- 无标题文档
查看论文信息

论文中文题名:

 基于特征分解的精神分裂症脑网络机理研究    

姓名:

 王欣蕊    

学号:

 20201221052    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 生物统计    

第一导师姓名:

 张仲华    

第一导师单位:

 西安科技大学    

第二导师姓名:

 王荣    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on brain functional network in schizophrenia patients using eigen decomposition    

论文中文关键词:

 精神分裂症 ; 特征分解 ; 大脑功能连接 ; 磁共振成像 ; 静息态    

论文外文关键词:

 Schizophrenia ; Eigen Decomposition ; Brain Functional Network ; Functional Magnetic Resonance Imaging ; Resting State    

论文中文摘要:

精神分裂症是一种严重的神经类疾病,其临床表现涉及到思维、认知和行为等多个方面。目前对精神分裂症的诊断和治疗主要依靠临床医生对患者的体征和症状进行主观判断,缺乏客观诊断标准。本文基于特征向量分解方法,研究精神分裂症患者静息态、任务态以及认知转迁状态下脑功能网络异常机理。研究结果有助于进一步寻找精神分裂症客观生物学标志物及揭示其潜在的发病机制、对于临床诊断和治疗具有重大意义。

研究精神分裂症静息状态大脑功能网络异常机理,分析大脑网络分离与整合动态切换特性及其与临床诊断结果的统计学关系。发现精神分裂症患者的大脑网络表现出更稳定的整合过程和更多变的分离过程,其中边缘系统的相对变化最为显著。幻觉症状与注意力系统的高度整合呈正相关,意志力缺失症状与默认模式网络和控制系统中分离过程变异程度呈负相关。基于机器学习预测模型,发现基于特征向量分解的大脑特征可以有效预测阳性症状和阴性症状,并且预测效果优于传统图论方法。多元线性回归分析表明,阳性和阴性症状对大脑网络的动态分离与整合具有相反影响。基因富集分析显示,阴性症状的影响与自闭症、攻击性和暴力行为有关;阳性症状的影响与高氨血症和酸中毒有关;阳性和阴性症状的交互作用与运动功能异常有关。

研究精神分裂症患者在任务切换实验(Task-Switching Task)状态下大脑功能网络的异常机理,研究任务态大脑功能连接与认知执行能力和临床症状之间的关系。发现精神分裂症患者存在显著的认知异常,主要体现在任务反应时间更长和认知切换成本消耗更多。精神分裂症患者具有更高的网络分离程度,以维持在执行认知任务时所需要的分离过程的可变性。默认模式网络的分离变异程度越低,阴性的快感缺乏症状越严重。随着皮层下核系统、视觉系统和控制系统的整合强度增加,阳性的思维障碍症状越严重。背侧注意系统的分离变异程度加深,幻觉症状表现增强。

研究精神分裂症患者从静息状态转迁到任务状态下大脑功能网络的异常机理,分析精神分裂症患者大脑转迁效率与认知行为和临床症状的关系。发现精神分裂症患者具有较低的大脑认知状态转迁效率,需要更强的功能分离来支持认知切换。认知行为中的长切换成本与皮层下核系统、视觉系统、边缘系统的分离变异程度转迁效率存在负相关性。揭示了精神分裂症核心的幻觉症状在大脑不同状态下功能网络中的特定反应。

论文外文摘要:

Schizophrenia is a severe neurological disorder that affects multiple aspects of cognition, thinking and behavior. Currently, the diagnosis and treatment of schizophrenia primarily rely on subjective judgments made by clinicians based on patients' signs and symptoms, lacking objective diagnostic criteria. This thesis explores the underlying mechanisms of abnormal brain function networks in resting state, tasking state, and cognitive state transition of schizophrenia patients. The research results contribute to the further identification of objective biological markers and potential pathogenesis of schizophrenia, which have significant implications for clinical diagnosis and treatment.

We investigated the abnormal mechanisms of resting-state brain functional networks in patients with schizophrenia, and analyze the dynamic changes of brain network integration and segregation and their statistical relationships with clinical diagnose. The results reveal that the brain network of schizophrenia patients exhibits a more stable integrating process and a more variable segregating process, such that maintains higher segregation, especially in the limbic system. Hallucinations were associated with higher integration in attention systems, and avolition was related to a more variable segregating process in default-mode network and control systems. In a machine-learning model, eigen decomposition-based features outperformed graph measures at predicting positive and negative symptoms. Multivariate analysis confirmed that positive and negative symptoms had opposite effects on dynamic segregation and integration of brain networks. Gene ontology analysis revealed that the effect of negative symptoms was related to autistic, aggressive and violent behavior; the effect of positive symptoms was associated with hyperammonemia and acidosis; and the interaction effect was correlated with abnormal motor function.

We studied the abnormal mechanism of brain functional networks in schizophrenia patients during the Task-Switching Task, and analyzed the relationship between brain functional connectivity, cognitive executive abilities, and clinical symptoms. We found that schizophrenia patients exhibit significant cognitive abnormalities, primarily reflected in longer task reaction times and greater cognitive switching costs. Schizophrenia patients also demonstrated a higher functional segregation in the brain network to maintain the necessary variability of separation during cognitive execution. The lower segregation variability of default mode network was, the more severe of anhedonia was. As the integration intensity of subcortical networks, visual networks, and control systems increased, the severity of thought disorder symptom increased. Furthermore, as the segregation variability of the dorsal attention network increased, the expression of hallucinations symptom also increased.

We investigated the abnormal mechanism of brain functional network in patients with schizophrenia when the brain transferred from resting state to tasking state, and explored the relationship between brain transfer efficiency and cognitive behavior and clinical symptoms in patients with schizophrenia. It was found that patients with schizophrenia have lower brain cognitive state transition efficiency and require stronger functional separation to support cognitive switching. There was a negative correlation between the long switching cost in cognitive behavior and the transfer efficiency of the segregation variability of subcortical network, visual network and limbic system. These results revealed the specific responses of hallucinations symptom central to schizophrenia in functional networks in different states of the brain.

参考文献:

[1] Pillinger T, Mccutcheon R A, Vano L, et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: a systematic review and network meta-analysis [J]. The Lancet Psychiatry, 2020, 7(1): 64-77.

[2] Firth J, Stubbs B, Rosenbaum S, et al. Aerobic Exercise Improves Cognitive Functioning in People With Schizophrenia: A Systematic Review and Meta-Analysis [J]. Schizophrenia Bulletin, 2017, 43(3): 546-56.

[3] Ma K, Yu J, Shao W, et al. Functional overlaps exist in neurological and psychiatric disorders: a proof from brain network analysis [J]. Neuroscience, 2020, 425: 39-48.

[4] Kay S R F A, &Opler, L. A. The positive and negative syndrome scale (PANSS) for schizophrenia [J]. Schizophrenia Bulletin, 1987, 13(2): 261-76.

[5] Tandon R, Nasrallah H A, Keshavan M S. Schizophrenia, "just the facts" 4. Clinical features and conceptualization [J]. SCHIZOPHRENIA RESEARCH, 2009, 110(1-3): 1-23.

[6] Tandon R, Gaebel W, Barch D M, et al. Definition and description of schizophrenia in the DSM-5 [J]. SCHIZOPHRENIA RESEARCH, 2013, 150(1): 3-10.

[7] Gutierrez-Gomez L, Vohryzek J, Chiem B, et al. Stable biomarker identification for predicting schizophrenia in the human connectome [J]. Neuroimage Clinical, 2020, 27: 102316.

[8] Aryutova K, Paunova R, Kandilarova S, et al. Differential aberrant connectivity of precuneus and anterior insula may underpin the diagnosis of schizophrenia and mood disorders [J]. World Journal of Psychiatry, 2021, 11(12): 1274.

[9] Supekar K, Cai W, Krishnadas R, et al. Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis [J]. Biological Psychiatry, 2019, 85(1): 60-9.

[10] Friston K J. Functional and effective connectivity: a review [J]. Brain connectivity, 2011, 1(1): 13-36.

[11] Wang J, Zuo X, He Y. Graph-based network analysis of resting-state functional MRI [J]. Frontiers in systems neuroscience, 2010, 4: 16.

[12] Fornito A, Zalesky A, Breakspear M. The connectomics of brain disorders [J]. Nature reviews neuroscience, 2015, 16(3): 159-72.

[13] Bullmore E T, & Bassett, D. S. Brain Graphs: Graphical Models of the Human Brain Connectome [J]. Annual Review of Clinical Psychology, 2011, 7(1): 113-40.

[14] Achard S, Salvador R, Whitcher B, et al. A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs [J]. Journal of Neuroscience, 2006, 26(1): 63-72.

[15] Honey C J, Sporns O. Dynamical consequences of lesions in cortical networks [J]. Human Brain Mapping, 2008, 29(7): 802-9.

[16] Liu Y, Liang M, Zhou Y, et al. Disrupted small-world networks in schizophrenia [J]. Brain, 2008, 131(4): 945-61.

[17] Supekar K, Menon V, Rubin D, et al. Network analysis of intrinsic functional brain connectivity in Alzheimer's disease [J]. PLoS computational biology, 2008, 4(6): e1000100.

[18] Doucet G E, Bassett D S, Yao N, et al. The role of intrinsic brain functional connectivity in vulnerability and resilience to bipolar disorder [J]. American Journal of Psychiatry, 2017, 174(12): 1214-22.

[19] Brady R O, Jr., Gonsalvez I, Lee I, et al. Cerebellar-Prefrontal Network Connectivity and Negative Symptoms in Schizophrenia [J]. American Journal of Psychiatry, 2019, 176(7): 512-20.

[20] Sporns O. Network attributes for segregation and integration in the human brain [J]. Current opinion in neurobiology, 2013, 23(2): 162-71.

[21] Friston K J. Modalities, modes, and models in functional neuroimaging [J]. Science, 2009, 326(5951): 399–403.

[22] Deco G, Tononi G, Boly M, et al. Rethinking segregation and integration: contributions of whole-brain modelling [J]. Nature reviews neuroscience, 2015, 16(7): 430-9.

[23] Van Den Heuvel M P, Kahn R S, Goni J, et al. High-cost, high-capacity backbone for global brain communication [J]. Proceedings of the National Academy of Sciences, 2012, 109(28): 11372-7.

[24] Strauss G P, Esfahlani F Z, Kirkpatrick B, et al. Network Analysis Reveals Which Negative Symptom Domains Are Most Central in Schizophrenia vs Bipolar Disorder [J]. Schizophrenia Bulletin, 2019, 45(6): 1319-30.

[25] Wang R, Lin P, Liu M, et al. Hierarchical connectome modes and critical state jointly maximize human brain functional diversity [J]. Physical Review Letters, 2019, 123(3): 038301.

[26] Wang R, Liu M, Cheng X, et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities [J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2022288118.

[27] Wang R, Liu M, Cheng X, et al. Segregation, integration and balance of large-scale resting brain networks configure different cognitive abilities [J]. Proceedings of the National Academy of Sciences, 2021, 118(23): e2022288118.

[28] Wang R, Su X, Chang Z, et al. Flexible brain transitions between hierarchical network segregation and integration associated with cognitive performance during a multisource interference task [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(4): 1835-46.

[29] Wang R, Zhen S, Zhou C, et al. Acute stress promotes brain network integration and reduces state transition variability [J]. Proceedings of the National Academy of Sciences, 2022, 119(24): e2204144119.

[30] Chang Z, Wang X, Wu Y, et al. Segregation, integration and balance in resting‐state brain functional networks associated with bipolar disorder symptoms [J]. Human Brain Mapping, 2022, 44: 599-611.

[31] Wang R, Fan Y, Wu Y, et al. Lifespan associations of resting-state brain functional networks with ADHD symptoms [J]. Iscience, 2022, 25(7): 104673.

[32] 蒋田仔, 刘勇, 李永辉. 脑网络:从脑结构到脑功能 [J]. 生命科学, 2009, 21(02): 181-8.

[33] Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems [J]. Nature reviews neuroscience, 2009, 10(3): 186-98.

[34] Jiang Y, Luo C, Li X, et al. White-matter functional networks changes in patients with schizophrenia [J]. Neuroimage, 2019, 190: 172-81.

[35] Friston K J. The disconnection hypothesis [J]. SCHIZOPHRENIA RESEARCH, 1998, 30(2): 115-25.

[36] Zalesky A, Fornito A, Bullmore E T. Network-based statistic: identifying differences in brain networks [J]. Neuroimage, 2010, 53(4): 1197-207.

[37] Fornito A, Yoon J, Zalesky A, et al. General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance [J]. Biological Psychiatry, 2011, 70(1): 64-72.

[38] Lynall M E, Bassett D S, Kerwin R, et al. Functional connectivity and brain networks in schizophrenia [J]. Journal of Neuroscience, 2010, 30(28): 9477-87.

[39] Wang Y M, Cai X L, Zhang R T, et al. Altered brain structural and functional connectivity in schizotypy [J]. Psychological Medicine, 2022, 52(5): 834-43.

[40] Xiang Q, Xu J, Wang Y, et al. Modular functional-metabolic coupling alterations of frontoparietal network in schizophrenia patients [J]. Frontiers in Neuroscience, 2019, 13: 40.

[41] Lefort‐Besnard J, Bassett D S, Smallwood J, et al. Different shades of default mode disturbance in schizophrenia: Subnodal covariance estimation in structure and function [J]. Human Brain Mapping, 2018, 39(2): 644-61.

[42] Jiang Y, Duan M, Chen X, et al. Common and distinct dysfunctional patterns contribute to triple network model in schizophrenia and depression: a preliminary study [J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2017, 79: 302-10.

[43] Yang G J, Murray J D, Repovs G, et al. Altered global brain signal in schizophrenia [J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7438-43.

[44] Schaefer A, Kong R, Gordon E M, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI [J]. Cerebral Cortex, 2018, 28(9): 3095-114.

[45] 王荣, 常昭, 王欣蕊. 基于分层模块的脑分离与整合平衡状态判定方法[P]. 中国专利: CN112472063A, 2021-03-12.

[46] Wang R, Liu M, Cheng X, et al. Segregation, integration, and balance of large-scale resting brain networks configure different cognitive abilities [J]. Proceedings of the National Academy of Sciences, 2021, 118(23).

[47] Wang R, Su X, Chang Z, et al. Flexible Brain Transitions Between Hierarchical Network Segregation and Integration Predict Human Behavior [J]. IEEE Journal of Biomedical and Health Informatics, 2021, 26(4): 1835-1846.

[48] Pedregosa F V a G, Gramfort a, Michel V , Thirion B, Grisel O, Et Al. Scikit-learn: Machine Learning in Python [J]. the Journal of machine Learning research, 2011, 12: 2825-30.

[49] Hawrylycz M J, Lein E S, Guillozet-Bongaarts A L, et al. An anatomically comprehensive atlas of the adult human brain transcriptome [J]. Nature, 2012, 489(7416): 391-9.

[50] Singh T, Poterba T, Curtis D, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia [J]. Nature, 2022, 604(7906): 509-16.

[51] Pettersson-Yeo W, Allen P, Benetti S, et al. Dysconnectivity in schizophrenia: where are we now? [J]. Neuroscience & Biobehavioral Reviews, 2011, 35(5): 1110-24.

[52] Dauvermann M R, Mothersill D, Rokita K I, et al. Changes in default-mode network associated with childhood trauma in schizophrenia [J]. Schizophrenia Bulletin, 2021, 47(5): 1482-94.

[53] Dong D, Duan M, Wang Y, et al. Reconfiguration of dynamic functional connectivity in sensory and perceptual system in schizophrenia [J]. Cerebral Cortex, 2019, 29(8): 3577-89.

[54] Grace A. Gating of information flow within the limbic system and the pathophysiology of schizophrenia [J]. Brain Research Reviews, 2000, 31(2-3): 330–41.

[55] Shafiei G, Markello R D, Makowski C, et al. Spatial patterning of tissue volume loss in schizophrenia reflects brain network architecture [J]. Biological Psychiatry, 2020, 87(8): 727-35.

[56] White T, Cullen K, Rohrer L M, et al. Limbic structures and networks in children and adolescents with schizophrenia [J]. Schizophrenia Bulletin, 2008, 34(1): 18-29.

[57] Guo X, Yao D, Cao Q, et al. Shared and distinct resting functional connectivity in children and adults with attention-deficit/hyperactivity disorder [J]. Translational Psychiatry, 2020, 10(1): 1-12.

[58] Christakou A, Brammer M, Rubia K. Maturation of limbic corticostriatal activation and connectivity associated with developmental changes in temporal discounting [J]. Neuroimage, 2011, 54(2): 1344-54.

[59] Macdonald M L, Garver M, Newman J, et al. Synaptic proteome alterations in the primary auditory cortex of individuals with schizophrenia [J]. JAMA Psychiatry, 2020, 77(1): 86-95.

[60] Atkin T A, Brandon N J, Kittler J T. Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport [J]. Human molecular genetics, 2012, 21(9): 2017-28.

[61] Torrey Ef P M. Schizophrenia and the limbic system [J]. The Lancet, 1974, 304(7886): 942-6.

[62] Hugdahl K. “Hearing voices”: Auditory hallucinations as failure of top‐down control of bottom‐up perceptual processes [J]. Scandinavian Journal of Psychology, 2009, 50(6): 553-60.

[63] Kessler D, Angstadt M, Sripada C. Growth charting of brain connectivity networks and the identification of attention impairment in youth [J]. JAMA Psychiatry, 2016, 73(5): 481-9.

[64] Bressler S L, Tang W, Sylvester C M, et al. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention [J]. Journal of Neuroscience, 2008, 28(40): 10056-61.

[65] Majerus S, Péters F, Bouffier M, et al. The dorsal attention network reflects both encoding load and top–down control during working memory [J]. Journal of Cognitive Neuroscience, 2018, 30(2): 144-59.

[66] Lee W H, Doucet G E, Leibu E, et al. Resting-state network connectivity and metastability predict clinical symptoms in schizophrenia [J]. SCHIZOPHRENIA RESEARCH, 2018, 201: 208-16.

[67] Mallikarjun P K, Lalousis P A, Dunne T F, et al. Aberrant salience network functional connectivity in auditory verbal hallucinations: a first episode psychosis sample [J]. Translational Psychiatry, 2018, 8(1): 1-9.

[68] Strauss G P, Bartolomeo L A, Harvey P D. Avolition as the core negative symptom in schizophrenia: relevance to pharmacological treatment development [J]. npj Schizophrenia, 2021, 7(1): 16.

[69] Utevsky A V, Smith D V, Young J S, et al. Large-scale network coupling with the fusiform cortex facilitates future social motivation [J]. eNeuro, 2017, 4(5) : 1-8.

[70] Brakowski J, Manoliu A, Homan P, et al. Aberrant striatal coupling with default mode and central executive network relates to self-reported avolition and anhedonia in schizophrenia [J]. Journal of Psychiatric Research, 2020, 145: 263-75.

[71] Hare S M, Ford J M, Mathalon D H, et al. Salience–default mode functional network connectivity linked to positive and negative symptoms of schizophrenia [J]. Schizophrenia Bulletin, 2019, 45(4): 892-901.

[72] Bernard J A, Goen J R, Maldonado T. A case for motor network contributions to schizophrenia symptoms: Evidence from resting-state connectivity [J]. Human Brain Mapping, 2017, 38(9): 4535-45.

[73] Zhou Y, Shu N, Liu Y, et al. Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia [J]. SCHIZOPHRENIA RESEARCH, 2008, 100(1-3): 120-32.

[74] Alamian G, Lajnef T, Pascarella A, et al. Altered brain criticality in schizophrenia: new insights from magnetoencephalography [J]. Frontiers in Neural Circuits, 2022, 16: 630621.

[75] Kim D I, Manoach D S, Mathalon D H, et al. Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study [J]. Human Brain Mapping, 2009, 30(11): 3795-811.

[76] Forlim C G, Klock L, Bächle J, et al. Reduced resting-state connectivity in the precuneus is correlated with apathy in patients with schizophrenia [J]. Scientific Reports, 2020, 10(1): 1-8.

[77] Reckless G E, Andreassen O A, Server A, et al. Negative symptoms in schizophrenia are associated with aberrant striato-cortical connectivity in a rewarded perceptual decision-making task [J]. Neuroimage Clinical, 2015, 8: 290-7.

[78] Shaffer J J, Peterson M J, Mcmahon M A, et al. Neural Correlates of Schizophrenia Negative Symptoms: Distinct Subtypes Impact Dissociable Brain Circuits [J]. Molecular Neuropsychiatry, 2015, 1(4): 191-200.

[79] Chuhma N, Mingote S, Kalmbach A, et al. Heterogeneity in dopamine neuron synaptic actions across the striatum and its relevance for schizophrenia [J]. Biological Psychiatry, 2017, 81(1): 43-51.

[80] Jeon H J, Cho M J, Cho S J, et al. Quantitative analysis of ataxic gait in patients with schizophrenia: the influence of age and visual control [J]. Psychiatry Research, 2007, 152(2-3): 155-64.

[81] Soyka M. Neurobiology of aggression and violence in schizophrenia [J]. Schizophrenia Bulletin, 2011, 37(5): 913-20.

[82] Schijven D, Kofink D, Tragante V, et al. Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling [J]. SCHIZOPHRENIA RESEARCH, 2018, 199: 195-202.

[83] De Boer J N, Brederoo S G, Voppel A E, et al. Anomalies in language as a biomarker for schizophrenia [J]. Current Opinion in Psychiatry, 2020, 33(3): 212-8.

[84] Chan S. Kaplan & Sadock's comprehensive textbook of psychiatry [J]. Hong Kong Journal of Psychiatry, 2001, 11(3): 23-5.

[85] Pruett B S, Meador-Woodruff J H. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: a focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies [J]. SCHIZOPHRENIA RESEARCH, 2020, 223: 29-42.

[86] Park H-J, Choi I, Leem K-H. Decreased brain PH and pathophysiology in schizophrenia [J]. International Journal of Molecular Sciences, 2021, 22(16): 8358.

[87] Sabb F W, Hellemann G, Allen N B, et al. Enhanced switching and familial susceptibility for psychosis [J]. Brain and behavior, 2018, 8(6): e00988.

[88] Menon V, Uddin L Q. Saliency, switching, attention and control: a network model of insula function [J]. Brain structure and function, 2010, 214(5-6): 655-67.

[89] Tang W, Jbabdi S, Zhu Z, et al. A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control [J]. Elife, 2019, 8: e43761.

[90] Perez‐Costas E, Melendez‐Ferro M, Roberts R. Basal ganglia pathology in schizophrenia: dopamine connections and anomalies [J]. Journal of neurochemistry, 2010, 113(2): 287-302.

[91] Leisman G, Braun-Benjamin O, Melillo R. Cognitive-motor interactions of the basal ganglia in development [J]. Frontiers in systems neuroscience, 2014, 8: 16.

[92] Krajcovic B, Fajnerova I, Horacek J, et al. Neural and neuronal discoordination in schizophrenia: from ensembles through networks to symptoms [J]. Acta Physiologica, 2019, 226(4): e13282.

[93] Cheng X, Yuan Y, Wang Y, et al. Neural antagonistic mechanism between default-mode and task-positive networks [J]. Neurocomputing, 2020, 417: 74-85.

[94] Wang X, Han Z, He Y, et al. Resting-state functional connectivity patterns predict Chinese word reading competency [J]. PLOS ONE, 2012, 7(9): e44848.

中图分类号:

 R749.3    

开放日期:

 2023-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式