论文中文题名: | 巨野煤田3#煤层自燃特性及预警 方法研究 |
姓名: | |
学号: | 19220214074 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工程硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2022-06-22 |
论文答辩日期: | 2022-06-01 |
论文外文题名: | Study on spontaneous combustion characteristics and early warning method of 3# coal seam in Juye Coalfield |
论文中文关键词: | |
论文外文关键词: | Deep mine ; Coal spontaneous combustion ; Oxidation kinetic ; Thermal effect ; Indicator gas ; Early warning indicator system |
论文中文摘要: |
巨野煤田主要矿井属于深部开采矿井,主采 3#煤层具有埋深大(900 ~ 1000 m)、 围岩温度高,煤自燃起始温度高(达到 35 ~ 40 ℃),自然发火期短等特点;同时,高 地压易使工作面煤柱破碎,导致采空区漏风规律复杂,使煤自燃风险显著升高。因此, 本文以巨野煤田三个矿井(唐口、新巨龙及赵楼煤)主采的 3#煤层煤样为研究对象, 采用傅里叶变换红外光谱仪、同步热分析仪和煤自燃程序升温试验装置系统性的研究 了巨野煤田主采 3#煤层氧化燃烧过程中微观特性、氧化动力学特征及煤自燃指标气体 生成规律,最终构建了巨野煤田 3#煤层煤自燃预警指标体系。研究结果可为巨野煤田 3#煤层在开采过程中存在的自燃危险性预测预报提供决策,对于深部开采高地温矿井 煤层的自燃风险早期监测预警及防控具有重要的指导意义。 通过工业分析、红外光谱等方法,得到了不同煤样的煤质指标、主要官能团占比 等参数,发现各煤样具有挥发分含量高、水分及固碳含量低的特点,且 FCad/Vad值介于 1.176 ~ 1.642 之间,煤的氧化反应自发性强,自燃危险性高;煤的孔隙以小孔为主,孔 隙体积与综合分形维数由小到大皆为赵楼煤 < 唐口煤 < 新巨龙煤,可得到各煤样与氧 接触能力由小到大分别为赵楼煤 < 唐口煤 < 新巨龙煤;煤中脂肪烃、含氧官能团及芳 香烃含量的总体占比同样是影响煤自燃特性的关键参数。上述参数的差异是导致活化 能大小及氧化气态产物呈现阶段性特征的内因,对于评估煤自燃倾向性及构建预警指 标体系有重要影响作用。此外,根据 Bagchi 法推断煤样在不同氧化阶段的反应模型, 发现唐口、新巨龙和赵楼煤在失水失重阶段与吸氧增重阶段分别具有不同的反应模型, 但氧化燃烧阶段的反应模型却一致,皆遵循7号反应机理函数,各煤样在氧化后期的反 应机制基本相同。 最后,采用程序升温装置测试煤低温氧化过程中的气态产物,分析了煤的微观结 构特征对气态产物生成量的影响;并依据指标气体增长率分析法确定煤的特征温度将 氧化过程分为四个阶段,并通过主成分分析法及灰色关联度优选了巨野煤田 3#煤层在 初始氧化阶段(R2、G2)、加速氧化阶段(G1、G2)、剧烈氧化阶段(G2、R1)和氧化 分解阶段(R1)的复合指标气体;根据碳氧比率及指标气体特点确定了煤自燃四级预 警等级划分标准,基于 Logistic 函数构建了煤自燃危险性分级预警阈值曲线;结合上述 预警指标,依据煤自燃阶段精细化理论等关于煤自燃监测、标志气体、临界值、发火 预兆及火灾管理的规定,新构建了预警初值、蓝色、黄色、橙色、红色和黑色六级预 警体系及指标阈值。 |
论文外文摘要: |
The main mines of Juye Coalfield belong to deep mining mines. The main mining 3# coal seam has the characteristics of large buried depth (900 ~ 1000 m), high temperature of surrounding rock, high initial temperature of coal spontaneous combustion (35 ~ 40 ℃), and short natural ignition period, etc. At the same time, the high ground pressure is easy to break the coal pillar of the working face, which leads to the complicated air leakage law in the goaf, which significantly increases the risk of coal spontaneous combustion. Therefore, this paper takes the 3# coal seam coal samples mainly mined from three mines in the Juye coalfield (Tangkou, Xinjulong and Zhaolou coal) as the research object, using Fourier transform infrared spectrometer, synchronous thermal analyzer and coal spontaneous combustion program. The heating test device systematically studied the micro-characteristics, oxidation kinetics characteristics and the generation law of coal spontaneous combustion index gas in the oxidative combustion process of the main mining 3# coal seam in Juye Coalfield, and finally constructed a coal spontaneous combustion early warning index system of Juye Coalfield 3# coal seam. The research results can provide decision-making for the prediction and prediction of the spontaneous combustion risk in the mining process of the 3# coal seam in the Juye coalfield, and have important guiding significance for the early monitoring, early warning and prevention and control of the spontaneous combustion risk in the deep mining high geothermal coal seam. Through industrial analysis, infrared spectroscopy and other methods, the parameters of coal quality index and main functional group proportion of different coal samples were obtained. Between 1.176 and 1.642, the oxidation reaction of coal is strong and the risk of spontaneous combustion is high; the pores of coal are mainly small pores, and the pore volume and comprehensive fractal dimension from small to large are Zhaolou coal < Tangkou coal < : Deng Jun Wang Caiping Zhu Xingpan Xinjulong coal, the contact ability of each coal sample with oxygen from small to large is Zhaolou coal < Tangkou coal < Xinjulong coal; the overall proportion of aliphatic hydrocarbons, oxygen-containing functional groups and aromatic hydrocarbons in coal It is also a key parameter that affects the spontaneous combustion characteristics of coal. The difference of the above parameters is the internal factor that causes the activation energy and oxidation gaseous products to show staged characteristics, which has an important impact on evaluating the spontaneous combustion tendency of coal and building an early warning index system. In addition, according to the Bagchi method to infer the reaction models of coal samples in different oxidation stages, it is found that Tangkou, Xinjulong and Zhaolou coals have different reaction models in the water loss and weight loss stage and the oxygen absorption and weight gain stage respectively, but the oxidative combustion stage has different reaction models. The reaction models are the same, all follow the No. 7 reaction mechanism function, and the reaction mechanism of each coal sample in the later stage of oxidation is basically the same. Finally, a temperature-programmed device was used to test the gaseous products in the low-temperature oxidation process of coal, and the influence of the microstructural characteristics of the coal on the generation of gaseous products was analyzed. The initial oxidation stage (R2, G2), accelerated oxidation stage (G1, G2), severe oxidation stage (G2, R1) and oxidation of the 3# coal seam in Juye Coalfield were optimized by principal component analysis and grey correlation degree. The composite indicator gas in the decomposition stage (R1); according to the carbon-oxygen ratio and the characteristics of the indicator gas, the classification standard of coal spontaneous combustion four-level early warning grade is determined, and the coal spontaneous combustion risk classification early warning threshold curve is constructed based on the Logistic function; The refinement theory of spontaneous combustion stage and other regulations on coal spontaneous combustion monitoring, marker gas, critical value, ignition warning and fire management have newly constructed a six-level early warning system and indicator thresholds for early warning initial value, blue, yellow, orange, red and black. |
参考文献: |
[1]崔村丽.我国煤炭资源及其分布特征[J].科技情报开发与经济, 2011,21(24):181-182+198. [2]邓军,张嬿妮.煤自燃发火微观机理[M].徐州:中国矿业大学出版社,2015. [4]张辉,丁姗姗.巨野煤田深部资源开采灾害防治途径[J].煤炭工程, 2013,45(S2):112-113+116. [6]张嬿妮,张帆,邓军,等.不同煤层煤氧化自燃性实验分析[J].中国安全生产科学技术, 2018,14(10):39-45. [9]蒋静宇,程远平,张硕.低阶煤孔隙结构定量表征及瓦斯吸附放散特性[J].煤炭学报, 2021,46(10):3221-3233. [12]杨昌永,常会珍,邵显华,等.扫描电镜下不同煤体结构煤微孔隙特征研究[J].煤炭科学技术, 2019,47(12):194-200. [13]秦雷,王平,林海飞,等.基于氮气吸附和压汞法液氮冻结煤体孔隙结构精细化表征研究[J].西安科技大学学报, 2020,40(06):945-952+959. [14]江泽标,彭鑫,韦善阳,等.基于氮吸附、压汞联合试验的CO2致裂对煤岩孔隙的影响[J].安全与环境学报, 2021,21(01):101-108. [15]贾男.基于低温氮吸附法的酸化煤样孔隙分形特征研究[J].煤矿安全, 2021,52(01):53-57. [16]张阓妮,邓军,杨华,等.不同变质程度煤微观结构特征的试验研究[J].安全与环境学报, 2014,14(04):67-71. [17]冯酉森.煤微观孔隙结构与自燃特性的相关性研究[D].太原理工大学,2015. [18]王福生,张志明,武建国,等.煤体结构对自燃倾向性影响研究[J].煤炭科学技术, 2020,48(05):83-88. [19]翟小伟,蒋上荣,王博.水分对煤孔隙结构及自燃特性的影响研究现状[J].煤矿安全, 2020,51(02):38-42. [20]王彩萍.煤低温氧化过程中活性基团的变化规律研究[D].西安科技大学,2010. [21]余明高,贾海林,徐俊.乌达烟煤的微观结构与自燃的关联性分析[J].辽宁工程技术大学学报, 2006,(06):819-822. [22]王德明,辛海会,戚绪尧,等.煤自燃中的各种基元反应及相互关系:煤氧化动力学理论及应用[J].煤炭学报, 2014,39(08):1667-1674. [23]王德明.煤氧化动力学理论及应用[M].北京:科学出版社,2012. [24]戚绪尧.煤中活性基团的氧化及自反应过程[D].中国矿业大学,2011. [26]张嬿妮,刘春辉,舒盼,等.弱粘煤低温氧化活性基团与热效应的研究[J].中国安全生产科学技术, 2021,17(11):98-104. [28]乔玲,邓存宝,张勋,等.浸水对煤氧化活化能和热效应的影响[J].煤炭学报, 2018,43(09):2518-2524. [30]赵彤宇,王刚,于贵生,等.煤自燃危险性测试技术条件热力学参数的实验分析[J].煤矿安全, 2010,41(07):16-18+22. [31]陈良舟,白成武,戚绪尧,等.基于微量热技术的白皎无烟煤氧化放热特性研究[J].煤炭技术, 2018,37(07):305-307. [35]娄和壮,贾廷贵.TG-DSC联用研究瓦斯气氛对煤自燃热特性的影响[J].中国安全科学学报, 2019,29(11):77-82. [36]仲晓星,候飞,曹威虎,等.基于等转化率法的煤氧化自热动力学参数测试方法[J].煤炭学报, 2021,46(06):1727-1737. [37]朱红青,郭艾东,屈丽娜.煤热动力学参数、特征温度与挥发分关系的试验研究[J].中国安全科学学报, 2012,22(03):55-60. [38]邓军,刘乐,王彩萍,等.贫煤氧化燃烧热效应及热动力学参数研究[J].煤矿安全, 2021,52(12):35-41. [39]王晓东.基于热动力学分析煤自燃特性研究[D].天津理工大学,2020. [40]张铎,唐瑞,王振,等.基于热重分析的红庆河煤自燃热动力学研究[J].西安科技大学学报, 2020,40(06):974-980. [41]李绪萍,贺李炜,张金山,等.Starink法在煤氧化自燃过程中的应用[J].煤炭技术, 2020,39(04):129-132. [42]王雪峰,孙艳秋,李丽,等.双外推法对煤氧化燃烧的动力学特性研究[J].中国安全生产科学技术, 2014,10(09):72-76. [47]董绍朴,刘剑,李艳昌,等.基于主成分分析法的东荣一矿煤层自然发火指标气体实验研究[J].矿业安全与环保, 2019,46(02):1-5. [48]谭波,邵壮壮,郭岩,等.基于指标气体关联分析的煤自燃分级预警研究[J].中国安全科学学报, 2021,31(02):33-39. [49]安靖宇,张健,季德阁,等.基于分段拟合的煤自燃指标气体优选研究[J].中国安全生产科学技术, 2021,17(10):25-31. [50]易欣,葛龙,张少航,等.基于指标气体法对水浸煤的氧化特性研究[J].煤炭科学技术:1-7[2022-03-05].DOI:10.13199/j.cnki.cst.2021-0866. [51]沈云鸽,王德明,朱云飞.不同自燃倾向性煤的指标气体产生规律实验研究[J].中国安全生产科学技术, 2018,14(04):69-74. [52]王海涛,刘永立,沈斌,等.长焰煤自燃指标气体特征分析[J].煤炭技术, 2021,40(11):167-170. [53]王鑫阳, Luo Yi, 张勋,等.基于绝热氧化试验结果的煤自燃预测模型研究[J].中国安全科学学报, 2017,27(06):67-72. [54]王海燕,李凯,高鹏.氧浓度对煤绝热氧化过程特征的影响[J].中国安全科学学报, 2013,23(06):58-62. [55]张帆.煤自然发火实验及数值模拟研究[D].西安科技大学,2019. [57]费金彪.煤自燃阶段判定理论与分级预警方法研究[D].西安科技大学,2019. [58]陈雷.采动卸荷煤体氧化自燃特性实验研究[D].河南理工大学,2018. [62]潘荣锟,陈雷,余明高,等.不同初始应力下卸荷煤体氧化特性[J].煤炭学报, 2017,42(09):2369-2375. [63]潘荣锟,付栋,陈雷,等.不同漏风条件下卸荷煤体氧化特性研究[J].煤炭科学技术, 2018,46(01):133-138. [65]邓军,王凯,翟小伟,等.高地温环境对煤自燃特性影响的试验研究[J].煤矿安全, 2014,45(03):13-15. [66]马砺,雷昌奎,王凯,等.高地温环境对煤自燃危险性影响试验研究[J].煤炭科学技术, 2016,44(01):144-148+156. [67]马砺,任立峰,王乃国,等.深井高地温工作面煤自燃特点及预控方法研究[J].煤炭科学技术, 2016,44(10):39-43. [68]王依磊,王坚志,邹宗望,等.高地温矿井煤自燃特性及极限参数研究[J].煤炭技术, 2020,39(10):90-93. [70]郭兴明,徐精彩,邓军,等.地温在煤自燃过程中的作用分析[J].煤炭学报, 2001,(02):160-163. [71]邓军,王凯,翟小伟,等.复杂条件下孤岛综放面自燃防治技术研究[J].煤炭工程, 2015,47(09):62-64+67. [72]潘荣锟,马刚,余明高,等.复杂漏风条件下煤体反复氧化与温升特性实验研究[J].河南理工大学学报(自然科学版), 2017,36(03):34-39. [73]秦波涛,仲晓星,王德明,等.煤自燃过程特性及防治技术研究进展[J].煤炭科学技术, 2021,49(01):66-99. [77]贾腾飞,王猛,高星月,等.低阶煤储层孔隙结构特征及分形模型评价[J].天然气地球科学, 2021,32(03):423-436. [79]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社,2008. [81]王凯. 陕北侏罗纪煤氧化自燃特性实验研究[D].西安:西安科技大学, 2013. [82]陈姿霖.不同条件下黄铁矿氧化自燃机理实验研究[D].武汉理工大学,2016. [83]陆 伟 , 胡 千 庭 , 仲晓星 , 等 . 煤 自 燃 逐 步 自 活 化 反 应 理 论 [J]. 中 国 矿 业 大 学 学 报,2007(01):111-115. [84]贺李炜. 基于着火活化能的煤自燃倾向性研究[D].内蒙古科技大学,2019. [85]朱令起,邓毅,王福生.不同变质程度煤自燃指标气体优选[J].煤炭技术, 2019,38(09):71-73. [87]赵兴国,戴广龙.氧化煤自燃特性实验研究[J].中国安全生产科学技术, 2020, 16(06):56-60. [88]商立群,王守鹏.改进主成分分析法在火电机组综合评价中的应用[J].电网技术, 2014, 38(07):1929-1933. [90]任万兴,郭庆,石晶泰,等.基于标志气体统计学特征的煤自燃预警指标构建[J].煤炭学报, 2021,46(06):1747-1758. [91]郭军,金彦,文虎,等.矿井煤层自燃程度精细划分与预警方法研究[J].煤炭科学技术,2021,49(10):115-121. [92]李林,陈军朝,姜德义,等.灰分对煤自燃特性影响的实验研究[J].重庆大学学报, 2017,40(04):85-92. |
中图分类号: | TD752.2 |
开放日期: | 2022-06-22 |