- 无标题文档
查看论文信息

论文中文题名:

 神府煤显微组分的电浮选分离研究    

姓名:

 赵伟    

学号:

 B201505017    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 081902    

学科名称:

 工学 - 矿业工程 - 矿物加工工程    

学生类型:

 博士    

学位级别:

 工学博士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 矿物加工工程    

研究方向:

 煤炭分质与利用    

第一导师姓名:

 周安宁    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杨志远    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Research on Electroflotation Separation of Macerals in Shenfu Coal    

论文中文关键词:

 神府煤 ; 煤岩显微组分 ; 电浮选 ; 电凝聚 ; 气泡特征 ; 可浮性    

论文外文关键词:

 Shenfu coal ; macerals ; electroflotation ; electrocoagulation ; bubble characteristics ; floatability.    

论文中文摘要:

我国侏罗纪低变质烟煤储量丰富,煤岩显微组分组成结构特殊,严重制约了其清洁高效利用。根据侏罗纪低变质烟煤显微组成及结构特点,开展煤岩显微组分的高效分离是实现其清洁和高效低碳化转化的重要途径。

浮选技术是侏罗纪低变质烟煤煤岩显微组分分离的重要方法之一。其中,电浮选分离技术在细粒煤显微组分分离方面具有独特优势,但煤岩显微组分的电浮选分离机理不清晰,相应的调控方法难以建立,严重制约了该技术的发展。神府煤为典型的侏罗纪高惰质组烟煤。因此,本文以神府烟煤为对象,在煤岩显微组分表面电化学改性研究的基础上,重点开展了电解微泡的调控方法、铝阳极电凝聚的选择性作用机制,以及电浮选分离方法及其机理等研究,取得了如下主要结果。

(1)电化学氧化和还原改性可有效提高神府煤镜质组和惰质组的可浮性差异。以手选和密度梯度离心分离的高纯度镜质组和惰质组为研究对象,在隔膜电解槽中对煤样进行了电化学氧化和还原改性,考察了改性处理对煤样的润湿性、表面电性及稳定性等的影响。结果表明:经电化学还原改性后,煤样的润湿性减小,煤颗粒表面的zeta电位向正电方向偏移,且聚集性减弱,分散性和稳定性增加;经电化学氧化后,煤样上述性质的变化基本相反;惰质组与水溶液的粘附力更强,且经电化学改性后,其与镜质组的差异性增大。

(2)通过控制电化学氧化和还原反应可改变煤岩显微组分表面亲水性官能团的含量,进而调控镜质组和惰质组的可浮性差异。为揭示电化学改性对煤岩显微组分可浮性的调变机制,采用红外光谱考察了电化学氧化和还原改性前后煤样表面结构的变化。研究表明,镜质组表面易被电化学氧化,而惰质组更易被电化学还原。电化学改性主要改变了煤中-OH、-COOH等亲水性官能团的含量,电化学还原使其含量减小,而电化学氧化使其含量增加。

(3)通过调变浮选溶液pH、电压强度和反应时间等因素可调控电浮选的气泡特征。为建立电浮选气泡的调控方法,针对铝电极,采用高速动态摄像系统在电浮选槽中考察了上述因素对电解氢气泡和氧气泡的尺寸、浓度、上浮速度及表面电性的影响规律。结果表明:铝电极可获得20~100μm直径的气泡,且气泡浓度较大;当溶液pH酸碱度越高,电压强度越大,电极反应时间越长时,电解气泡的尺寸越小、气泡浓度越高;气泡的上升速度和表面电负性与气泡尺寸直接相关,气泡尺寸增大,气泡的上升速度和表面电负性增加。

(4)煤岩显微组分电浮选分离过程中,通过调变气泡尺寸和浓度可调控浮物回收率和显微组分富集率。在电浮选装置上,以神府原煤为原料,考察了气泡尺寸和浓度对浮物回收率和镜质组富集率的影响规律。结果表明,气泡浓度与浮物收率呈线性相关,气泡浓度越高,浮物收率越高;气泡尺寸与浮物中镜质组含量呈线性相关,在电解的氧气泡尺寸范围内,气泡尺寸越小,镜质组含量越高,而在氢气泡尺寸范围内,其相关性恰好相反。

(5)调变铝阳极电解产生的铝离子的水解形态和浓度,可通过电凝聚对镜质组和惰质组的选择性实现电浮选分离过程的强化,提高分选效果。在电浮选装置上,以铝为电解阳极,通过絮团生成量、絮体分形维数、沉降速率及颗粒稳定性等考察了电压强度、溶液pH值及反应时间对镜质组和惰质组电凝聚的差异性。研究表明:电凝聚对惰质组具有较高的选择性,可加速惰质组的沉降;提高溶液pH酸度、电压强度和反应时间可增强电凝聚的选择性。

(6)基于上述理论研究,设计开发了系列电浮选分离工艺,建立了神府煤显微组分的高效分离新方法。以神府原煤为原料,对煤岩显微组分的单槽电浮选和分电极双槽电浮选分离方法进行了比较研究。结果表明,分电极双槽电浮选可获得更好的分离效果,且阴极槽的浮选速率较阳极更快,而阳极槽所得浮物产品的镜质组回收率更高;采用分电极双槽串联电浮选方法,通过阴极一次浮选和阳极电凝聚强化再浮选工艺,浮选分离的综合效率最高可达83.7%。此时,浮物产品的镜质组回收率为86.7%,产品的镜质组含量为91.3%;两个沉物产品的回收率分别为41.6%和54.9%,产品的惰质组含量为90.6%和80.6%。

(7)揭示了电浮选分离煤岩显微组分的“电化学改性-微泡调控-电凝聚选择性强化”一体化分离机理。电浮选过程中,镜质组与水在阴极生成的氢自由基发生还原反应,使其表面-OH和-COOH含量降低,疏水性增强;酸性体系内,镜质组表面正电性增强,其易与荷负电的电解微气泡发生矿化作用;惰质组表面负电性更强,其通过电泳作用在阳极板上发生直接电化学氧化反应,导致其表面含氧官能团增加,亲水性增强;铝阳极产生的活性铝离子水解,生成阳离子水合物,惰质组在水合铝分子链上吸附凝聚,从而强化了其沉降效率。

论文外文摘要:

China is rich in Jurassic low metamorphic bituminous coal with special composition of structure, which seriously restricts the efficiency of its clean conversion and utilization. Given the composition and structural characteristics of Jurassic low metamorphic bituminous coal, the efficient separation of macerals is an important aproach to realize the clean and efficient low carbonization transformation.

Flotation is one of the important methods for the separation of macerals in Jurassic low metamorphic bituminous coal, in which the technology of electroflotation has remarkable advantages to separate the coal macerals of fine and ultra-fine particles. However, the mechanism of electroflotation separation coal macerals is not clear, and the corresponding control methods is difficult to establish, which due to the electroflotation technology is hard to breakthrough. Shenfu coal is a typical Jurassic low metamorphic bituminous coal with high inertinite content. Based on the study of electrochemical modification of the surface of macerals, this research targets the Shenfu Jurassic bituminous coal and focuses on the control method of electrolytic microbubbles, the selective mechanism of aluminum anode electrocoagulation, and the electroflotation separation method and its mechanism. Mainly findings of the research are as follows:

(1) Electrochemical oxidation and electrochemical reduction can effectively improve the difference of floatability of Shenfu vitrinite and inertinite. High purity vitrinite and inertinite separated by hand-picked and density gradient centrifugation separation were as research subjects, and the coal samples were modified by electrochemical oxidation and reduction in a diaphragm electrolyzer. The influence of modification on wettability, surface electrical behavior and stability of coal samples were researched. The results show that: after electrochemical reduction modification, the wettability of coal sample decreases, the zeta potential of coal particle surface shifts to the positive direction, and the aggregation decreases while the dispersity and stability increase; after electrochemical oxidation, the change of coal property is basically opposite; inertinite has stronger adhesion to aqueous solution, and the difference between inertinite and vitrinite increases after electrochemical modification.

(2) By controlling the electrochemical oxidation and reduction reaction, the content of hydrophilic functional groups on the surface of coal macerals can be changed, and the difference of floatability between vitrinite and inertinite can be regulated. In order to investigate the effects of electrochemical modification on the surface structure of coal macerals, the changes of surface structure of vitrinite and inertinite were investigated before and after modification by infrared spectroscopy. It is found that the electrochemical oxidation performance of vitrinite is better than that of inertinite, and inertinite is easier to be reduced. The content of oxygen-containing functional groups in coal is mainly changed by electrochemical modification, especially the content of -OH, -COOH, and other hydrophilic functional groups in coal decrease after electrochemical reduction, but increased after electrochemical oxidation.

(3) Bubble characteristics of electric flotation can be regulated by adjusting solution pH, voltage intensity and reaction time. In order to establish the bubble control method of electroflotation, the influence of the above factors on the size, concentration, floating velocity and surface electrical behavior of electrolytic hydrogen bubble and oxygen bubble were investigated by using high-speed dynamic camera system in an aluminum electroflotation capacitor. The results show that the aluminum electrode can obtain 20~100μm diameter bubbles, and the bubble concentration is larger. When the pH of the solution is acid or alkaline, the voltage intensity is larger or the reaction time is longer, the size of the electrolytic bubble is smaller and the bubble concentration is higher. The rising velocity and surface electronegativity of the bubble are directly related to the bubble size, and when the bubble size increases, the rising velocity and surface electronegativity of the bubble increase.

(4) In the process of electroflotation separation of coal macerals, the recovery rate of floating and the enrichment rate of macerals can be controlled by adjusting the bubble size and concentration. The influence of bubble size and concentration on the recovery rate of floating and the enrichment rate of vitrinite were investigated by using Shenfu raw coal as material. The results show that there is a linear correlation between the concentration of bubbles and the yield of floats, namely, the higher the concentration is, the higher the yield of floats is; the bubble size is linearly related to the content of vitrinite in floats; within the range of oxygen bubble size, the vitrinite content increases with the decrease of bubble size, while the opposite is true within the range of hydrogen bubble size.

(5) The selectivity of electrocoagulation to vitrinite and inertinite can be adjusted by the hydrolysis morphology and concentration of aluminum ions produced by aluminum anode electrolysis, and which can cause the promotion of the separation effect of coal macerals. Using aluminum electroflotation capacitor, the difference in electrocoagulation between vitrinite and inertinite was investigated by fractal dimension, sedimentation rate and stability. The results show that electrocoagulation has high selectivity for inertinite, which can effectively improve the sedimentation difference between vitrinite and inertinite. The selectivity of electrocoagulation can be enhanced by increasing the solution acidity, voltage intensity and reaction time.

(6) Based on the theoretical researches above, a series of electroflotation separation processes were designed and developed, and a new efficient separation method of Shenfu coal macerals was established. Using Shenfu raw coal as raw material, the methods of single-cell electroflotation and double-cell electroflotation separation of coal macerals were compared. It is found that the separation effect of double cell electro flotation with separate electrodes is better, and the flotation rate of cathode cell is faster than that of anode cell, but the recovery rate of vitrinite of flotation products from anode cell is higher. Macerals were separated by the technology of double cell in series with separate electrodes, and the comprehensive efficiency of flotation separation is up to 83.7% by the technology of cathode primary flotation and anode electrocoagulation. At this time, the recovery rate of vitrinite in the floating product is 86.7%, and the vitrinite content of the product is 91.3%; the recovery rates of the two precipitated products are 41.6% and 54.9% respectively, and the inertinite content of the product is 90.6% and 80.6%.

(7) The mechanism in the coal macerals separation by electroflotation of “Electrochemical Modification - Microbubble Regulation - Enhance with Selectivity of Electrocoagulation” was uncovered. The hydrogen free radicals produced by the reaction of water at the cathode can react with the surface of vitrinite to decrease the content of -OH and -COOH on the surface of vitrinite, leading to the increase of its hydrophobicity. In acidic system, vitrinite surface is positively charged, which makes it easy to mineralize with negatively charged electrolytic bubbles; while inertinite surface is more negatively charged, which leads to direct electro-oxidation reaction on anode plate through electrophoresis, resulting in the increase of surface oxygen-containing functional groups and hydrophilicity; the active aluminum ions produced by aluminum anode electrolysis hydrolyze to form cationic hydrate, whose selective adsorption of inertinite results in the enhancement of inertinite aggregation.

参考文献:

[1] 韩德馨. 中国煤岩学[M]. 徐州: 中国矿业大学出版社, 1996.

[2] 李聪聪, 魏云迅, 杜芳鹏. 陕西省特殊用煤资源分布特征及清洁利用方向[J]. 中国煤炭地质, 2020, (2): 22-28.

[3] Chen P, Ma J. Petrographic characteristics of Chinese coals and their application in coal utlization processes [J]. Fuel, 2002: 1389-1395.

[4] 杜芳鹏, 雒铮, 乔军伟, 等. 宁东煤田侏罗纪煤岩煤质特征及清洁高效利用[J]. 煤田地质与勘探, 2020, 48(2): 71-77.

[5] 魏焕成, 张慧芳. 神府东胜矿区煤层的煤岩特征及煤化程度研究[J]. 科技咨询, 2007, (27): 38-39.

[6] Bielowicz B, Misiak J. The Impact of Coal's Petrographic Composition on Its Suitability for the Gasification Process: The Example of Polish Deposits [J]. Resources, 2020, 9(9):111.

[7] Ghosh B , Sahoo B K , Jha P K , et al. Effect of Microlithotype Maceral Distribution on Coke Quality [J]. Coke and Chemistry, 2020, 63(6):294-302.

[8] Jin L, Han K, Wang J, et al. Direct liquefaction behaviors of Bulianta coal and its macerals [J]. Fuel Processing Technology, 2014, 128: 232-237.

[9] 赵伟, 张晓欠, 周安宁, 等. 神府煤煤岩显微组分的浮选分离及富集物的低温热解产物特性研究[J]. 燃料化学学报, 2014, 42(5): 527-533.

[10] Zhao W, Yang F, Yang Z, et al. Interface Structure between Vitrinite and Inertinite from Shenmu Coal during Pyrolysis [J]. ACS Earth and Space Chemistry, 2017, (1): 179-186.

[11] 闫兰英, 赵伟, 周安宁. 煤岩显微组分的浮选分离及其对活性炭性能的影响[J]. 煤炭科学技术, 2016, 44:197-201.

[12] 王共远, 吴国光, 李启辉. 煤显微组分分离技术及其应用的研究进展[J]. 中国煤炭, 2005, 31(8): 52-54.

[13] Honaker R Q, Mohanty M K, Crelling J C. Coal maceral separation using column flotation [J]. Minerals Engineering, 1996, 9(4): 449-464.

[14] 舒新前, 王祖诵, 葛岭梅. 煤岩组分分离与选别研究现状及前景展望[J]. 煤炭转化, 1996, 19(1): 40-41.

[15] Dyrkacz G R, Horwitz E P. Separation of coal macerals [J]. Fuel, 1982, 61(1): 3-12.

[16] Dyrkacz G R, Bloomquist C A A, Ruscic L. Chemical variations in coal macerals separated by density gradient centrifugation [J]. Fuel, 1984, 63(8): 1166-1173.

[17] Silbernagel B G, Gebhard L A, Dyrkacz G R, et al. Bloomquist. Electron spin resonance of isolated coal macerals [J]. Fuel, 1986, 65(4): 558-565.

[18] 蔡昌凤. 煤岩组分的解离特性与分离技术[J].洁净煤技术, 1998, 4(3): 24-27.

[19] 赵世永. 神府煤选择性破碎机理及其煤岩组分分离富集研究[D]. 西安: 西安科技大学, 2014.

[20] Shu X, Wang Z, Xu J. Separation and preparation of macerals in Shenfu coals by flotation [J]. Fuel, 2002, 81: 495-501.

[21] 林治穆. 煤显微组分的浮选法分离及富集物的热转化特性[J]. 山东矿业学院学报, 1990, 9(1): 74.

[22] Fecko P, Pectova I, Ovcari P, et al. Influence of petrographical composition on coal flotability [J]. Fuel, 2005, 84(14-15): 1901-1904.

[23] Jorjani E, Esmaeili S, Khorami M T. The effect of particle size on coal maceral group’s separation using flotation [J]. Fuel, 2013, 114: 10-15.

[24] 赵伟, 李振, 杨志远, 等. AlCl3对煤岩组分浮选分离的影响[J]. 煤炭学报, 2015, 40(1):185-190.

[25] 宋强. 低阶煤显微组分浮选分离试验研究[D]. 内蒙: 内蒙古科技大学, 2015.

[26] 龙江. 神府煤煤岩组分赋存特性及浮选富集工艺研究[D]. 西安: 西安科技大学, 2014.

[27] Hower J C, Kuehn K W, Parekh B K, et al. Macerals and microlithotype beneficiation in column flotation at the Powell Mountain Coal Mayflower Preparation Plant, Lee County, Virginia [J]. Fuel Processing Technology, 2000, 67: 23-33.

[28] Barraza J, Pineres J. A pilot-scale flotation column to produce beneficiated coal fractions having high concentration of vitrinite maceral [J]. Fuel, 2005, 84: 1879-1883.

[29] Dyrkacz G R. Adventures in maceral separation [J]. American Chemical Society, Division of Fuel Chemistry Preprints, 1994, 35(1): 214-218.

[30] 霍卫东, 赵志军, 郭梦熊. 四种不同煤的可浮性研究[J]. 选煤技术, 1999, 2: 15-17.

[31] 王丽, 张蓬洲. 煤的XRD的结构分析[J]. 煤炭转化, 1997, 20(1): 50-53.

[32] 王宝俊, 李敏, 赵清艳, 等. 煤的表面电位与表面官能团的关系[J]. 化工学报, 2004, 55(8): 1329-1334.

[33] Peter F, Iva P, Pavla O, et al. Influence of petrographical composition on coal flotability [J]. Fuel, 2005, 84: 1901-1904.

[34] 李少章, 朱书全. 煤的表面疏水性与其组成之间的关系[J]. 洁净煤技术, 2004, 10(3): 15-18.

[35] Lucyna H. Surface free energy and floatability of low-rank coal [J]. Fuel, 1996, 75(6): 737-742.

[36] Musa S, Gulhan O. Flotation characteristics of oxidized coal [J]. Fuel, 1995, 74(2): 291-294.

[37] Bozena B. Studies on floatability of macerals of bituminous coals of various coalification degree [J]. Fuel processing technology, 1987, 16: 191-204.

[38] 段旭琴, 王祖讷, 曲剑午. 神府煤惰质组与镜质组的结构性质研究[J]. 煤炭科学技术, 2004, 32(2): 19-23.

[39] Rohan S, Xie W, Terry W. Dynamic behaviour of coal macerals during pyrolysis-association between physical, thermal and chemical changes [J]. P Combust Inst, 2013, 34(2): 2393-2400.

[40] 孙庆雷, 李文, 陈皓侃, 等. 神木煤显微组分加氢热解特性的研究[J]. 燃料化学学报, 2002, 30(1): 12-15.

[41] 曹敏, 公旭中, 王永刚, 等. 神华煤有机显微组分富集物热重研究[J]. 中国矿业大学学报, 2004, 33(5): 537-542.

[42] 孙庆雷, 李文, 李保庆. 神木煤显微组分热解特性研究[J]. 中国矿业大学学报, 2001, 30(3): 272-276.

[43] 王传格, 张妮, 陈燕. 煤显微组分结构特征及其与热解行为的关系[J]. 煤炭转化, 2011, 34(3): 11-16.

[44] 林建英, 李文英, 常丽萍, 等. 煤岩有机显微组分热解过程中HCN和NH3生产规律的研究[J]. 燃料化学学报, 2004, 32(6): 663-667.

[45] 孙庆雷, 李文, 陈皓侃, 等. 神木煤显微组分热解和加氢热解的焦油组成[J]. 燃料化学学报, 2005, 33(4): 412-415.

[46] 何秀风, 陈小丽, 杜娟, 等. 宁夏原煤及其显微组分热解过程中气相产物生成的研究[J]. 煤化工, 2009, 37(2): 25-27.

[47] Chen Y, Mastalerz M, Schimmelmann A. Characterization of chenical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy [J]. International Journal of Coal Geology, 2012, 104(30): 22-33.

[48] 王传格. 煤显微组分热解甲烷、氢气生产动力学及机理[D]. 山西: 太原理工大学, 2006.

[49] Arnold B J, Apland F F. Hydrophobicity of coal macerals [J]. Fuel, 1989, 68(5): 651-658

[50] 村田逞诠(日)著. 朱春笙, 龚祯祥译. 煤的润湿性研究及其应用[M]. 北京: 煤炭工业出版社, 1992.

[51] 何杰. 煤的表面结果与润湿性[J]. 选煤技术, 2000, 5: 13-15.

[52] Mitchell G D, Davis A, Chander S. Surface properties of photo-oxidized bituminous vitrains [J]. International Journal of Coal Geology, 2005, 62: 33-47.

[53] 石焕, 吏英祥. 超声处理对粉煤表面性质及浮选效果的影响[J]. 选煤技术, 2007, 5: 21-23.

[54] 侯鸣晓, 张晓雨, 康天合, 等. 电化学强化无烟煤吸水性的实验研究[J]. 煤炭学报, 2020, 45(8): 254-262.

[55] Patrakov Y F, Semenova S A, Kharlampenkova Y A. Microbubble Modification of Coal Surfaces before Flotation [J]. Coke and Chemistry, 2020, 63(1): 1-4.

[56] Wang C, Chen J, Li R. Studies on surface modifacation of poly (tetrafluoroethylene) film by remote and direct Ar plasma [J]. Applied Surface Science, 2008, 254: 2882-2888.

[57] Xia W , Wu F , Jaiswal S , et al. Chemical and physical modification of low rank coal floatability by a compound collector [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610:125943.

[58] Arpagaus, Rossi, Rudolf. Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor-process, wettability improvement and ageing effects [J]. Applied Surface Science, 2005, 252(5): 1581-1595.

[59] Yang S, Gupta M C. Surface modification of polyethyleneterephthalate by an atmospheric-pressure plasma source [J]. Surface & Coatings Technology, 2004, 187: 172-176.

[60] Chen Y, Ma Z, Ma D, et al. Characteristics of the Coal Fines Produced from Low-Rank Coal Reservoirs and Their Wettability and Settleability in the Binchang Area, South Ordos Basin, China [J]. Geofluids, 2021, (4):1-17.

[61] Liu S , Liu X , Guo Z , et al. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant [J]. Colloids & Surfaces A: Physicochemical & Engineering Aspects, 2016, 508:286-293.

[62] Djebabra D, Dessaux O, Goudmand P. Coal gasification by microwave plasma in water vapour [J]. Fuel, 1991, 70(12):1473-1475.

[63] Zhao W, Zhou A, Qu J. Study on the influence of the macerals in Shenfu coals modified by acetone under photocatalysis on wettability [J]. Journal of Fuel Chemistry and Technology, 2011, 39(8): 561-566.

[64] Zhao W, Yang F, Li Y, et al. The influence of microwave treatment under a hydrogen or methane atmosphere on the flotability of the macerals in Shenfu coals [J]. Mining Science and Technology, 2011, 21: 761-766.

[65] 郭梦熊, 余强. 煤的可浮性[J]. 煤炭学报, 1987, 3: 15-22.

[66] 石开仪, 陶秀祥, 李志, 等. 利用红外光谱构建抚顺煤大分子结构模型[J]. 高分子通报, 2012, 3: 61-66.

[67] 相建华, 曾凡桂, 李彬, 等. 成庄无烟煤大分子结构模型及其化学模拟[J]. 燃料化学学报, 2013, 41(4): 391-399.

[68] 蔺华林, 李克建, 章序文. 上湾煤及其惰质组富集物的结构表征与模型构建[J]. 燃料化学学报, 2013, 43(6): 641-648.

[69] 赵凯荣, 樊海治. 哈密煤惰质组结构模型的分子模拟[J]. 山西煤炭, 2011, 31(7): 35-42.

[70] 李启辉, 吴国光, 孙志强, 等. 煤化程度与颗粒大小对煤表面zeta电位影响研究[J]. 能源技术与管理. 2007, 3: 81-82.

[71] 段旭琴, 王祖讷, 孙春宝. 神府煤显微组分表面性质研究[J]. 中国矿业大学学报. 2007, 36: 630-635.

[72] 王宝俊, 李敏, 赵清艳, 等. 煤的表面电位与表面官能团间的关系[J]. 化工学报. 2004, 55: 1329-1333.

[73] 李启辉, 吴国光, 孙志强, 等. 煤化程度与颗粒大小对煤表面zeta电位影响研究[J]. 能源技术与管理, 2007, 3: 81-82.

[74] 聂文成, 牛晨凯, 彭耀丽, 等. 煤粒形状与表面元素组成对其天然可浮性的协同影响研究[J]. 中国煤炭, 2016, 42(11): 82-99.

[75] Bogale T, Boris A, Fidele M, et al. Recovery of fine and ultrafine mineral particles by electroflatation – A review [J]. Mineral Processing and Extractive Metallurgy Review, 2018: 1-15.

[76] Sarkar M, Donne S, Evans G. Hydrogen bubble flotation of silica [J]. Advanced Powder Technology, 2010, 21(4): 412-418.

[77] Matis, Gallios, Kydros. Separation of fines by flotation techniques [J]. Separation Technology, 1993, 3: 76-90.

[78] Matis, Gallios, Stalidis. Applicability of electrolytic flotation for the recovery of carbonate fines [J]. Chim. Chron. 1988, 17: 29-51.

[79] Raju G B, Khangaonkar P R. Electro-flotation of chalcopyrite fines [J]. International Journal of Mineral Processing, 1982, 9(2):133-143.

[80] Raju G B, Khangaonkar P R. Electroflotation of chalcopyrite fines with sodium diethyldithiocarbamate as collector [J]. International Journal of Mineral Processing, 1984, 13(3): 211-221.

[81] Kyzas, Matis. Electroflotation process: A review [J]. Journal of Molecular Liquids, 2016, 220:657-664.

[82] 董宪姝, 姚素玲, 张凌云. 电化学絮凝的应用与发展[J]. 选煤技术, 2008(4) : 132-135.

[83] 董宪姝, 姚素玲, 刘爱荣, 等. 电化学处理煤泥水沉降特性的研究[J]. 中国矿业大学学报, 2010, 39(4) : 753-757.

[84] 张鸿波, 李永盛, 宁婷婷. 酸性条件下煤电化学脱硫实验研究[J]. 黑龙江科技大学学报, 2014, 24(1): 58-62.

[85] Gong X, Wang M, Wang Z. Desulfuration of electrolyzed coal water slurry in HCl system with ionic liquid addition [J]. Fuel Processing Technology, 2012, 99: 6-12.

[86] Zhu Y, Lu Xi, Zhu H. Research on factors affecting flotation and desulfurization of coal by electrochemical method [J]. Journal of China University of Mining & Technology, 2001, 11(2): 138-141.

[87] 陈洪砚, 李铁庆, 李敬峰. 电絮凝法处理煤泥水的研究[J]. 环境保护科学, 1992, 18(1): 43-46.

[88] 朱红, 王淀佐, 李虎林, 等. 电化学法对细粒煤表面改性机理的研究[J]. 煤炭学报, 2000, 25(3): 307-311.

[89] 林娟, 赵炜. 煤及其含氧基团模拟物的电化学还原[J]. 电化学, 2007, 13(2): 177-182.

[90] Llerena C, Ho J, Piron D. Effects of pH on electroflotation of sphalerite [J]. Chemical Engineering Communications, 1996, 155: 217-228.

[91] 邵会波, Varaxin S O, KolesnikovV A, 等. 电镀污水净化新工艺-电浮选方法简介[J]. 化学通报, 2003, (12): 837-841.

[92] Venkatachalam S. Electrogenerated gas bubbles in flotation [J]. Mineral Processing and Extractive Metallurgy Review, 1992, 8:47-55.

[93] Kuopanportti H, Suorsa T, Pollanen E. Effects of oxygen on kinetics of conditioning in sulphide ore flotation [J]. Minerals Engineering, 1997, 10:1193-1205.

[94] Lumanauw D. Masters Thesis on Hydrogen bubble characterization in alkaline water electrolysis [D]. Department of Metallurgy and Material Science. Toronto, University of Toronto. 2000.

[95] Rahman N A , Linus A A , Philip A , et al. Development of solar power system for Sarawak peat water continuous electrocoagulation treatment process [J]. IOP Conference Series Materials Science and Engineering, 2021, 1101(1):012039.

[96] Graeme J M, Jack L, Arshad A, et al. Couperthwaite. Evaluation of electrocoagulation for the pre-treatment of coal seam water [J]. Journal of Water Processing Engineering, 2014, 4: 166-178.

[97] Müller L, Krenz M, Rübner K. On the relation between the transport of electrochemically evolved Cl2 And H2 into the electrolyte bulk by convective diffusion and by gas bubbles [J]. Electrochimica Acta, 1989, 34: 305-308.

[98] Sarkar, Evans, Donne. Bubble size measurement in electroflotation [J]. Minerals Engineering, 2010, 23: 1058-1065.

[99] Tegladza I D, Xu Q, K Xu, et al. Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal [J]. Process Safety and Environmental Protection, 2021, 146:169-189.

[100] Mohammad, Emamjomeh, Muttucumaru. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes [J]. Journal of Environmental Management, 2009, 90(5):1663-1679.

[101] 陈国华, 王光信. 电化学方法应用[M]. 北京: 化学工业出版社, 2003.

[102] Akarsu C, Deniz F. Electrocoagulation/Electroflotation Process for Removal of Organics and Microplastics in Laundry Wastewater [J]. Clean Soil Air Water, 2021, 49(1): 146-159.

[103] 董继发, 方建军, 张铃, 等. 电解浮选技术在选矿及废水处理中的研究进展[J]. 矿产保护与利用, 2020, 40(4): 146-151.

[104] Mohammad M, Muttucumaru S. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes [J]. Journal of Environmental Management, 2009, 90(5): 1663-1679.

[105] 朱凌岳, 王宝辉, 吴红军. 电解水煤浆制氢技术研究进展[J]. 化工进展, 2016, 35(10): 3129-3135.

[106] 舒新前, 王祖讷, 徐精求, 等. 神府煤煤岩组分的结构特征及其差异[J]. 燃料化学学报, 1996, 24(5): 426-433.

[107] Painter P C, Socbkowiak M, Youtchefft J. FT-IR study of hydrogen bonding in coal [J]. Fuel, 1987, 66(7): 973-978.

[108] 汪朝晖, 廖振方, 陈德淑. 电浮选过程中气泡行为的研究 [J]. 中南大学学报(自然科学版), 2011, 42(3): 658-663.

[109] Shibuichi S,Onda T, Satoh N, et al. Super water-repellent surfaces resulting from fractal structure [J]. Journal of Physical Chemistry, 1996, 100(50):19512-19517.

[110] Albijanic B, Subasinghe G K N, Bradshaw D J, et al. Influence of liberation on bubble–particle attachment time inflotation [J]. Minerals Engineering, 2015, 74: 156-162.

[111] Brandon N P, Kelsall G H, Levine S, et al. Interfacial electrical properties of electrogenerated bubbles [J]. Journal of Applied Electrochemistry, 1985, 15(4): 485-493.

[112] Jiménez C, Talavera B, Sáez C, et al. Study of the production of hydrogen bubbles at low current densities for electroflotation processes [J]. Journal of Chemical Technology & Biotechnology, 2010, 85(10): 1368-1373.

[113] 白云艳. 水中气泡运动规律的PIV实验研究[D]. 西安: 西安理工大学, 2011.

[114] 徐炯, 王彤, 杨波, 等. 静止水下气泡运动特性的测试与分析[J]. 水动力学研究与进展, 2008(6):117-122.

[115] 赵伟, 屈进州, 李振, 等. 电浮选-电凝聚法分离煤岩显微组分的影响因素[J]. 洁净煤技术, 2018, 24(1): 57-62.

[116] Hussain S A , Demirci S, ÖzbayoĞlu G. Zeta Potential Measurements on Three Clays from Turkey and Effects of Clays on Coal Flotation [J]. Journal of Colloid Interface Science, 1996, 184(2): 535-541.

[117] Chakraborti R K, Atkinson J F, Benschoten J E. Characterization of Alum Floc by Image Analysis [J]. Environmental Science & Technology, 2000, 34(18): 3969-3976.

[118] Zhao W, Li Z, Zhou A, et.al. Flotation characteristics of Shenfu coal macerals [J]. Journal of coal science and engineering, 2013, 19(3): 381-386.

[119] 赵伟, 杨志远, 李振, 等. 电化学处理对神木煤显微组分表面结构及可浮性的影响研究[J]. 燃料化学学报, 2017, 45(4): 1-9.

[120] Pablo C, Carlos J, Fabiola M, et al. The pH as a key parameter in the choice between coagulation and electrocoagulation for the treatment of wastewaters [J]. Journal of Hazardous Materials, 2009, 163: 158-164.

[121] Harif T, Adin A. Characteristics of aggregates formed by electroflocculation of a colloidal suspension [J]. Water Research, 2007, 41: 2951-2961.

[122] Qing J, Bruce E L. Fractal dimensions of aggregates determined from steady-state size distributions [J]. Environmental Science & Technology, 1991, 25(12): 2031-2038.

[123] 王圃, 池年平. 絮凝体分形维数影响因素的研究[J]. 水处理技术, 2006, 32(9): 19-22.

[124] 李荻. 电化学原理[M]. 北京: 北京航空航天大学出版社, 2013.

[125] 寇凯凯. 煤辅助电解水制氢中矿物质及羧基官能团的影响机理研究[D]. 哈尔滨工业大学, 2019.

[126] 方鑫. 煤电化学气化的机理及动力学研究[D]. 太原理工大学, 2016.

[127] 朱红, 杨玉芬, 赵炜, 等. 电解还原法强化高硫煤浮选脱硫机理研究[J]. 中国矿业大学学报, 2003(06):650-654.

[128] 白清城. 煤浆与废液协同电解制氢的研究[D]. 浙江大学, 2019

[129] 侯鸣晓, 张晓雨, 康天合, 等. 电化学强化无烟煤吸水性的实验研究[J]. 煤炭学报, 2020, 45(08): 254-262.

[130] 彭陈亮. 微细矿物颗粒表面水化膜研究现状及进展综述[J]. 矿物学报, 2012, 32(4): 515-522.

中图分类号:

 TD94    

开放日期:

 2023-06-18    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式