- 无标题文档
查看论文信息

论文中文题名:

 复配捕收剂对煤气化细渣的浮选影响及机理研究    

姓名:

 肖雨辰    

学号:

 20213077017    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿业工程    

研究方向:

 固体废弃物资源化加工与综合利用    

第一导师姓名:

 赵世永    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-13    

论文答辩日期:

 2024-05-28    

论文外文题名:

 Study on the flotation effect and mechanism of coal gasification fine slag by composite collector    

论文中文关键词:

 复配捕收剂 ; 煤气化细渣 ; 浮选 ; 捕收机理    

论文外文关键词:

 Composite collector ; Coal gasification fine slag ; Flotation ; Collection mechanism    

论文中文摘要:

煤气化细渣作为煤气化过程中所产生的固废资源,将其中碳灰有效分离是实现煤气化细渣高效资源化利用的首要前提。本文以关中某煤化工厂的水煤浆气化细渣为研究对象,选用非极性烃类油十二烷分别与极性药剂十二醇、十二酸、十二胺进行复配,通过浮选方法实现碳灰分离,并结合浮选产品的精尾矿物理化学性质差异,探究复配捕收剂对煤气化细渣碳灰浮选分离结果的影响;借助接触角分析、红外分析、Zeta电位测定以及低场固体核磁等分析检测方法来表征复配药剂在煤气化细渣表面的吸附作用机理。

研究了煤气化细渣的基本性质。煤气化细渣样品的灰分为53.60%,小于0.045 mm的粒级为主导粒级,产率和灰分分别为37.76%和75.69%,表明该样品中高灰细粒物料含量较大。样品中主要含有石英、莫来石以及硬石膏等亲水性矿物,无机矿物质主要以非晶相存在的SiO2及Al2O3为主。

探究了不同药剂种类、药剂配比、药剂用量对煤气化细渣浮选结果的影响。复配捕收剂浮选结果优于十二烷单独作捕收剂,且十二烷与十二胺复配作捕收剂,复配体积比为40%,药剂用量为15 kg/t时浮选效果最佳。此时,捕收剂可燃体回收率为90.82%,精矿灰分为34.45%,尾矿灰分为87.43%,浮选完善指标为47.83%;相较于同一药剂用量下十二烷的浮选结果,可燃体回收率提高了29.50%,尾矿灰分增大了20.47%,浮选完善指标提高了14.74%,但无论改变药剂种类或药剂配比,精矿灰分与十二烷单独作用基本一致。通过对浮选产品分别进行物理化学性质分析,从宏观角度讲,该煤气化细渣样品高灰细粒物料含量较高,一部分细粒级无机质容易夹杂在泡沫中随精矿浮出,从而导致精矿灰分居高不下;从微观角度讲,由于煤气化细渣浮选入料及浮选精矿较大的比表面积以及复杂的孔隙结构,使含Si、Al元素的微细粒球形无机灰质经分选过后仍填充于未燃炭孔结构内,因此使得精矿灰分仍居于30%左右难以降低。

揭示了复配捕收剂在煤气化细渣表面的吸附作用机理。极性药剂十二醇、十二酸、十二胺分别与十二烷复配后,油滴在水中具有良好的分散性,显著提高了煤气化细渣表面含量官能团的被覆盖率,从而有效提高煤气化细渣表面的疏水性。捕收剂经复配后疏水端以疏水作用定向吸附在煤气化细渣表面疏水位点,极性基团以氢键作用吸附在煤气化细渣表面含氧位点,极性基团与非极性基团共同作用于煤气化细渣表面以提高浮选性能;对比非极性药剂十二烷、极性药剂十二醇及十二烷-十二醇复配捕收剂三种药剂在煤气化细渣表面的低场核磁信号,极性与非极性药剂的复配,一定程度上减小了浮选药剂在煤气化细渣孔隙中的无效吸附,从而达到有效减少捕收剂用量的目的。

论文外文摘要:

As a solid waste resource generated during the process of coal gasification, efficient utilization of the coal gasification fine slag (CGFS) requires effective separation of carbon ash, which is the primary prerequisite. Taking the coal-water slurry gasification fine slag from a coal chemical plant in Guanzhong as the research object, non-polar hydrocarbon oil dodecane was selected to be composited with polar reagents including dodecanol, lauric acid, and lauryl amine respectively. The flotation method was employed to achieve carbon ash separation. Combined with differences in physical and chemical properties of refined tailings from flotation products, this study explored the influence of compound collectors on flotation separation of carbon ash from CGFS. The adsorption mechanism of composite collector on the surface of CGFS was characterized through contact angle analysis, infrared analysis, Zeta potential determination, and low-field solid nuclear magnetic resonance.

The basic properties of CGFS were studied. The ash content of CGFS sample was 53.60%, and the particle size less than 0.045 mm was the dominant particle size. The yield and ash content were 37.76% and 75.69%, respectively, indicating that the content of high ash fine material in the sample was large. The sample mainly contained hydrophilic minerals such as quartz, mullite and anhydrite, and inorganic minerals mainly consisted of SiO2 and Al2O3 in amorphous phase. 

The influence of different reagent types, reagent ratio and reagent dosage on the flotation results of CGFS was explored. The flotation results of composite collector are better than dodecane alone as collector, and dodecane and lauryl amine are composited as collector, the volume ratio of composite is 40%, and the dosage of reagent is 15 kg/t, the flotation effect is the best. At this time, the combustible recovery is 90.82%, the concentrate ash content is 34.45%, the tailings ash content is 87.43%, and the flotation perfection index is 47.83%. Compared with the flotation results of dodecane with the same dosage of reagent, the combustible recovery is increased by 29.50%, the ash content of tailings is increased by 20.47%, and the flotation perfection index is increased by 14.74%, but no matter how to change the type or proportion of reagents, the ash content of concentrate is basically the same as that of dodecane. Through the physical and chemical properties analysis of the flotation products,from the macro point of view,the CGFS sample has a high content of high ash fine particles,and some fine grained inorganic matter is easy to be mixed in the foam with the flotation of the concentrate, resulting in high ash content of the concentrate. From the micro point of view, due to the large specific surface area of the CGFS flotation feed and the complex pore structure of the flotation concentrate, the fine spherical inorganic ash containing Si and Al elements is still filled in the unburned carbon pore structure after separation, so that the ash content of the concentrate is still difficult to reduce to about 30%.

The adsorption mechanism of composite collector on the surface of CGFS was revealed. When the polar agents dodecanol, lauric acid, and lauryl amine are mixed with dodecane respectively, the oil droplets have good dispersibility in water, and the coverage of functional groups on the surface content of CGFS is significantly increased, thus effectively improving the surface hydrophobicity of CGFS. The hydrophobic carbon chain of the collector is directively adsorbed to the hydrophobic water level point on the surface of the CGFS by hydrophobic action. The polar groups are mainly adsorbed to the oxygen-containing site on the surface of the CGFS by hydrogen bonding, and interact with the non-polar groups on the surface of the CGFS to improve the flotation performance. By comparing the low field nuclear magnetic signals of dodecane, dodecanol and dodecane-dodecanol compound collector on the surface of CGFS, the combination of polar and non-polar agents can reduce the ineffective adsorption of flotation agents in the pores of CGFS to a certain extent, so as to effectively reduce the amount of collector.

参考文献:

[1]李金三. 我国煤炭利用效率评价及其政策研究[D]. 中国矿业大学(北京), 2014.

[2]胡文豪. 煤气化渣铝硅组分活化分离与资源化利用基础研究[D]. 中国科学院大学(中国科学院过程工程研究所), 2019.

[3]宁永安, 段一航, 高宁博, 等. 煤气化渣组分回收与利用技术研究进展[J]. 洁净煤技术, 2020, 26(S1): 14-19.

[4]Okada A, Takebe H. Density measurements of gasified coal and synthesized slag melts for next-generation IGCC[J]. Fuel, 2016, 182: 304-313.

[5]Wu T, Gong M, Lester E, et al. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel, 2007, 86(7-8): 972-982.

[6]傅博, 马梦凡, 申旺, 等. 气化渣对硅酸盐水泥强度和微观结构的影响研究[J]. 硅酸盐通报, 2020, 39(08): 2523-2527.

[7]刘开平, 赵红艳, 李祖仲, 等. 煤气化渣对水泥混凝土性能的影响[J]. 建筑科学与工程学报, 2017, 34(05): 190-195.

[8]董永波. 水煤浆气化细渣碳资源回收及循环利用[J]. 氮肥技术, 2018, 39(03): 25-26+35.

[9]Huang S, Wu S, Wu Y, et al. Characteristics and gasiftcation activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conversion and Management, 2017, 136: 108-118.

[10]朱菊芬, 李健, 闫龙, 等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术, 2021, 27(06): 11-21.

[11]宋瑞领, 李静, 付亮亮, 等. 多喷嘴对置式水煤浆气化炉炉渣特性研究[J]. 洁净煤技术, 2018, 24(05): 43-49.

[12]葛晓东. 煤气化细渣表面性质分析及浮选提质研究[J]. 中国煤炭, 2019, 45(01): 107-112.

[13]赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(04): 400-407.

[14]薛中华. 煤气化细渣疏水-亲水双液炭/灰分离研究[D]. 太原理工大学, 2022.

[15]李金凤. 气化滤饼中碳赋存形态及循环掺烧可行性研究[J]. 洁净煤技术, 2020, 26(06): 224-228.

[16]Zhu D, Zuo J, Jiang Y, et al. Carbon-silica mesoporous composite in situ prepared from coal gasification fine slag by acid leaching method and its application in nitrate removing[J]. Science of the total environment, 2020, 707: 136102.

[17]Gu Y, Qiao X. A carbon silica composite prepared from water slurry coal gasification slag[J]. Microporous and Mesoporous Materials, 2019, 276: 303-307.

[18]刘崇国, 匡建平, 罗春桃, 等. 煤气化灰渣资源化利用策略研究[J]. 当代化工研究, 2019(17): 23-25.

[19]Li Z, Zhang Y, Zhao H, et al. Structure characteristics and composition of hydration products of coal gasification slag mixed cement and lime[J]. Construction and Building Materials, 2019, 213(20): 265-274.

[20]吴枫, 杨凡, 张德强. 煤气化装置滤饼在循环流化床锅炉掺烧的技术探讨[J]. 内蒙古煤炭经济, 2016, (17): 139+145.

[21]Wu S, Huang S, Ji L, et al. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014, 122: 67-75.

[22]朱丹丹. 煤气化细渣在土壤改良及水污染治理中的资源化利用研究[D]. 吉林大学, 2021.

[23]Zhu D, Miao S, Xue B, et al. Effect of coal gasification fine slag on the physicochemical properties of soil[J]. Water, Air, & Soil Pollution, 2019, 230: 1-11.

[24]姚阳阳. 煤气化粗渣制备活性炭/沸石复合吸附材料及其性能研究[D]. 吉林大学, 2018.

[25]韩芳. 煤气化渣负载金属氧化物脱除焦炉烟气中的NOX[D]. 太原理工大学, 2019.

[26]琚安坤. 煤气化细渣制备介孔二氧化硅/炭复合填料及在聚丙烯中的应用[D]. 吉林大学, 2022.

[27]赵永彬, 吴海骏, 张学斌, 等. 煤气化残渣基多孔陶瓷的制备研究[J]. 洁净煤技术, 2016, 22(05): 7-11.

[28]齐放. 煤基固废非晶态硅调控制备多孔硅基材料基础研究[D]. 武汉科技大学, 2022.

[29]Teoh F, Veksha A, Chia V W K, et al. Nickel-based catalysts for steam reforming of naphthalene utilizing gasification slag from municipal solid waste as a support[J]. Fuel, 2019, 254: 115561.

[30]Ai W, Liu S, Zhang J, et al. Mechanical and nonisothermal crystallization properties of coal gasification fine slag glass bead‐filled polypropylene composites[J]. Journal of Applied Polymer Science, 2019, 136(30): 47803.

[31]Du M, Huang J, Liu Z, et al. Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment[J]. Fuel, 2018, 224: 178-185.

[32]曲江山, 张建波, 孙志刚, 等. 煤气化渣综合利用研究进展[J]. 洁净煤技术, 2020, 26(01): 184-193.

[33]刘冬雪, 胡俊阳, 冯启明, 等. 煤气化炉渣浮选及其精炭制备活性炭的研究[J]. 煤炭转化, 2018, 41(5): 73-80.

[34]谢广元. 选矿学[M]. 徐州: 中国矿业大学出版社, 2016.

[35]董柏兵, 蔡天瑞, 赵泽亚, 等. 基于Box-Behnken试验设计优化煤气化细渣中残余碳的重选回收工艺[J]. 煤炭技术, 2023, 42(05): 273-277.

[36]李慧泽, 董连平, 鲍卫仁, 等. 基于视密度的煤气化渣水介质旋流炭-灰分离[J]. 化工进展, 2021, 40(03): 1344-1353.

[37]Xing Y, Guo F, Xu M, et al. Separation of unburned carbon from coal fly ash: A review[J]. Powder Technology, 2019, 353: 372-384.

[38]于慧敏, 戴惠新, 陈晓鸣, 等. 国外摩擦电选的研究与发展[J]. 矿产保护与利用, 2015(04): 67-72.

[39]Zhang L, Yang F, Tao Y. Removal of unburned carbon from fly ash using enhanced gravity separation and the comparison with froth flotation[J]. Fuel, 2020, 259: 116282.

[40]叶世旺, 陶东平, 陶有俊, 等. 粒度对粉煤灰旋转摩擦电选效果的影响研究[J]. 煤炭技术, 2022, 41(02): 219-222.

[41]Zhou H, Yao J, Cai F, et al. Triboelectrostatic separation of coal gasification fine ash based on different mineralogical characteristics[J]. Fuel, 2024, 355: 129460.

[42]Zhou H, Yao J, Chen S, et al. Effect of moisture content on charging and triboelectrostatic separation of coal gasification fine ash[J]. Separation and Purification Technology, 2024, 333: 125976.

[43]Mondal S, Acharjee A, Mandal U, et al. Froth flotation process and its application[J]. Vietnam Journal of Chemistry, 2021, 59(4): 417-425.

[44]贾凯, 曹亦俊, 李国胜, 等. 电厂粉煤灰浮选脱碳试验研究[J]. 矿山机械, 2012, 40(03): 88-92.

[45]Xue Z, Yang C, Dong L, et al. Recent advances and conceptualizations in process intensification of coal gasification fine slag flotation[J]. Separation and Purification Technology, 2023, 304: 122394.

[46]周志英, 程子瞾. 《煤用浮选捕收剂技术条件》和《煤用浮选起泡剂技术条件》解读[J]. 煤炭加工与综合利用, 2021(04): 7-8+4.

[47]赵世永, 吴阳, 李博. Texaco气化炉灰渣理化特性与脱碳研究[J]. 煤炭工程, 2016, 48(09): 29-32.

[48]吴思萍, 赵凯, 董永胜, 等. 气化细渣浮选脱碳研究进展[J]. 华电技术, 2020, 42(07): 81-86.

[49]任盼力. 气化细渣磨矿浮选法脱灰试验研究[D]. 西安科技大学, 2021.

[50]Yang L, Li D, Zhu Z, et al. Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash[J]. Fuel, 2019, 242: 174-183.

[51]Guo F, Miao Z, Guo Z, et al. Properties of flotation residual carbon from gasification fine slag[J]. Fuel, 2020, 267: 117043.

[52]Xie W, Zhang Z, Wang Y, et al. Research on grinding and flotation decarbonization of coal gasification fine slag[J]. Fuel, 2024, 365: 131136.

[53]胡志伟. 粉煤灰/气化炉渣未燃炭表面疏水性改善研究[D]. 中国矿业大学, 2020.

[54]张一昕, 郭旸, 王如梦, 等. 宁东煤气化细渣及其碳灰分离产物物理化学性质[J]. 煤炭学报, 2021, 46(S2): 1096-1104.

[55]于伟, 王学斌, 刘莉君, 等. 高含碳煤气化细渣浮选行为研究[J]. 煤炭学报, 2022, 47(S1): 265-275.

[56]Xu M, Li C, Wang Y, et al. Investigation on mechanism of intensifying coal fly ash froth flotation by pretreatment of non-ionic surfactant[J]. Fuel, 2019, 254: 115601.

[57]李恒, 赵丽丽, 龚岩, 等. 表面活性剂复配对气化细渣浮选影响的试验研究[J]. 中国电机工程学报, 2022, 42(13): 4924-4933.

[58]Xue Z, Dong L, Fan M, et al. Enhanced flotation mechanism of coal gasification fine slag with composite collectors[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 641: 128593.

[59]Zhou F, Yan C, Wang H, et al. The result of surfactants on froth flotation of unburned carbon from coal fly ash[J]. Fuel, 2017, 190: 182-188.

[60]李文峰. 气化灰渣浮选复配药剂作用机理及其分子模拟研究[D]. 中国矿业大学, 2021.

[61]王鹏, 刘彦丽. MO捕收剂对煤气化细渣浮选性能的影响[J/OL]. 矿产综合利用,2023-11-07.

[62]李振, 刘洋, 朱张磊, 等. 复配捕收剂强化煤气化细渣浮选试验研究[J]. 金属矿山, 2023, (10): 111-118.

[63]Zhang R, Guo F, Xia Y, et al. Recovering unburned carbon from gasification fly ash using saline water[J]. Waste management, 2019, 98: 29-36.

[64]Li Y, Hu Z, Xia W, et al. Application of compound reagent H511 in the flotation removal of unburned carbon from fly ash[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 595: 124699.

[65]Fan G, Zhang M, Peng W, et al. Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes[J]. Journal of cleaner production, 2021, 286: 124943.

[66]Li M, Li P, Wu J, et al. Directly application of waste cooking oil on the flotation of coal gasification fine slag[J]. Fuel, 2023, 331: 125666.

[67]荣国强. 低阶煤浮选的界面特性及药剂捕收作用机理研究[D]. 中国矿业大学, 2019.

[68]张林江. 兰炭末/粉煤灰复合成型吸附剂制备及其机理研究[D]. 西安科技大学, 2018.

[69]韩雪莲, 李志红, 樊民强, 等. 十二醇对黑龙关难浮煤泥浮选的强化作用研究[J]. 煤炭技术, 2024, 43(02): 280-283.

[70]王东岳. 极性复配捕收剂对低阶煤浮选的研究[D]. 中国矿业大学, 2018.

[71]Ji X, Song D, Zhao H, et al. Experimental analysis of pore and permeability characteristics of coal by low-field NMR[J]. Applied Sciences, 2018, 8(8): 1374.

[72]房祥龙, 蔡益栋, 刘大锰. 基于低场核磁共振法的甲烷扩散特征研究[J]. 中国煤炭地质, 2021, 33(10): 31-38.

[73]Cai Y, Zhai C, Yu X, et al. Quantitative characterization of water transport and wetting patterns in coal using LF-NMR and FTIR techniques[J]. Fuel, 2023, 350: 128790.

[74]朱琳, 晋强, 胡荻. 基于低场核磁共振技术分析钢渣-水泥复合材料孔隙结构特征[J]. 粉煤灰综合利用, 2020, 34(04): 71-76.

[75]Sun Y, Zhai C, Xu J, et al. A method for accurate characterisation of the pore structure of a coal mass based on two-dimensional nuclear magnetic resonance T1-T2[J]. Fuel, 2020, 262: 116574.

[76]夏文成, 毛玉强. 基于低场核磁共振表征的矿物孔隙润湿规律[J]. 煤炭学报, 2021, 46(02): 602-613.

[77]Niu Y, Xu J, Miao Z, et al. Distribution modes of residual carbon and ash in coal gasification fine slag and its feasibility analysis as particle electrodes[J]. Chemosphere, 2022, 303: 135159.

[78]杨哲, 黄根, 赵宇佳, 等. 高灰煤气化细渣的油类捕收剂浮选与难浮机理[J]. 洁净煤技术, 2024, 30(01): 142-153.

[79]Liu D, Qiu F, Liu N, et al. Pore structure characterization and its significance for gas adsorption in coals: A comprehensive review[J]. Unconventional Resources, 2022, 2: 139-157.

[80]刘安. 非极性油辅助十二胺混溶捕收剂提效机理研究[D]. 太原理工大学, 2015.

[81]毛玉强. 孔隙润湿影响多孔颗粒可浮性机理及其调控研究[D]. 中国矿业大学, 2023

中图分类号:

 TD94    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式