- 无标题文档
查看论文信息

论文中文题名:

 基于本安性能试验的脉冲发生与测控装置研究    

姓名:

 黄鲲    

学号:

 18206204059    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 本质安全与测控装置    

第一导师姓名:

 刘树林    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-24    

论文答辩日期:

 2021-06-01    

论文外文题名:

 Research on Pulse Generation and Pulse Detection Control Device Based on Intrinsic Safety Performance Test    

论文中文关键词:

 脉冲宽度 ; 本质安全 ; 正激变换器 ; 检测与控制 ; DSP控制器    

论文外文关键词:

 Pulse Width ; Intrinsically Safe ; Forward Converter ; Detection and Control ; DSP Controller    

论文中文摘要:

短路引燃爆炸性混合物的主要因素有短路火花功率、火花能量和火花脉冲宽度等,但现有本安性能评价方法未充分考虑短路火花脉冲宽度且安全火花试验装置无法对其进行检测。针对上述问题,设计并研制一款应用于本安性能试验的脉冲发生与测控装置,对研究短路放电过程和电源本安性能评价方法具有重要意义和工程应用价值。

通过分析本质安全电路短路放电过程和引燃理论,基于本安性能评价方法的发展现状,指出短路火花脉冲宽度与引燃能力密切相关,可将其引入到本安性能评价方法中。通过分析本安性能试验的应用场合及实际需求,确定了脉冲发生与测控装置的功能及性能指标要求,提出了两级结构的设计方案,前级为DC-DC电路,后级为脉冲产生与测控电路,为装置的硬件电路及软件设计奠定基础。在前级电路中,基于UC3842设计了采用电流型反馈控制方式的正激变换器,通过外置DA芯片提供可变基准电压实现前级输出5~50V宽范围连续可调,以满足本安电路不同电压等级要求及为后级电路提供所需电压。在后级电路中,设计了脉冲产生与测控电路,既可产生短路试验所需脉冲,也可对短路火花脉冲宽度进行检测与控制,为研究短路放电引燃机理及本安性能评价方法提供支撑。设计了以DSP控制器为核心的智能控制系统,可实现对脉冲信号的调整和驱动,也保证了检测结果的准确性。为便捷地对装置进行操作,设计了基于智能串口屏的人机交互模块,实现了各短路试验参数的输入与输出。针对软硬件造成的检测误差,提出了一种误差补偿方法,提高了检测结果的准确性。

研制了基于本安性能试验的脉冲发生与测控装置,对其进行实验测试,结果表明:装置前级电路的负载调整率和纹波电压等特性均符合设计要求;后级电路可实现脉冲产生及火花脉宽的检测与控制。实验结果验证了所提出方案的可行性及设计方法的正确性。

论文外文摘要:

The factors for short-circuit ignition of explosive mixtures include short-circuit spark power, spark energy and spark pulse width, etc. However, the existing intrinsic safety performance evaluation method does not fully consider the short-circuit spark pulse width and the safety spark test device cannot detect it. For the issue above, this paper designs and develops a pulse generation and pulse detection control device for intrinsic safety performance test, which has important significance and application value for the study of short-circuit discharge process and the evaluation method of power supply intrinsic safety performance.

Based on the analysis of the short-circuit discharge process and ignition theory of intrinsically safe circuits, understand the development status of intrinsic safety performance evaluation methods, it is pointed out that the short-circuit spark pulse width is closely related to the ignition ability, which can be introduced into the intrinsic safety performance evaluation method. By analyzing the application occasions and actual requirements of intrinsic safety performance test, the function and performance index requirements of the pulse generation and measurement and control device are determined, and a two-level structure design scheme is proposed to lay the foundation for the hardware circuit and software design of the device, the front stage is a DC-DC circuit, and the latter stage is a pulse generation and measurement control circuit. In the front-end circuit, a forward converter with current feedback control mode is designed based on UC3842. It provides a variable reference through an external DA chip. The voltage is continuously adjustable in a wide range of 5~50V for the front-end output to meet the requirements of different voltage levels of the intrinsically safe circuit and provide the required voltage for the back-end circuit. In the subsequent circuit, the pulse generation and measurement and control circuit are designed, which can not only generate the pulses required for the short-circuit test, but also detect and control the short-circuit spark pulse width, in order to study the ignition mechanism and the ignition mechanism of the short-circuit discharge. Intrinsically safe performance evaluation methods provide support. An intelligent control system with DSP controller as the core is designed, which can realize the adjustment and drive of the pulse signal, also ensure the accuracy of the detection result. In order to operate the device conveniently, the control of the short-circuit parameters is realized through the intelligent serial port screen , which realizes the input and output of various short-circuit test parameters. Aiming at the detection error problem caused by software and hardware, an error compensation method is proposed to improve the accuracy of the detection result.

A pulse generation and pulse detection control device based on intrinsic safety performance test was developed and tested. The results show that the load regulation rate and ripple voltage of the front-end circuit of the device meet the design requirements; The back-end circuit can achieve pulse generation and detection control of spark pulse width. The experimental results verify the feasibility of the proposed scheme and the correctness of the design method.

参考文献:

[1] Reynolds S E, ANtic B M. FMECA for intrinsically safe devices[C]// 2016 Annual Reliability and Maintainability Symposium (RAMS). 2016.

[2] 张冰. NEC和IEC爆炸性气体危险区域划分比较及钢管布线简介[J]. 中国石油和化工标准与质量, 2017, 37(11): 141-146.

[3] 标准起草小组. GB3836. 4-2000 爆炸性环境用电气设备第4部分:本质安全型[M]. 北京: 国家标准总局出版社, 2000.

[4] 刘军停. 输出本质安全型EC电路放电特性及非爆炸本安评价研究[D]. 徐州: 中国矿业大学, 2018.

[5] 孟庆海, 牟龙华, 王崇林, 丁勇军. 本质安全电路的功率判别式[J]. 中国矿业大学学报, 2004, 33(3): 292-294.

[6] 钟久明, 刘树林, 王玉婷, 等. 短间隙的击穿及其短路放电特性研究[J].电工电能新技术, 2016, 35(4):30-34.

[7] Wang Z, Yang F, Qin D, et al. High frequency pulse power generator for Micro-EDM[J]. Procedia CIRP, 2020, 95: 621-626.

[8] 韩静, 高迎慧, 孙鹞鸿, 等. 级联型高压重频微秒脉冲电源的研制[J]. 高电压技术, 2019, 45(11): 3762-3768.

[9] 蔡政平, 李伟松. 太赫兹器件测试用高重复频率高压脉冲电源[J]. 强激光与粒子束, 2018, 30(2): 56-61.

[10] Brenning N, Butler A, Hajihoseini H, et al. Optimization of HiPIMS discharges: The selection of pulse power, pulse length, gas pressure, and magnetic field strength[J]. Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 2020, 38(3):079.

[11] 吕威, 杨茜. 多电源系统的本质安全性能评价[J]. 电气防爆, 2018, 213(3): 14-16.

[12] Fischer S, Markus D, Maas U. Numerical investigation of the ignition of diethyl ether/air and propane/air mixtures by hot jets[J]. Journal of Loss Prevention in the Process Industries, 2017, 49(3): 832-838.

[13] Kravchenko V S, Erygin A T, YakovlevV A. Critical duration of an electrical discharge for ignition of methane-Air and hydrogen-Air mixtures[J]. Combustion Explosion & Shock Waves, 1973, 9(4): 523-524.

[14] Zuo G. Design and Test Method of Mining Flameproof and Intrinsically Safe Power Supply Circuit for Level of Protection "ia"[J]. Science&Technology Information, 2015, (17): 039.

[15] Shi B. Mine Explosion-proof and Intrinsically Safe Electrical Control Box in the Design[J]. Development& Innovation of Machinery&Electrical Products, 2016.

[16] 李东. 矿灯本质安全型输出电源的研制[J]. 煤矿机电, 2019, 40(3): 93-95.

[17] 任高建, 鲁远祥, 游青山, 等. 多重保护本安电源测试装置[J]. 工矿自动化, 2018, 44(1): 44-49.

[18] 刘树林, 刘健, 寇蕾. 开关变换器的本质安全特性分析与设计[J]. 电工技术学报, 2006, 21(5): 36-41.

[19] 刘建华. 爆炸性气体环境下本质安全电路放电理论及非爆炸评价方法的研究[D]. 徐州: 中国矿业大学, 2008.

[20] 李艳, 刘树林. 改进型本安Buck变换器的分析与设计[J]. 西安科技大学学报, 2019, 39(2): 182-187.

[21] 佟为明, 王进己, 金显吉. Buck变换器内部本质安全性能评价判别式研究[J]. 强激光与粒子束, 2019, 31(4): 24-28.

[22] Chaudhari P, Mashuga C V. Partial inerting of dust clouds using a modified standard minimum ignition energy device[J]. Journal of Loss Prevention in the Process Industries, 2017, 48(4): 145-150.

[23] Liu S L, Ma Y B, Zhang Y W. Optimal design of inductance and capacitance of output intrinsically safe Buck DC-DC converters[J]. IEEE, 2010:408-411.

[24] 孟庆海. 本质安全电路电弧放电数学模型及非爆炸方法评价电路本质安全性能[D]. 徐州: 中国矿业大学, 1999.

[25] 孟庆海. 爆炸性环境本质安全电路功率判别及非爆炸评价[M]. 徐州: 中国矿业大学出版社, 2008.

[26] Wei R, Li C, Zhou R, et al. Experimental study on the effects of the ignition parameters on the spark characteristics and the flame propagation of premixed methane-air mixtures[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering, 2016, 455(3): 201-206.

[27] Rui-jin. Design of intrinsically safe power supply[J]. Journal of international coal science and Technology, 2012, 18(4):443-448.

[28] Han J, Yamashita H, Yamamoto K. Numerical Study on Spark Ignition Characteristics of a Methane-Air Mixture Using Detailed Chemical Kinetics[J]. International Journal of Hydrogen Energy, 2011, 36(15): 9286-9297.

[29] Hintikka J. Numerical study on the spark ignition characteristics of a methane-air mixture using detailed chemical kinetics[J]. Combustion & Flame, 2010, 157(7): 1414-1421.

[30] Zhen X, Wang Y. Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics[J]. Energy, 2013, 59(15): 549-558.

[31] Widginton D W. Electrical Ignition of Gases: Use of Controlled Discharges For Investigating Minimum Ignition Energies[J]. Nature, 1963, 198(4884):959-960.

[32] 王进己. 电感性本质安全电路电弧放电时间分析及评价方法研究[D]. 北京: 北方工业大学, 2018.

[33] 王振龙, 吴冬妮. 复杂本质安全电路容性放电引燃特性研究[J]. 煤矿安全, 2019, 50(4): 118-121.

[34] 王玉婷, 刘树林, 马一博, 等. 简单电容电路最小点燃电压曲线的数值化研究[J]. 电工技术学报, 2014, 29(S1): 345-350.

[35] 刘树林, 汪子为, 钟明航, 等. 基于Matlab的Boost变换器输出本安性能评价系统[J]. 煤炭学报, 2017, 42(S1): 282-287.

[36] 伍友成, 刘高旻, 戴文峰, 等. 轻小型高电压大电流脉冲电源研制[J]. 高电压技术, 2018, 44(9): 3016-3021.

[37] 徐春柳, 魏学业. Boost-Marx型高压脉冲电源设计[J]. 电力电子技术, 2020, 54(4): 1-3.

[38] Reznikov S B, SI Vol’Skii, Vyshkov Y D, et al. Power Semiconductor Switches for Pulse Power Transformers with a Modular and Scalable Architecture[J]. Russian Electrical Engineering, 2019, 90(2):100-106.

[39] Liu L, Qiu M, Shao C, et al. Research on wire-cut electrical discharge machining constant discharge probability pulse power source for silicon crystals[J]. The International Journal of Advanced Manufacturing Technology, 2019, 100.

[40] 王琪, 罗印升, 韩晓新. 基于带宽控制的有源式混合型脉冲电源设计[J]. 仪器仪表学报, 2019, 40(2): 242-248.

[41] Zeng C, Deng L, Li Z, et al. Experimental comparison of SiC GTO and ETO for pulse power applications[J]. Journal of Semiconductors, 2018, 39(12):159-165.

[42] Agamy M, Tao F, Elasser A. High Speed Medium Voltage SiC Thyristors For Pulse Power Applications[J]. IEEE Transactions on Industry Applications, 2021, PP(99):1-1.

[43] 班瑞, 于歆杰, 刘旭堃, 等. 基于meat grinder with SECT电路的50 kJ电感储能型脉冲电源的研究[J]. 电工电能新技术, 2017, 36(12): 53-58.

[44] 宋礼伟. 高压大功率脉冲电源关键技术研究[D]. 武汉: 华中科技大学, 2019.

[45] 刘洋. 高压脉冲电源能源模块系统的可靠性分析[D]. 成都: 电子科技大学, 2019.

[46] Chi X, Wang H, Xi Z, et al. Application of Disc Insulators for Electric Power Equipment in Pulse Power Technology[C]// 2020 IEEE International Conference on High Voltage Engineering and Application, 2020.

[47] Qin D, Yang F, Li L, et al. A Discharge Pulse Discrimination strategy for High Speed WEDM with Power-Electronic-based Pulse Power Generator[J]. Procedia CIRP, 2020, 95(2): 366-370.

[48] Krishnan G, Das S, Iit-B V A. A Simple Adaptive Fractional Order Model of Supercapacitor for Pulse Power Applications[C]// IEEE Conference, 2019.

[49] 彭享, 叶兵, 朱旗, 等. 一种高压脉冲电源设计[J]. 合肥工业大学学报(自然科学版), 2017, 40(11): 1511-1514.

[50] 杨丹, 康强, 金晖, 等. 高功率脉冲电源的强电磁脉冲干扰防护技术研究[J]. 科技与创新, 2020, 165(21): 36-37.

[51] 章良海. 安全火花原理及应用[M]. 北京: 煤炭工业出版社, 1984.

[52] D A Tropin, A L V Fedorov. Ignition delay times in the methane-air mixture in presence of iron particles, 2014[C]. 2014.

[53] 施玉祥. 高效率DC/DC变换器的研究[D]. 杭州: 浙江大学, 2010.

中图分类号:

 TM46    

开放日期:

 2024-04-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式