- 无标题文档
查看论文信息

论文中文题名:

 浅埋煤层工作面回风隅角低氧形成机制及防治技术研究    

姓名:

 杨冲    

学号:

 19220214108    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 有害气体防治    

第一导师姓名:

 翟小伟    

第一导师单位:

 西安科技大学    

第二导师姓名:

 姬文龙    

论文提交日期:

 2022-06-22    

论文答辩日期:

 2022-06-01    

论文外文题名:

 Study on formation mechanism and prevention technology of low oxygen in return air corner of shallow coal seam workface    

论文中文关键词:

 浅埋煤层 ; 回风隅角 ; 低氧现象 ; 遗煤氧化 ; 局部通风    

论文外文关键词:

 Shallow coal seam ; Return air corner ; Hypoxia phenomenon ; Residual coal oxidation ; Local ventilation.    

论文中文摘要:

近年来,我国陕北大部分浅埋煤层矿井在开采过程中,因地质条件、通风方式、采煤工艺等因素影响,致使工作面回风隅角出现氧气浓度低于18%的低氧现象频发,已成为矿井安全生产过程中面临的新难题。本文以张家峁煤矿15211工作面为研究对象,围绕工作面回风隅角低氧形成机制及防治方案进行系统研究,具体研究内容与结果如下:

通过理论分析、现场实测调研发现,工作面所采煤层瓦斯赋存分带处于二氧化碳-氮气带(CO2-N2)。工作面低氧现象主要发生在回风隅角区域,通过对比工作面检修、生产及低氧时间段回风隅角氧气浓度变化规律发现,工作面回风隅角低氧现象产生主要因采空区气体大量异常涌出所致,而地表大气压降低导致的采空区内外压差,是推动采空区内部低氧浓度气体涌出的直接原因。

通过现场监测与遗煤耗氧实验得出,采空区遗煤主要通过物理吸附与化学反应双重作用消耗氧气,从而产生大量的低氧浓度气体。而工作面采空区因开采扰动的影响,造成采空区与附近老空区之间气体相互贯通,使得上覆及临近采空区内气体向工作面采空区扩散,是影响工作面回风隅角产生低氧现象的主要原因之一。经过地表裂隙漏风测定试验发现,因地表漏风的影响使得地表气体涌入工作面的速率在0.09~0.13m/s之间。

基于数值模拟计算得出,当无其他因素影响时,在正常配风量2000m3/min下,工作面各用风地点氧气浓度均处于18%以上;当地表裂隙存在向采空区漏风时,随着漏风速率从0.09m/s增加到0.13m/s过程中回风隅角低氧现象愈加严重;在地表裂隙漏风因素影响下,当工作面配风量增大时,回风隅角低氧现象严重程度有所减缓。

最后依据工作面回风隅角低氧形成机制,针对性的提出了工作面回风隅角低氧预测与预防技术方案,并基于数值模拟研究所得结果,建立了一种以风流引射器与均压通风为主,以其他防治技术为辅的低氧处置技术方案。通过现场实际应用,发现回风隅角氧气浓度与其他气体浓度均处于正常范围之内,且回风隅角最高氧气浓度升至19.2%。

论文外文摘要:

In recent years, in the mining process of most shallow coal seam mines in Northern Shaanxi, due to the influence of geological conditions, ventilation mode, mining technology and other factors, low oxygen phenomenon with oxygen concentration less than 18% occurs frequently in the return air corner of the workface, which has become a new problem in the process of mine safety production. Taking 15211 workface of zhangjiamao coal mine as the research object, this paper systematically studies the formation mechanism and prevention scheme of low oxygen in the return air corner of the workface. The specific research contents and results are as follows:

Through theoretical analysis and field survey, it is found that the gas occurrence zone of the coal seam mined in the workface is in the carbon dioxide nitrogen zone (CO2-N2). The low oxygen phenomenon in the workface mainly occurs in the return air corner area. By comparing the change law of oxygen concentration in the return air corner during the maintenance, production and low oxygen time of the workface, it is found that the low oxygen phenomenon in the return air corner of the workface is mainly caused by a large number of abnormal gas gushing out of the goaf, and the pressure difference inside and outside the goaf caused by the reduction of surface atmospheric pressure is the direct cause of promoting the low oxygen concentration gas gushing out of the goaf.

Through on-site monitoring and oxygen consumption experiment of residual coal, it is concluded that the residual coal in goaf mainly consumes oxygen through the dual action of physical adsorption and chemical reaction, resulting in a large amount of low oxygen concentration gas. Due to the influence of mining disturbance in the goaf of the workface, the gas between the goaf and the nearby old goaf is connected with each other, so that the gas in the overlying and adjacent goaf diffuses to the goaf of the workface, which is one of the main reasons affecting the low oxygen phenomenon in the return air corner of the workface. Through the measurement test of surface fissure air leakage, it is found that the rate of surface gas flowing into the workface is between 0.09 ~ 0.13m/s due to the influence of surface air leakage.

Based on the numerical simulation calculation, when there are no other factors, under the normal air distribution volume of 2000 m3/min, the oxygen concentration at each air consumption location of the workface is more than 18%; When there is air leakage from surface cracks to goaf, the phenomenon of low oxygen in return air corner becomes more and more serious as the air leakage rate increases from 0.09 m/s to 0.13 m/s; Under the influence of surface crack air leakage, when the air distribution volume of the workface increases, the severity of low oxygen in the return air corner slows down.

Finally, according to the formation mechanism of low oxygen in the return air corner of the workface, the technical scheme of low oxygen prediction and prevention in the return air corner of the workface is put forward. Based on the results of numerical simulation, a low oxygen treatment technical scheme based on air flow ejector and pressure equalizing ventilation and supplemented by other prevention and control technologies is established. Through field application, it is found that the oxygen concentration and other gas concentrations in the return air corner are within the normal range, and the maximum oxygen concentration in the return air corner rises to 19.2%.

参考文献:

[1]Bai X, Ding H, Lian J, et al. Coal production in china: Past, present, and future projections[J]. International Geology Review, 2018, 60(5-6): 535-547.

[2]Liu Y. Research on the operating mechanism of china's coal market[J]. Agro Food Industry Hi-Tech, 2017, 28(1): 3075-3077.

[3]李珂. 我国煤炭资源清洁高效利用现状及对策建议[J]. 内蒙古煤炭经济, 2020(15): 175-176.

[4]Jie D, Xu X, Guo F. The future of coal supply in china based on non-fossil energy development and carbon price strategies[J]. Energy, 2021, 220.

[5]谢和平, 吴立新, 郑德志. 2025年中国能源消费及煤炭需求预测[J]. 煤炭学报, 2019, 44(07): 1949-1960.

[6]Lin J, Fridley D, Lu H, et al. Has coal use peaked in china: Near-term trends in china's coal consumption[J]. Energy Policy, 2018,123:208-214.

[7]Li J, Liu C. Formation mechanism and reduction technology of mining-induced fissures in shallow thick coal seam mining[J]. Shock And Vibration, 2017, 2017.

[8]Zhuo H, Qin B, Shi Q, et al. Development law of air leakage fractures in shallow coal seams: A case study in the shendong coalfield of china[J]. Environmental Earth Sciences, 2018, 77.

[9]Prakash A, Kumar N, Kumbhakar D, et al. A safe depillaring design for shallow depth of cover with influence of surface ground movements: A study in jharia coalfield[J]. Arabian Journal Of Geosciences, 2018, 11.

[10]范立民, 马雄德, 李永红, 等. 西部高强度采煤区矿山地质灾害现状与防控技术[J]. 煤炭学报, 2017, 42(02): 276-285.

[11]黄庆享, 杜君武. 浅埋煤层群开采的区段煤柱应力与地表裂缝耦合控制研究[J]. 煤炭学报, 2018, 43(03): 591-598.

[12]李韫华. U型工作面采空区漏风对自然发火的影响[J]. 西安科技大学学报, 2015, 35(01): 32-37.

[13]Liang Y, Zhang J, Wang L, et al. Forecasting spontaneous combustion of coal in underground coal mines by index gases: A review[J]. Journal Of Loss Prevention In the Process Industries, 2019, 57: 208-222.

[14]Zhai X, Ge H, Shu C-M, et al. Effect of the heating rate on the spontaneous combustion characteristics and exothermic phenomena of weakly caking coal at the low-temperature oxidation stage[J]. Fuel, 2020, 268.

[15]Lin Q, Wang S, Liang Y, et al. Analytical prediction of coal spontaneous combustion tendency: Velocity range with high possibility of self-ignition[J]. Fuel Processing Technology, 2017, 159: 38-47.

[16]Wang J, Guo Z. Effect of basketball sports on serum superoxide dismutase and its relationship with the nanoparticle drug delivery system[J]. Journal Of Chemistry, 2020,2020.

[17]Dilektasli AG, Porszasz J, Stringer WW, et al. Physiologic effects of oxygen supplementation during exercise in chronic obstructive pulmonary disease[J]. Clinics In Chest Medicine, 2019,40(2):385.

[18]Lopez-Barneo J, Gonzalez-Rodriguez P, Gao L, et al. Oxygen sensing by the carotid body: Mechanisms and role in adaptation to hypoxia[J]. American Journal Of Physiology-Cell Physiology, 2016,310(8):C629-C642.

[19]张国枢. 通风安全学[M]. 徐州:中国矿业大学出版社, 2000.

[20]赵罗飞. 补连塔煤矿工作面低氧原因及防控方法研究[D]; 中国矿业大学, 2020.

[21]王伟. 大柳塔煤矿22613工作面回风隅角低氧原因分析及防治技术[J]. 煤矿安全, 2016,47(07):160-162.

[22]杨俊哲. 大柳塔煤矿12612工作面回风隅角氧气浓度异常原因分析与治理措施[J]. 中国煤炭, 2009,35(07):94-96.

[23]郭永文. 浅埋深近距离煤层群综采工作面低氧原因分析与防治对策[J]. 煤矿安全, 2017,48(09):137-140.

[24]方保明. 综采工作面回风隅角低氧原因分析及防治[J]. 煤矿安全, 2018,49(10):187-190.

[25]张立辉. 浅埋深易自燃煤层综采工作面低氧防治技术[J]. 煤炭科学技术, 2015, 43(08): 87-91.

[26]李效军. 综合治理高氮低氧防止窒息事故[J]. 矿业安全与环保, 2001(S1): 53-55.

[27]盛卫忠, 王作富. 垞城煤矿高氮规律及防治措施[J]. 煤炭科技, 2000(04): 47-48.

[28]张运增, 杨英兵. 均压通风防治低氧在补连塔煤矿的应用[J]. 山东煤炭科技, 2016(12): 94-95.

[29]杨小彬, 王逍遥, 周世禄, 等. 基于改进广义回归神经网络的工作面低氧预测模型研究[J]. 矿业科学学报, 2019, 4(05): 434-440.

[30]汪腾蛟, 裴艳宇, 张立辉,等. 补连塔矿工作面低氧主控原因分析[J]. 辽宁工程技术大学学报(自然科学版), 2021,40(05):396-400.

[31]Tang W, Cai Q. Dust distribution in open-pit mines based on monitoring data and fluent simulation[J]. Environmental Monitoring And Assessment, 2018, 190.

[32]Ding X, Zhou W, Lu X, et al. Distribution characteristics of fragments size and optimization of blasting parameters under blasting impact load in open-pit mine[J]. Ieee Access, 2019, 7: 137501-137516.

[33]Lu Y, Gu W, Wang G, et al. Numerical assessment of the influences of the coal spontaneous combustion on gas drainage methods optimization and its application[J]. Combustion Science And Technology, 2021, 193(12): 2158-2174.

[34]Zhang H, Sasaki K, Zhang X, et al. Numerical simulations on the self-heating behaviours of coal piles considering aging effect[J]. Combustion Theory And Modelling, 2019, 23(6): 1169-1190.

[35]郝宇鑫, 黄玉诚, 魏文峰, 等. 基于fluent的高原矿井通风增压增氧技术研究[J]. 中国矿业, 2021, 30(01): 100-105.

[36]何磊. 高原矿山独头巷道增氧通风数值模拟研究[J]. 现代矿业, 2011, 27(02): 37-40.

[37]Zhou A, Zhang M, Wang K, et al. Airflow disturbance induced by coal mine outburst shock waves: A case study of a gas outburst disaster in china[J]. International Journal Of Rock Mechanics And Mining Sciences, 2020, 128.

[38]Huang R, Shen X, Wu E, et al. Study on the influence law of ventilation conditions on heat loss in a roadway of high altitude mine[J]. Numerical Heat Transfer Part a-Applications, 2020, 77(1): 69-79.

[39]Perera M S A, Ranjith P G, Choi S K, et al. Numerical simulation of gas flow through porous sandstone and its experimental validation[J]. Fuel, 2010, 90.

[40]Wasilewski S. Influence of Barometric Pressure Changes on Ventilation Conditions in Deep Mines[J]. Archives of Mining Sciences, 2014, 59.

[41]李蓉蓉, 李孜军, 赵淑琪, 等. 基于CFD的高海拔矿山掘进面通风增氧方案优化[J]. 中国安全生产科学技术, 2020, 16(02): 54-60.

[42]李孜军, 黄义龙. 高海拔矿山掘进工作面供氧通风数值模拟[J]. 安全与环境学报, 2020, 20(06): 2147-2153.

[43]杨胜强, 徐全, 黄金, 等. 采空区自燃“三带”微循环理论及漏风流场数值模拟[J]. 中国矿业大学学报, 2009, 38(06): 769-773.

[44]杨明, 高建良, 冯普金. U型和Y型通风采空区瓦斯分布数值模拟[J]. 安全与环境学报, 2012, 12(05): 227-230.

[45]Gulawani S S, Dahikar S K, Joshi J B, et al. CFD simulation of flow pattern and plume dimensions in submerged condensation and reactive gas jets into a liquid bath[J]. Chemical Engineering Science, 2008, 63.

[46]贺飞, 王继仁, 郝朝瑜, 等. 浅埋近距离煤层内错布置采空区自燃危险区域研究[J]. 中国安全生产科学技术, 2016, 12(02): 68-72.

[47]胡开通. 综放工作面低氧原因分析及防治新技术[J]. 同煤科技, 2018(02): 44-46.

[48]张肖伟, 昝磊. 综采工作面上隅角低氧治理研究[J]. 山东煤炭科技, 2019(07): 118-119.

[49]聂含张. 综放工作面低氧区域综合治理研究[J]. 山西冶金, 2019, 42(04): 154-156.

[50]周巨钦. 浅谈马兰矿12505综采面上隅角低氧防治技术[J]. 陕西煤炭, 2019, 38(03): 147-150.

[51]菅跃荣. 近距离煤层回采工作面回风隅角低氧防治研究[J]. 煤炭工程, 2018, 50(S1): 94-96.

[52]李斌, 杨英兵. 基于均压通风技术的浅埋深超大面积采空区综采工作面低氧防治[J]. 煤矿安全, 2017, 48(S1): 94-98.

[53]顾冲. 工作面回风隅角氧气参数测定与低氧治理[J]. 江西煤炭科技, 2021(01): 150-153.

[54]藏亮, 李本一. 综放工作面放顶煤工作面上隅角立体空间内氧参数测定及分析[J]. 当代化工研究, 2020(11): 142-143.

[55]梁栋林. 极近距离煤层综采工作面低氧综合治理技术[J]. 煤矿安全, 2020, 51(06): 77-80.

[56]王新成. 基于短布距抽放技术的极近距离煤层综采工作面低氧防治[J]. 煤炭技术, 2020, 39(05): 129-132.

[57]迟国铭, 张立辉, 李斌. 浅埋深近距离煤层群大采高综采工作面隅角低氧防治技术[J]. 煤矿安全, 2018, 49(S1): 22-26.

[58]秦清河, 张立辉. 补连塔煤矿22307工作面均压通风安全技术及应急处置措施[J]. 煤矿安全, 2017, 48(S1): 69-71.

[59]郜爱斌. 煤矿均压通风安全技术及应急处置措施[J]. 煤炭与化工, 2018, 41(04): 119-121.

[60]高通. 工作面均压通风安全技术及应急措施[J]. 江西化工, 2019(04): 162-163.

[61]岳松鹏. 哈拉沟煤矿22518综采面U型均压通风的技术应用[J]. 内蒙古煤炭经济, 2018(12): 54-56.

[62]张永福. 均压技术在神东矿区综采面的应用[J]. 陕西煤炭, 2017, 36(05): 59-61.

[63]宋元喜, 鹿文勇. 均压技术治理神东矿区低氧问题的效果分析[J]. 煤矿安全, 2018, 49(S1): 88-91.

[64]罗聪亮. U型通风采空区气体微流动场模拟研究[D]; 湖南科技大学, 2017.

[65]国家安全生产监督管理总局. AQ 1018-2006. 矿井瓦斯涌出量预测方法[S].北京:煤炭工业出版社, 2006.

[66]张荣立, 何国纬, 李铎. 采矿工程设计手册[M]. 北京: 煤炭工业出版社, 2003.

[67]贾军萍, 许江涛, 张淦星. 瓦斯风化带内瓦斯涌出量预测技术研究[J]. 中国煤炭, 2016, 42(06): 109-111.

[68]陈育. 张家峁煤矿过沟开采地面塌陷规律及溃水危险性预测[D]; 西安科技大学, 2020.

[69]张小翌. 大气压力变化对老虎台矿采空区瓦斯涌出影响及防治技术研究[D]; 中国矿业大学, 2020.

[70]彭斌, 聂百胜, 申杰升, 等. 低瓦斯矿井封闭采空区“呼吸”现象特征及防控技术[J]. 煤炭学报, 2019,44(02):490-501.

[71]盛继权, 金毅, 姜卓, 等. 大气压变化对采空区瓦斯涌出影响的实验研究[J]. 中国矿业, 2020,29(11):172-177.

[72]Li Z, Zhang Y, Jing X, et al. Insight into the intrinsic reaction of brown coal oxidation at low temperature: Differential scanning calorimetry study[J]. Fuel Processing Technology, 2016, 147: 64-70.

[73]Chen X, Chang Z, Peng Y. Predicting the degree of surface oxidation on fine coals by measuring the oxygen transfer rate in coal suspensions[J]. Fuel Processing Technology, 2017, 159: 313-319.

[74]Wang D-m, Xin H-h, Qi X-y, et al. Reaction pathway of coal oxidation at low temperatures: A model of cyclic chain reactions and kinetic characteristics[J]. Combustion And Flame, 2016, 163: 447-460.

[75]Lv X, Liang X, Xu P, et al. A numerical study on oxygen adsorption in porous media of coal rock based on fractal geometry[J]. Royal Society Open Science, 2020, 7.

[76]Liu H, Wang F. Thermal characteristics and kinetic analysis of coal-oxygen reaction under the condition of inert gas[J]. International Journal Of Coal Preparation And Utilization, 2019.

[77]Thommes M, Kaneko K, Neimark AV, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (iupac technical report)[J]. Pure And Applied Chemistry, 2015, 87(9-10): 1051-1069.

[78]武司苑, 邓存宝, 戴凤威, 等. 煤吸附CO2、O2和N2的能力与竞争性差异[J]. 环境工程学报, 2017, 11(07): 4229-4235.

[79]Wu S, Jin Z, Deng C. Molecular simulation of coal-fired plant flue gas competitive adsorption and diffusion on coal[J]. Fuel, 2019, 239: 87-96.

[80]Cheng G, Tan B, Zhang Z, et al. Characteristics of coal-oxygen chemisorption at the low-temperature oxidation stage: Dft and experimental study[J]. Fuel, 2022, 315.

[81]Li J-l, Lu W, Liang Y-t, et al. Variation of co2/co ratio during pure-oxidation of feed coal[J]. Fuel, 2020, 262.

[82]崔凯. 大采高工作面覆岩“三带”高度的研究[J]. 能源与节能, 2021(11): 24-27.

[83]李智胜. 环缝式引射瓦斯稀释器性能优化研究[D]; 西安科技大学, 2019.

中图分类号:

 TD711    

开放日期:

 2023-06-22    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式