与应用[D].浙江理工大学,2014.

[28]刘宽,张新运,程辉.基于遗传算法的航天机加工车间调度问题研究[J].航天制造技术,2015,1:56-60.

[29]耿佳灿.基于混合智能优化算法的模糊流水车间调度若干研究[D].华东理工大学, 2015.

[30]He Wei, Sun Di-hua.Scheduling flexible job shop problem subject to machine breakdown with route changing and right-shift strategies[J]. International Journal of Advanced Manufacturing Technology, 2013, 66:501-514.

[31]陈勇,潘益菁,王亚良,等.多态性作业车间鲁棒调度CA-GA建模[J].浙江工业大学学报,2014,42(2):124-131.

[32]Briskorn D, Leung J, Pinedo M. Robust scheduling on a single machine using time buffers[J]. IIE Transactions, 2011, 43(6):383-398.

[33]陈伟伟,张云宁,欧阳红祥.资源约束下项目调度鲁棒优化模型研究[J].武汉理工大学学报(信息与管理工程版),2015,37(1):104-116.

[34]刘琼,林魁,张超勇,等.基于关键链多项目鲁棒调度[J].计算机集成制造系统,2012,18(4):813-820.

[35]Luo H, Fang J, Huang G Q. Real-time scheduling for hybrid flowshop in ubiquitous manufacturing environment[J]. Comput Ind Eng, 2015, 84:12-23.

[36]Qu S, Wang J, Jasperneite J Dynamic scheduling in large-scale stochastic processing networks for demand-driven manufacturing using distributed reinforcement learning[C]//IEEE International Conference on Emerging Technologies and Factory Automation, 2018:433-440.

[37]Azadeh A, Negahban A, Moghaddam M. A hybrid computer simulation-artificial neural network algorithm for optimisation of scheduling rule selection in stochastic job shop scheduling problems[J]. Int J Prod Res, 2012, 50(2):551-566.

[38]Kong X, Lin C, Jiang Y, et al. Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction[J]. J Netw Comput Appl, 2011, 34(4):1068-1077.

[39]Ji W, Wang L. Big data analytics based fault prediction for shop floor scheduling[J]. J Manuf Syst, 2017, 43:187-194.

[40]GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US air fore vehicles[C]//Proceedings of the 53rd Structures Dynamics and Materials Conferences. Special Session on the Digital Twin, 2012:1-14.

[41]SCHLEICHB, ANWERN, MATHIEUL, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1):141-144.

[42]Tuegel E. The air frame digital twin:some challenges to realization[C]//Procee- dings of the 53rd AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012:2012-1812.

[43]陶飞,张萌,程江峰,等.数字孪生车间——一种未来车间运行新模式[J].计算机集成制造系统,2017(1):1-9.

[44]陶飞,刘蔚然,等.数字孪生五维模型及十大领域应用[J].计算机集成制造系统,2019,25(01):1-18.

[45]陈振,丁晓,唐健钧,等.基于数字孪生的飞机装配车间生产管控模式探索[J].航空制造技术,2018,61(12):46-50.

[46]柳林燕,杜宏祥,汪惠芬,等.车间生产过程数字孪生系统构建及应用[J].计算机集成制造系统,2019,25(6):1536-1545.

[47]赵浩然,刘检华,熊辉,等.面向数字孪生车间的三维可视化实时监控方法[J].计算机集成制造系统,2019,25(6):1432-1443.

[48]刘志峰,陈伟,杨聪彬,等.基于数字孪生的零件智能制造车间调度云平台[J].计算机集成制造系统,2019,25(6):1444-1453.

[49]张新生.基于数字孪生的车间管控系统的设计与实现[D].郑州大学,2018.

[50]刘庭煜,钟杰,刘洋,等.面向车间人员宏观行为数字孪生模型快速构建的小目标智能检测方法[J].计算机集成制造系统,2019,25(6):1463-1473.

[51]张琦.基于物理数据的数字孪生冲压生产线建模方法研究[D].武汉理工大学,2018.

[52]武颖,姚丽亚,熊辉,等.基于数字孪生技术的复杂产品装配过程质量管控方法[J].计算机集成制造系统,2019,25(6):1568-1575.

[53]李琳利,李浩,顾复,等.基于数字孪生的复杂机械产品多学科协同设计建模技术[J].计算机集成制造系统,2019,25(6):1307-1319.

[54]谢嘉成,王学文,杨兆建.基于数字孪生的综采工作面生产系统设计与运行模式[J].计算机集成制造系统,2019,25(6):1381-1391.

[55]朱志民,陶振伟,鲁继楠.轨道交通转向架数字孪生车间研究[J].机械制造,2018,56(11):19-22.

[56]HU H, LI Z, AL-AHMARI A.Reversed fuzy Petri nets and their application for fault diagnosis[J]. Computers & Industrial Enginering, 2011, 60(4):505-510.

[57]赵志宇.工业互联数据的Petri网建模与分析[D].电子科技大学,2017.

[58]李宇.物联网环境下基于 Petri 网的分布式制造资源感知和过程控制研究[D].北京交通大学,2014.

[59]邓泽群.射频识别RFID技术及其应用[J].中外企业家,2019(25):131.

[60]刘江.基于CPN Tools研究综述[J].信息技术与信息化,2015,(03):94-95.

中图分类号:

 TH186    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式