- 无标题文档
查看论文信息

论文中文题名:

 地聚合物再生混凝土性能及强度预测模型研究    

姓名:

 郭欣怡    

学号:

 22204228134    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085900    

学科名称:

 工学 - 工程 - 土木水利    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 土木水利    

研究方向:

 建筑垃圾资源化研究与利用    

第一导师姓名:

 肖前慧    

第一导师单位:

 西安科技大学    

论文提交日期:

 2025-06-12    

论文答辩日期:

 2025-06-05    

论文外文题名:

 Study on Performance and Strength Prediction Model of Geopolymer Recycled Aggregate Concrete    

论文中文关键词:

 地聚合物 ; 正交试验 ; 干燥收缩 ; 地聚合物再生混凝土 ; 神经网络    

论文外文关键词:

 Geopolymer ; Orthogonal Test ; Drying Shrinkage ; Geopolymer Recycled Aggregate Concrete ; Neural Network    

论文中文摘要:

       随着我国城镇化的加速导致建筑垃圾大量产生,同时传统水泥生产能耗高、碳排放大,难以满足可持续发展的需求。在此背景下,地聚合物再生混凝土(Geopolymer Recycled Aggregate Concrete,GRAC)应运而生。以偏高岭土、粉煤灰与矿渣为胶凝材料,以处理后的废弃混凝土为再生骨料,制备GRAC。这种新型材料不仅实现了建筑垃圾的资源化利用,还利用地聚合物代替水泥,降低了环境污染。

       本文首先以杂质少和性能好的偏高岭土为基础材料,掺入不同比例的矿渣和粉煤灰,改变水玻璃模数和Na2O当量进行正交试验。根据试验确定的水玻璃模数和Na2O当量的用量进行不加偏高岭土的矿渣-粉煤灰基地聚合物胶砂试验,改变矿渣和粉煤灰的比例、水玻璃模数和Na2O当量来研究对凝结时间、力学性能和干燥收缩性能的变化,并根据现有的混凝土收缩模型建立地聚合物干燥收缩模型。对比分析两种地聚合物的性能和成本后,决定采用以上两种地聚合物和再生骨料相结合的GRAC进行试验,随后根据三种预测模型分析试验结果,选择误差小的一组进行GRAC的28d强度预测,得出如下结论:

(1)偏高岭土基地聚合物胶砂块正交试验中,对凝结时间和力学性能影响最大的是矿物掺合料,其次是Na2O当量和水玻璃模数。综合考虑下,Na2O当量为12%以及水玻璃模数为1.2时,满足工作性能的同时符合强度要求。

(2)矿渣-粉煤灰基地聚合物胶砂块试验根据前节的试验结果,确定Na2O当量以及水玻璃模数范围,改变矿渣和粉煤灰的比例。根据单因素试验结果可知矿渣掺量的增加使强度提升,同时凝结时间缩短;Na2O当量增加会使强度先上升后下降,凝结时间缩短;水玻璃模数的增加会使强度先上升后下降,凝结时间延长。

(3)矿渣-粉煤灰基地聚合物胶砂干燥收缩试验中,干燥收缩率随矿渣掺量和水玻璃模数的升高而升高,但是水玻璃模数对干燥收缩影响不明显,Na2O当量的增加使得干燥收缩率先升后降。基于现有的CEB-FIP模型,建立了适用于矿渣掺量为10%~30%、Na2O当量为10%~14%以及水玻璃模数为1.1~1.3范围内的干燥收缩预测模型。

(4)对比分析两种地聚合物发现,偏高岭土基地聚合物力学性能更优越、杂质少且早期强度高,但是其资源有限导致成本较高。矿渣-粉煤灰基地聚合物成本低、长期性能好以及对环境友好,但是早期强度较低以及成分相对复杂,不同来源的原料可能会对研究结果产生影响,因此两种地聚合物各有利弊。

(5)选择上述试验中的两种地聚合物进行GRAC试验,宏观方面进行抗压、抗折和劈拉强度试验并设置水泥为对照组。发现GRAC强度均高于再生混凝土,随着再生骨料的掺入力学性能下降,30%矿渣掺入时强度最高。细观方面进行显微硬度试验,再生骨料的掺入使得界面过渡区宽度增大,单掺矿渣对界面的改善效果最佳。

(6)在对CNN、LSTM和RF神经网络模型进行对比分析后发现,LSTM网络的均方根误差(RMSE)和平均绝对误差(MAE)相对CNN和RF模型更低,且决定系数(R²)更高,其预测曲线与实际值曲线更为接近。所以用LSTM神经网络建立的28d的GRAC抗压强度预测模型具有较高的准确性。

论文外文摘要:

      With the acceleration of urbanization in China, a large amount of construction waste is produced. At the same time, traditional cement production has high energy consumption and large carbon emissions, which is difficult to meet the needs of sustainable development. In this context, Geopolymer Recycled Aggregate Concrete ( GRAC ) came into being. GRAC was prepared by using metakaolin, fly ash and slag as cementitious materials and treated waste concrete as recycled aggregate. This new material not only realizes the resource utilization of construction waste, but also uses geopolymer instead of cement to reduce environmental pollution.

      In this paper, firstly, metakaolin with less impurities and good performance was used as the basic material, and different proportions of slag and fly ash were added to change the water glass modulus and Na2O equivalent for orthogonal test. According to the amount of water glass modulus and Na2O equivalent determined by the test, the slag-fly ash geopolymer mortar test without metakaolin was carried out. The ratio of slag and fly ash, water glass modulus and Na2O equivalent were changed to study the setting time, mechanical properties and drying shrinkage. The change of performance, and the drying shrinkage model of geopolymer was established based on the existing concrete shrinkage model. After comparing and analyzing the performance and cost of the two geopolymers, it was decided to use the GRAC combined with the above two geopolymers and recycled aggregates for testing. Then, the test results were analyzed according to the three prediction models, and a group with a small error was selected to predict the 28d strength of GRAC. The following conclusions are drawn :

In the orthogonal test of metakaolin-based geopolymer mortar block, the mineral admixture has the greatest influence on the setting time and mechanical properties, followed by Na2O equivalent and water glass modulus. Under comprehensive consideration, when the Na2O equivalent is 12 % and the water glass modulus is 1.2, it meets the working performance and meets the strength requirements.

(2) Slag-fly ash geopolymer mortar block test.According to the test results of the previous section, the range of Na2O equivalent and the range of water glass moduluswere determined, and the ratio of slag and fly ash was changed. According to the results of single factor test, the increase of slag content improves the strength and shortens the setting time. The increase of Na2O equivalent will increase the strength first and then decrease, and the setting time will be shortened. The increase of water glass modulus will make the strength increase first and then decrease, and the setting time will be prolonged.

(3) In the drying shrinkage test of slag-fly ash based geopolymer mortar, the drying shrinkage rate increases with the increase of slag content and water glass modulus, but the effect of water glass modulus on drying shrinkage is not obvious. The increase of Na2O equivalent makes the drying shrinkage increase first and then decrease. Based on the existing CEB-FIP model, a drying shrinkage prediction model suitable for slag content of 10 % ~ 30 %, Na2O equivalent of 10 % ~ 14 % and water glass modulus of 1.1 ~ 1.3 was established.

(4) Comparing and analyzing the two kinds of geopolymers, it is found that the metakaolin-based geopolymer has better mechanical properties, less impurities and high early strength, but its limited resources lead to higher costs. The slag-fly ash based geopolymer has low cost, good long-term performance and is environmentally friendly, but the early strength is low and the composition is relatively complex. Different sources of raw materials may affect the research results. Therefore, the two geopolymers have their own advantages and disadvantages.

(5) Two kinds of geopolymers in the above tests were selected for GRAC test, and the compressive, flexural and splitting tensile strength tests were carried out on the macro aspect and the cement was set as the control group. It is found that the strength of GRAC is higher than that of recycled concrete. With the decrease of mechanical properties of recycled aggregate, the strength is the highest when 30 % slag is added. The micro-hardness test was carried out on the microscopic aspect. The incorporation of recycled aggregate increased the width of the interfacial transition zone, and the improvement effect of single slag on the interface was the best.

(6) After comparing and analyzing the CNN, LSTM and RF neural network models, it is found that the root mean square error (RMSE) and mean absolute error (MAE) of the LSTM network are lower than those of the CNN and RF models, and the determination coefficient (R2) is higher, and the prediction curve is closer to the actual value curve. Therefore, the prediction model of compressive strength of 28d GRAC established by LSTM neural network has high accuracy.

参考文献:

[1]解宁. 基于阻尼型梁柱节点的装配式钢筋混凝土框架抗震性能研究[D].西北民族大学,2023.

[2]杨月. 建筑垃圾资源化的综合效益研究[D].云南大学,2022.

[3]吴俊超.绿色混凝土中建筑垃圾再生骨料的应用与推广[J].建筑技术开发, 2022, 49(24):75-77.

[4]王郁涛.多措并举、务求实效,推进水泥行业稳定健康发展[J].中国水泥,2023(10):7-9.

[5]黄银明. GGBS固化瓦埠湖软土的优化研究[D].安徽建筑大学,2021.

[6]陈锐,陈海,包卫星等.地聚合物固化含黏风积沙土-水特征曲线[J].交通运输工程学报,2023,23(04):128-141.

[7]Davidovits J. Geopolymers and geopolymeric materials[J]. Journal of thermal analysis, 1989, 35: 429-441.

[8]avidovits J. Geopolymers: inorganic polymeric new materials[J]. Journal of Thermal Analysis and calorimetry, 1991, 37(8): 1633-1656.

[9]张贺伟.矿渣-粉煤灰基地聚物混凝土力学性能试验研究[J].砖瓦,2025,(03):75-77+81.

[10]陈杰彬,杨浩,魏学斌,等.偏高岭土-矿渣地聚合物固井水泥浆体系研究[J].非常规油气,2022,9(02):106-111.

[11]青云杰.自燃煤矸石基GRAC力学性能研究[D].成都理工大学,2018.

[12]周刚,汪明.利用纳米SiO2改善常温养护的GRAC性能研究[J].福建建材,2023,(11):9-12.

[13]刘志华.海砂GRAC基本力学性能研究[D].广西科技大学,2023.

[14]Davidovits, Joseph. "Geopolymeric reactions in archaeological cements and in modern blended cements." Concr. Int 9 (1987): 23-29.

[15]张翔宇.粉煤灰基多功能地聚合物制备研究[D].内蒙古工业大学, 2024.

[16]邵志远.轻质高强胶凝材料体系的设计与研究[D].江苏大学, 2022.

[17]孙庆巍,马驰伟,张旭冉.粉煤灰地聚物复合胶凝材料制备与性能研究[J].非金属矿, 2017,40(01):26-29.

[18]Belay L A ,Bantie Z S ,Gabbiye N H , et al.Optimization of process parameters for the synthesis of class F fly ash-based geopolymer binders[J].Journal of Cleaner Production, 2023,415.

[19]Amritphale S S ,Mishra D ,Mudgal M , et al.A novel green approach for making hybrid inorganic- organic geopolymeric cementitious material utilizing fly ash and rice husk[J].Journal of Environmental Chemical Engineering,2016,4(4):3856-3865.

[20]高梦.低等级粉煤灰制备地聚合物的耐高温性能研究[D].盐城工学院, 2024.

[21]王辉.粉煤灰—矿渣基泡沫地聚合物微观孔隙结构调控与宏观性能研究[D].石家庄铁道大学,2024.

[22]孙双月.室温条件制备矿渣——粉煤灰基地聚合物的试验和反应机理研究[J].金属矿山,2023,(02):247-253.

[23]Xiang S ,Guo M ,Zhou Y , et al.Tailoring thermal performance of geopolymer via metakaolin/fly ash ratio and activator variation[J].Journal of Building Engineering, 2025, 103111856-111856.

[24]Li Z ,Du P ,Zhou Y , et al.Synchronous hot-pressed metakaolin-fly ash based geopolymer: Compressive strength and hydration products [J].Journal of Building Engineering,2024,97110997-110997.

[25]Palomo A., Grutzeck M. W., Blanco M. T. Alkali-activated fly ashes: a cement for the future [J]. Cement and Concrete Research, 1999, 29(8): 1323-1329.

[26]Leong H. Y., Ong D. E. L., Sanjayan J. G. The effect of different Na2O and K2O ratios of alkali activator on compressive strength of fly ash based-geopolymer [J]. Construction and Building Materials, 2016, 106: 500-511.

[27]焦向科,曹志明,李涛,等.不同碱激发剂作用下稀土尾矿地聚物的抗压强度与泛霜程度研究 [J].硅酸盐通报,2016,35(11):3819-3825.

[28]Chi M., Huang R. Effects of dosage and modulus ratio of alkali-activated solution on the properties of slag mortars [J]. Advanced Science Letters, 2012, 16(1): 7-12.

[29]Krizan D., Zivanovic B. Effects of dosage and modulus of water glass on early hydration of alkali salg cements [J]. Cement and Concrete Reserch, 2002, 32(8): 1181-1188.

[30]Morsy M. S., Alsayed S. H., Al-Salloum Y., et al. Effect of sodium silicate to sodium hydroxide ratios on strength and microstructure of fly ash geopolymer binder [J]. Arabian Journal for Science and Engineering, 2014, 39(6): 4333-4339.

[31]刘进琪,王世玉,彭晖,等.碱激发剂对粉煤灰基地聚物性能影响研究[J].交通科学与工程,2020,36(03):8-13.

[32]陈大卫.地聚合物干燥收缩和反应机理的研究[D].哈尔滨工业大学,2016.

[33]李爽.碱激发矿渣—偏高岭土胶结材收缩性能研究[D].重庆大学,2019.

[34]詹疆淮.碱激发偏高岭土—矿渣复合胶凝材料体积稳定性研究[D].宁夏大学,2022.

[35]Si R , Dai Q , Guo S ,et al.Mechanical property, nanopore structure and drying shrinkage of metakaolin-based geopolymer with waste glass powder[J].Elsevier, 2020.

[36]Zhang Y , Liu H , Ma T ,et al.Understanding the changes in engineering behaviors and microstructure of FA-GBFS based geopolymer paste with addition of silica fume[J].Journal of Building Engineering, 2023.

[37]王均益.粉煤灰-矿渣地聚合物性能优化及收缩特性研究[D].浙江理工大学,2023.

[38] Duan P , Yan C , Luo W ,et al.Effects of adding nano-TiO2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste[J].Construction & Building Materials, 2016, 106:115-125.

[39]王亚凡.碳纤维与纳米SiO2改性粉煤灰—矿渣地聚合物性能研究[D].宁夏大学,2023.

[40]高黎明.纤维增韧赤泥-煤系偏高岭土地聚合物的力学及干燥收缩特性研究.

[41]Huang D , Liu Z , Lin C ,et al.Effects and mechanisms of component ratio and cross-scale fibers on drying shrinkage of geopolymer mortar[J].Construction and Building Materials, 2024, 411(000):16.

[42]Wonsiri P , Wunchock K , Adam S ,et al.Mechanical properties, microstructure and drying shrinkage of hybrid fly ash-basalt fiber geopolymer paste[J].Construction and Building Materials, 2018, 186:62-70.

[43]Thomas R J, Lezama D, Peethamparan S. On drying shrinkage in alkali-activated concrete: Improving dimensional stability by aging or heat-curing[J]. Cement & Concrete Research, 2017, 91: 13-23.

[44]薛恒岳.粉煤灰基尾矿碱激发地聚合物的制备和性能研究[D].沈阳工业大学,2021.

[45]张全超.西北寒旱环境下地聚合物的干缩开裂研究[D].兰州交通大学,2023.

[46]范飞林,许金余,李为民,等.矿渣-粉煤灰基地聚合物混凝土的基本性能研究[J].混凝土,2008,(06):58-61.

[47]罗新春,汪长安.钙含量对偏高岭土/矿渣基地聚合物结构和性能的影响[J].硅酸盐学报,2015,43(12):1800-1805.

[48]Elyamany H E, Abd Elmoaty A E M, Diab A R A. Properties of slag geopolymer concrete modified with fly ash and silica fume[J]. Canadian Journal of Civil Engineering, 2022, 49(2): 183-191.

[49]Çelik A İ, Tunç U, Bahrami A, et al. Use of waste glass powder toward more sustainable geopolymer concrete[J]. journal of materials research and technology, 2023, 24: 8533-8546.

[50]阮锦发,杨昱幸,汤思敏.不同地聚合物掺量对再生混凝土力学性能的影响[J].福建建设科技,2022(02):42-46.

[51]沈杨海,吴新燕,张颖涛等.硅酸钠和硅灰激发剂对地聚合物混凝土性能的影响[J].材料导报,2022,36(S2):240-244.

[52]潘泽滨. 玻璃粉-粉煤灰地聚合物配合比设计及技术性能研究[D].长沙理工大学,2021.

[53]Sanni S H, Khadiranaikar R B. Performance of alkaline solutions on grades of geopolymer concrete[J]. International Journal of Research in Engineering and Technology, 2013, 2(11): 366-371.

[54]Hadi N M ,Zhang H ,Parkinson S .Optimum mix design of geopolymer pastes and concretes cured in ambient condition based on compressive strength, setting time and workability[J].Journal of Building Engineering,2019,23301-313.

[55]Verma M, Dev N. Effect of ground granulated blast furnace slag and fly ash ratio and the curing conditions on the mechanical properties of geopolymer concrete[J]. Structural concrete, 2022, 23(4): 2015-2029.

[56]Parthiban K , Saravanarajamohan K , Shobana S ,et al.Effect of replacement of Slag on the mechanical properties of flyash based Geopolymer Concrete[J].International Journal of Engineering and Technology, 2013, 5(3):2555-2559.

[57]Albitar M, Ali M S M, Visintin P, et al. Effect of granulated lead smelter slag on strength of fly ash-based geopolymer concrete[J]. Construction and Building Materials, 2015, 83: 128-135.

[58]李三,彭小芹,苟菁等.矿物掺合料对地聚合物抗冻性能的影响[J].材料导报, 2018, 32(10):1711-1715.

[59]吴翠莲,徐阳洋,韩守杰.微硅粉对高钙粉煤灰基地聚合物混凝土性能的影响[J].新型建筑材料,2019,46(08):89-92+118.

[60]Yahya Z, Abdullah M M A B, Talib S Z A, et al. Comparative study on early strength of sodium hydroxide (NaOH) activated fly ash based geopolymer[C]//AIP Conference Proceedings. AIP Publishing, 2017, 1887(1).

[61]Hassan Amer, Mohammed Arif, and Mohd Shariq. "Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures." Arabian Journal for Science and Engineering 45 (2020): 3843-3861.

[62]Vihari K S, Nagaraju A. Influence of solution binder ratio on behaviour of Ground Granulated Blast-Furnace Slag based Geopolymer Concrete[C]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2022, 1086(1): 012043.

[63]王佳. 湿热盐环境下混杂纤维和纳米增强地聚合物混凝土力学性能研究[D].郑州大学,2022.

[64]Shi X S, Collins F G, Zhao X L, et al. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete[J]. Journal of hazardous materials, 2012, 237: 20-29.

[65]Koushkbaghi M, Alipour P, Tahmouresi B, et al. Influence of different monomer ratios and recycled concrete aggregate on mechanical properties and durability of geopolymer concretes[J]. Construction and Building Materials, 2019, 205: 519-528.

[66]Xu Z, Huang Z, Liu C, et al. Experimental study on mechanical properties and microstructures of steel fiber-reinforced fly ash-metakaolin geopolymer-recycled concrete[J]. Reviews on Advanced Materials Science, 2021, 60(1): 578-590.

[67]Nuaklong P, Sata V, Chindaprasirt P. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens[J]. Construction and Building Materials, 2018, 161: 365-373.

[68]龙涛,石宵爽,王清远等.粉煤灰基地聚物再生混凝土的力学性能和微观结构[J].四川大学学报(工程科学版),2013,45(S1):43-47.

[69]陈宇峰,杨昱幸,余琪瑶.地聚合物再生骨料混凝土的制备及力学性能研究[J].福建建设科技,2022(02):47-51.

[70]张冰雪. 矿渣—粉煤灰/偏高岭土地聚物再生混凝土轴压性能试验研究[D].广东工业大学,2018.

[71]高志远. 地聚合物再生骨料混凝土的制备及力学性能研究[D].福建农林大学,2022.

[72]刘昱辰,寇海磊,管晓明.基于GRAC的道路基层结构力学性能研究[J].公路工程,2020,45(02):213-217.

[73]崔晓宁,王起才,张戎令,等.基于随机森林的高性能混凝土抗压强度预测[J].兰州交通大学学报,2021,40(06):1-6+14.

[74]欧斌,张才溢,陈德辉,等.基于改进EMD-LSTM的混凝土坝变形预测模型[J].水利水电科技进展,2024,44(06):93-99.

[75]罗广彬,洪成雨,程志良,等.基于BP和GA-BP神经网络的混凝土抗压强度预测研究[J].混凝土,2023,(03):37-41.

[76]姚小俊,吴迪.基于贝叶斯优化高斯过程回归法的再生混凝土力学性能预测[J].科学技术与工程,2023,23(07):2968-2975.

[77]Huu M N ,Thi V H M ,Hoang S T , et al.A comparative assessment of tree-based predictive models to estimate geopolymer concrete compressive strength[J].Neural Computing and Applications,2022,35(9):6569-6588.

[78]Wael E ,Ahmed M S ,Rawaz K , et al.Prediction of concrete materials compressive strength using surrogate models[J].Structures,2022,461243-1267.

[79]Ziyue Z ,Zheyu Z ,Wu Y , et al.Accurate prediction of concrete compressive strength based on explainable features using deep learning[J].Construction and Building Materials,2022,329.

[80]Ngoc-Hien N ,Joaquín A ,Seunghye L , et al.Efficient estimating compressive strength of ultra-high performance concrete using XGBoost model[J].Journal of Building Engineering,2022,52.

[81]蒋志鹏,高畅,汤金辉,等.超高性能混凝土早期收缩性能及神经网络预测模型[J/OL].硅酸盐学报,1-12[2025-03-24].

[82]王涛,张永根,钟魁,等.高原环境下混凝土收缩理论及收缩预测模型综述[J].混凝土世界,2024,(10):67-72.

[83]叶刘垚.地聚物再生骨料混凝土力学及收缩性能研究[D].东北电力大学,2024.

[84]刘寅博.纤维增韧碱矿渣再生混凝土力学性能及收缩性能研究[D].河北工业大学,2023.

[85]陈历权.地聚物再生混凝土力学性能与早期收缩试验研究[D].长安大学,2023.

[86]周显昱.碱矿渣胶凝材料收缩徐变性能及其计算方法[D].哈尔滨工业大学,2022.

[87]沈妍燃,吴文达,杨书文.碱矿渣混凝土的干燥收缩研究进展探析[J].福建建筑, 2022, (03):108-112.

[88]夏旭东.高强轻骨料混凝土收缩变形性能试验研究[D].沈阳工业大学,2022.

[89]叶奕隆.地质聚合物再生混凝土冲击力学性能研究[D].福建工程学院,2021.

[90]徐延.偏高岭土基地聚合物混凝土抗冻性能研究[D].重庆大学,2018.

[91]石旭峰,丁丹婧,宋慧平,等.基于机器学习的粉煤灰基地聚合物混凝土强度预测[J/OL].工业建筑,1-12[2025-03-24].

中图分类号:

 TU528.41    

开放日期:

 2025-06-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式