论文中文题名: | 改性煤气化渣充填材料的制备及其水化与微观结构演变研究 |
姓名: | |
学号: | 18203213038 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085218 |
学科名称: | 工学 - 工程 - 矿业工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2021 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 固废处置与充填开采 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2021-06-22 |
论文答辩日期: | 2021-06-05 |
论文外文题名: | Study on preparation of modified coal gasification slag backfill material and its hydration and microstructure evolution |
论文中文关键词: | |
论文外文关键词: | Coal gasification slag ; Mine backfill technology ; Hydration reaction ; Microstructure evolution ; Kinetic |
论文中文摘要: |
随着煤气化技术作为一种高效环保的煤洁净技术的广泛应用,其伴生固体废弃物(煤气化渣)给当地环境造成了巨大压力。因此,如何有效的处理煤气化渣是当地政府和企业亟待解决的问题。矿山充填作为一种固废管理的有效方式被推广应用,但充填高成本问题是阻碍其广泛应用的主要因素。目前,使用廉价固废替代高成本胶凝材料,将其资源化利用于矿山充填,以降低充填成本,已然成为一种不可阻挡的趋势。 本论文运用室内试验与理论分析相结合的研究方法,针对榆林地区煤气化渣的资源 化处置和煤矿充填的发展需求,通过对煤气化渣粗渣(CGS)的物化特性分析,利用硫酸钠(SS)作为激发剂制备改性煤气化渣(MCGS),然后用MCGS制备改性煤气化渣充填材料(MCGS-CPB)。随后对MCGS-CPB的工作性能和力学性能进行可行性分析,并基于水化热和电阻率对MCGS-CPB的水化特性及其微观结构演变规律展开研究,从本质上解释MCGS-CPB的宏观力学形成原理,以实现从微观层面对CGS的改性和MCGS-CPB制备进行调控。研究结论如下: (1) 通过分析CGS的微观形貌、矿物相、化学成分、粒径分布和含碳量发现,随CGS粒径的减小,含碳量先增大后减小;CGS内部存在大量的非晶相,并且具有一定潜在的火山灰活性。 (2) 利用机械-化学活化对CGS进行改性处理,通过对其物化特性对比分析发现。MCGS的絮状残炭消失,粒径变小,棱角弱化。对MCGS非晶相含量以及其对饱和CH的消耗分析发现,机械-化学活化增加了非晶相含量,激发了潜在的火山灰活性。 (3) 在工作性能方面,其流动性能满足矿山管道输送要求,凝结时间可以根据实际矿山应用需求进行调节。在力学性能方面,MCGS可以等效替代水泥,部分30% MCGS和50% MCGS组可以等效替代10%以上的水泥。 (4) MCGS-CPB的水化反应阶段分别为:溶解阶段、诱导阶段、加速阶段、减速阶段以及缓慢反应阶段。随SS和MCGS的添加,MCGS-CPB的N曲线出现了第三放热峰,Q120h逐渐增大。基于Krstulovic-Dabic动力学模型表征了MCGS-CPB水化机理三过程:结晶成核与晶体生长(NG)、相边界反应(I)和扩散(D),定量计算了晶体几何生长指数(n)、反应动力学常数(K),发现n和K随SS和MCGS的增加而增大。另外,MCGS-CPB的水化机制为NG→I→D,添量较大的SS和MCGS在I过程停留的时间较长。 (5) MCGS-CPB 的微观结构发展阶段分别为:溶解阶段、凝结加速阶段、凝结减速阶段以及硬化阶段。随SS和MCGS添加,早期电阻率减小,后期电阻率增长速率增大,微观结构动力学参数Kc和D分别增大和减小。高含量的MCGS在适量SS的激发作用下,更有利于二次水化反应的发生,该反应消耗了CH并生成水化产物AFt,使MCGS-CPB微观结构的密实速率加快,从而促进了强度的发展。 本研究为煤气化渣矿山充填的配比优化、现场应用等提供指导,为促进煤气化渣矿山充填应用奠定理论基础。 |
论文外文摘要: |
With the wide application of coal gasification technology as an efficient and environmentally friendly coal cleaning technology, its associated solid waste (coal gasification slag) has caused great pressure on the local environment. Therefore, how to effectively deal with coal gasification slag is an urgent problem for local government and enterprises. Mine backfill has been widely used as an effective way of solid waste management, but the high cost of backfill is the main factor hindering its wide application. At present, it has become an irresistible trend to use cheap solid waste to replace high cost cementitious materials and use them as resources for mine backfill in order to reduce the backfill cost. In this paper, the research method of combining laboratory test and theoretical analysis is used, aiming at the resource treatment of coal gasification slag and the development demand of coal mine backfill in Yulin area, through the analysis of the physical and chemical characteristics of coal gasification slag coarse slag (CGS), modified coal gasification slag (MCGS) is prepared by using sodium sulfate (SS) as activator, and then modified coal gasification slag backfill material (MCGS-CPB) is prepared by using MCGS. Then, the feasibility analysis of the working performance and mechanical properties of MCGS-CPB is carried out, and the hydration characteristics and microstructure evolution of MCGS-CPB are studied based on the hydration heat and resistivity. The micromechanical formation principle of MCGS-CPB was explained in essence, so as to realize the regulation of CGS modification and MCGS-CPB preparation from the micro-level. The conclusions are as follows: (1) By analyzing the micro-morphology, mineral phase, chemical composition, particle size distribution and carbon content of CGS, it is found that with the decrease of CGS particle size, the carbon content first increases and then decreases; There are a lot of amorphous phases in CGS, which have certain potential pozzolanic activity. (2) CGS was modified by mechanical-chemical activation, and its physicochemical properties were compared. The flocculent carbon residue of MCGS disappeared, the particle size became smaller and the edges and corners weakened. The analysis of the content of amorphous phase in MCGS and the consumption of saturated CH shows that the mechanical chemical activation increases the content of amorphous phase and stimulates the potential pozzolanic activity. (3) In terms of working performance, its flow performance meets the requirements of mine pipeline transportation, and the setting time can be adjusted according to the actual mine application requirements. In terms of mechanical properties, MCGS can replace cement equivalently, and some 30% MCGS and 50% MCGS can replace more than 10% cement equivalently. (4) The hydration reaction stages of MCGS-CPB are: dissolution stage, induction stage, acceleration stage, deceleration stage and slow reaction stage. With the addition of SS and MCGS, the N curve of MCGS-CPB showed a third exothermic peak, and Q120h gradually increased. Based on the Krstulovic-Dabic kinetic model, the three processes of MCGS-CPB hydration mechanism were characterized: crystal nucleation and crystal growth (NG), phase boundary reaction (I) and diffusion (D), and the geometric growth index of crystals (n), reaction kinetic constant (K), it is found that n and K increase with the increase of SS and MCGS. In addition, the hydration mechanism of MCGS-CPB is NG→I→D, and SS and MCGS with a larger amount of addition stay in the I process for a longer time. (5) The microstructure development stages of MCGS-CPB are: dissolution stage, condensation acceleration stage, condensation deceleration stage and hardening stage. With the addition of SS and MCGS, the early resistivity decreases, and the later resistivity growth rate increases, and the microstructure dynamic parameter is Kc and D increase and decrease respectively. High content of MCGS is more conducive to the secondary hydration reaction under the excitation of appropriate amount of SS, which consumes CH and generates AFt, and accelerates the densification rate of MCGS-CPB microstructure and promotes the development of strength. This research provides guidance for the optimization of coal gasification slag mine backfill ratio and field application, and lays a theoretical foundation for promoting the application of coal gasification slag mine backfill. |
参考文献: |
[1] 侯慎健,王佟,张博,等.对新时代中国煤炭资源勘查工作发展思路的探讨[J]. 西安科技大学 [2] 卞正富,于昊辰,侯竟,等.西部重点煤矿区土地退化的影响因素及其评估[J]. 煤炭学报,2020,45 (01):338–350. [5] 榆林市矿产资源规划(2008-2015 年) [R]. 2013. [8] 管西龙,朱艳艳,刘殊丽.煤炭的高效清洁利用技术进展[J]. 氮肥技术,2015,36 (04):40–43. [9] 王辅臣,于广锁,龚欣,等.大型煤气化技术的研究与发展[J]. 化工进展,2009,28 (02):173–180. [10] 榆林市科技局组织调研煤气化废渣利用现状[J]. 榆林科技,2017 (01):55–56. [11] 榆林日报. 中煤榆林能源化工有限公司渣场项目环境影响评价公众参与信息公告[R]. 2015. [12] 何绪文,崔炜,王春荣,等.气化炉渣的重金属浸出特性及化学形态分析[J]. 化工环保,2014,34 (05):499–502. [13] 关于“十四五” 大宗固体废弃物综合利用的指导意见[EB/OL]. 2021. [15] 刘建功,李新旺,何团.我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45 (01):141–150. [17] 杨帅,石立军.煤气化细渣组分分析及其综合利用探讨[J]. 煤化工,2013,41 (04):29–31+38. [18] 赵永彬,吴辉,蔡晓亮,等.煤气化残渣的基本特性研究[J]. 洁净煤技术,2015,21 (03):110–113+74. [21] 高旭霞, 郭晓镭, 龚欣. 气流床煤气化渣的特征[J]. 华东理工大学学报(自然科学版), 2009 (05): 28–34. [22] 刘冬雪,胡俊阳,冯启明,等.煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化,2018,41 (05):73–80. [26] 晁岳建,王洪记.循环流化床锅炉掺烧气化渣和煤泥的可行性研究[J]. 化肥工业,2015,42 (03): [29] 徐怡婷,柴晓利.铁负载煤气化渣基活性炭非均相Fenton 体系降解甲基橙染料废水的工艺优化及其机理研究[J]. 山东化工,2016,45 (22):159–164. [30] 姚阳阳.煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 吉林大学,2018. [31] 凌琪,孙冰香,伍昌年,等.投加气化渣对DMBR 处理印染废水效果及污泥性能的影响[J]. 应用化工,2016,45 (09):1629–1632. [32] 凌琪,李尚尚,伍昌年,等.投加气化渣对DMBR 处理造纸废水污泥性能及膜污染的影响[J]. 阜阳师范学院学报(自然科学版),2018,35 (02):15–20. [33] 尹洪峰, 汤云, 任耘. 气化炉渣合成Ca-α-Sialon–SiC 复相陶瓷[J]. 硅酸盐学报, 2011. [34] 赵永彬,吴海骏.煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术,2016,22 (05):7–11. [41] 冯银平,尹洪峰,袁蝴蝶,等.利用气化炉渣制备轻质隔热墙体材料的研究[J]. 硅酸盐通报,2014,33 (03):497–501+510. [42] 云正,于鹏超,尹洪峰.气化炉渣对铁尾矿烧结墙体材料性能的影响[J]. 金属矿山,2010 (11):183–186. [43] 刘开平,赵红艳,李祖仲,等.煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报,2017,34 (05):190–195. [44] 杭美艳,吕学涛,郭艳梅,等.煤气化渣微粉胶凝体系水化机理研究[J]. 混凝土与水泥制品,2019 (02):94–97. [45] 袁蝴蝶,尹洪峰,汤云,等.Texaco 气化炉渣制备硅酸盐水泥的研究[J]. 硅酸盐通报,2017,36 (09):3053–3056. [46] 杭美艳,吕学涛,郭艳梅,等.煤气化渣微粉活性激发效果的试验研究[J]. 硅酸盐通报,2019,38 (03):878–883+888. [50] 李祖仲,关羽,赵红艳,等.碱-盐复合激发煤气化粗渣的水泥胶砂强度特性[J]. 材料科学与工 [51] Potvin Y,Thomas E,Fourie A.Handbook on Mine FIll [J]. Not available,2005. [54] 周茜,徐怀兵,刘娟红.高水充填材料失稳破坏特征研究及性能改善[J]. 煤炭学报,2017,42 (05):1123–1129. [56] 梁志强.新型矿山充填胶凝材料的研究与应用综述[J]. 金属矿山,2015 (06):164–170. [57] 祝丽萍,倪文,张旭芳,等.赤泥-矿渣-水泥基全尾砂胶结充填料的性能与微观结构[J]. 北京 [58] 董越. 多固废资源在金川矿山充填采矿中协同综合利用研究[D]. 北京科技大学,2019. [62] 张钦礼, 王新民, 古德生, 等. 新桥硫铁矿粉煤灰充填技术研究[C]. 中国有色金属学会国际充填采矿会议, 2004. [64] 杨新华. 炉渣微粉作为胶凝材料应用于全尾砂膏体充填试验研究[D]. 南华大学,2014. [66] 蒋建宏.泥浆固化矿山充填材料的制备、结构及性能研究[D]. 湖南科技大学,2012. [67] 冯光明,王成真,李凤凯,等. 超高水材料开放式充填开采研究[J]. 采矿与安全工程学报,2010,27 (04):453–457. [68] 吴爱祥,姜关照,王贻明.矿山新型充填胶凝材料概述与发展趋势[J]. 金属矿山,2018 (03):1–6. [69] 刘娟红,周在波,吴爱祥,等.低浓度拜耳赤泥充填材料制备及水化机理[J]. 工程科学学报, [70] 王新民,薛希龙,张钦礼,等.碎石和磷石膏联合胶结充填最佳配比及应用[J]. 中南大学学报 (自然科学版),2015,46 (10):3767–3773. [72] 刘娟红,许鹏玉,周昱程,等.改性煤气化渣用于矿山充填的试验研究[J]. 硅酸盐通报,2020, [73] 冯国瑞,杜献杰,郭育霞,等.结构充填开采基础理论与地下空间利用构想[J]. 煤炭学报,2019,44 (01):74–84. [76] Bogue R H.The Chemistry of Portland Cement. Second Edition [M]. 1955. [88] 裴向军,黄润秋,靖向党.活化粉煤灰抑制高矿化度水泥土膨胀的研究[J]. 岩土力学,2005 (03): [92] 于蕾. 水泥混凝土的微观性能[M]. 北京: 中国建筑工业出版社, 2017. [94] 陈益民. 由铁铝酸钙水化生成钙矾石的动力学[J]. 硅酸盐学报,2000 (04):303–308. [95] 柯国军,杨晓峰,彭红,等. 化学激发粉煤灰活性机理研究进展[J]. 煤炭学报,2005 (03):366–370. [104] 洪天从.基于电阻率法的混凝土水化进程和渗透性能演变规律研究[D]. 浙江大学,2012. [105] Scrivener K L,Juilland P,Monteiro P J M.Advances in Understanding Hydration of Portland Cement |
中图分类号: | TD823.7 |
开放日期: | 2021-06-23 |