论文中文题名: | 三轴应力下岩石试样水力压裂响应特征及其破坏规律研究 |
姓名: | |
学号: | 21203226065 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085700 |
学科名称: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 动力灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2024-06-21 |
论文答辩日期: | 2024-06-07 |
论文外文题名: | Study on hydraulic fracturing response characteristics and failure law of rock samples under triaxial stress |
论文中文关键词: | |
论文外文关键词: | hydraulic fracturing ; hard roof ; acoustic emission localization ; numerical simulation ; fracture evolution |
论文中文摘要: |
水力压裂作为一种坚硬顶板改造措施,可以通过向坚硬顶板岩层注入高压水或压裂液在坚硬顶板岩层中形成裂缝,破坏岩层的完整性,降低岩石的强度和承载能力。本文针对水力压裂裂缝扩展和压裂裂缝监测方法的研究问题,以水力压裂裂缝为研究对象,采用理论分析、实验室实验和数值模拟相结合的方法,通过发射参数演化规律分析,采用声发射定位法,反演水力压裂裂缝的空间分布,研究水力压裂过程中类岩石压裂裂纹扩展的特征,通过工程实践降低坚硬顶板动力灾害的风险。 由类岩石单轴加载破坏特征和声发射空间分布特征,测试类岩试样物理力学参数,得出破坏失稳前兆的声发射特征;对水力压裂裂缝的起裂条件、扩展过程、力学模型以及影响因素进行了研究;分析了压裂试样水压曲线的脉动特性,以及压裂引起的声发射累积数与振幅响应特性,推测出水力压裂裂纹扩展具有阶段性特征,声发射定位过程及结果也反映出宏观表面裂纹形成之前内部微观断裂的演变机理;采用二维数值模拟模拟了应力对起裂压力、裂缝位移的影响,三维数值模拟模拟了应力对水力压裂裂缝扩展特征、裂缝面积的影响,验证了钻孔压裂的开裂方向为垂直于最小主应力方向,平行于最大主应力方向,得出了裂缝破裂的注水压力值,分析出随着主应力差值增大,模型的破裂压力、位移(水力裂缝开度)和裂缝面积都随之减小的规律。 根据模拟结果分析结果,对综放工作面坚硬顶板进行弱化、卸压综合防治,通过孔内注水压力、钻孔窥视和地音等评价指标对水力压裂卸压效果进行综合评估,验证了水力压裂能够改变岩石的内部结构并达到卸压效果。本研究为水力压裂响应特征及其破坏规律研究提供参考。 |
论文外文摘要: |
As a hard roof reconstruction measure, hydraulic fracturing can form cracks in the hard roof strata by injecting high-pressure water or fracturing fluid into the hard roof strata, destroy the integrity of the rock strata, and reduce the strength and bearing capacity of the rock.Aiming at the research problems of hydraulic fracture propagation and monitoring methods of hydraulic fracture, this paper takes hydraulic fracture as the research object, adopts the method of combining theoretical analysis, laboratory experiment and numerical simulation, analyzes the evolution law of emission parameters, and adopts acoustic emission positioning method to invert the spatial distribution of hydraulic fracture. The characteristics of rock-like fracture crack growth during hydraulic fracturing are studied to reduce the risk of dynamic disaster of hard roof through engineering practice. Based on the spatial distribution characteristics of rock failure under uniaxial loading and acoustic emission, the physical and mechanical parameters of rock samples are tested, and the acoustic emission characteristics of failure and instability precursors are obtained. The initiation conditions, propagation process, mechanical model and influencing factors of hydraulic fracture are studied. The pulsation characteristics of the hydraulic pressure curve and the acoustic emission cumulative number and amplitude response characteristics caused by fracturing are analyzed. It is inferred that the crack propagation of hydraulic fracturing has phased characteristics, and the AE positioning process and results also reflect the evolution mechanism of internal micro-fractures before the formation of macroscopic surface cracks. Two-dimensional numerical simulation was used to simulate the influence of stress on crack initiation pressure and fracture displacement, and three-dimensional numerical simulation was used to simulate the influence of stress on fracture propagation characteristics and fracture area of hydraulic fracturing. It was verified that the cracking direction of drilling and fracturing was perpendicular to the direction of minimum principal stress and parallel to the direction of maximum principal stress, and the waterflood pressure value of fracture was obtained. The fracture pressure, displacement (hydraulic fracture opening) and fracture area are all reduced in the model. According to the analysis results of the simulation results, the comprehensive prevention and control of the hard roof of the fully mechanized caving face is carried out, and the pressure relief effect of hydraulic fracturing is comprehensively evaluated through the evaluation indexes of the injection pressure in the hole, the borehole peeping pressure and the ground sound, which verifies that hydraulic fracturing can change the internal structure of the rock and achieve the pressure relief effect. This study provides reference for the study of hydraulic fracturing response characteristics and failure rules. |
参考文献: |
[1]李铁,蔡美峰,王金安,等.深部开采冲击地压与瓦斯的相关性探讨[J].煤炭学报,2005,30(5):562-567. [2]崔峰,贾冲,来兴平,等.近距离强冲击倾向性煤层上行开采覆岩结构演化特征及其稳定性研究[J].岩石力学与工程学报,2020,39(3):507-521. [3]张建民,李全生,张勇,等.煤炭深部开采界定及采动响应分析[J].煤炭学报,2019,44(5):1314-1325. [4]康红普,张晓,王东攀,等.无煤柱开采围岩控制技术及应用[J].煤炭学报,2022,47(01):16-44. [5]靳钟铭等.煤矿坚硬顶板控制[M].煤炭工业出版社,1994. [6]谭云亮,张明,徐强,等.坚硬顶板型冲击地压发生机理及监测预警研究[J].煤炭科学技术,2019,47(1):166-172. [7]齐庆新等.冲击地压理论与技术[M].中国矿业大学出版社,2008. [8]黄炳香,赵兴龙,陈树亮,等.坚硬顶板水压致裂控制理论与成套技术[J].岩石力学与工程学报,2017,36(12):2954-2970. [9]张雷,孙中永.厚硬顶板深孔预裂爆破弱化试验及评价[J].煤炭科技,2015(1):21-22. [10]王鸿勋.水力压裂原理[M].石油工业出版社,1987. [11]康红普,冯彦军.煤矿井下水力压裂技术及在围岩控制中的应用[J].煤炭科学技术,2017,45(1):1-9. [12]冯彦军,康红普.定向水力压裂控制煤矿坚硬难垮顶板试验[J].岩石力学与工程学报,2012,31(6):1148-1155. [13]徐世烺.混凝土断裂力学研究[M].大连理工大学出版社,1991. [16]B.K.阿特金森.[M].岩石断裂力学.第一版.地震出版社,1992. [17]黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发,1981,1(5):62-74. [18]余雄鹰,邢纪国,汪先迎.斜井的破裂压力和裂缝方位[J].江汉石油学院学报,1994,16(1):57-61. [23]康红普等.煤岩体地质力学原位测试及在围岩控制中的应用[M].科学出版社, 2013. [24]王涛,高岳,柳占立,等.基于扩展有限元法的水力压裂大物模实验的数值模拟[J].清华大学学报,2014,54(10):1304-1309. [31]陈勉,庞飞,金衍.大尺寸真三轴水力压裂模拟与分析[J].岩石力学与工程学报,2000(S1):868-872. [32]邓广哲,黄炳香,刘长友.煤岩体水力致裂弱化技术及其进展[J].中国工程科学,2007(4):83-88. [33]邓广哲,王有熙.煤层定向水压致裂机理研究[J].西安科技大学学报,2014,34(6):664-669. [34]邓广哲,郑锐,徐东.大采高综采端头悬顶水力切顶控制机理[J].西安科技大学学报,2019,39(2): 224-233. [35]杨焦生,王一兵,李安启,等.煤岩水力裂缝扩展规律试验研究[J].煤炭学报,2012,37(1):73-77. [37]Emmanuel Detournay.Mechanics of Hydraulic Fractures[J].Annu. Rev. Fluid Mech. 2016. 48:311-39. [40]Hubber M K,Willis D G.Mechanics of hyduaulic fracturing[J].Trans AIME,1957,210:153-168. [42]崔峰,贾冲,来兴平,等.基于加卸载响应比的冲击地压矿井急倾斜巨厚煤层推进速度研究[J].煤炭学报,2022,47(2):745-761. [43]中国煤炭学会.第175次香山科学会议学术研讨会专题报告[C].北京:2001. [44]潘一山.冲击地压发生和破坏过程研究[D].北京:清华大学,1999. [45]王江.渤南5区低渗透油田应力场特征及影响因素研究[D].中国科学院研究生院(广州地球化学研究所),2015:110. [46]邓金根,陈峥嵘,耿亚楠,等.页岩储层地应力预测模型的建立和求解[J].中国石油大学学报(自然科学版),2013,37(6):59-64. [47]邓玉华.基于水力压裂的深部三维地应力测量及增透机理研究[D].重庆大学,2015:80. [48]付泽文.三维地应力状态下钻孔岩石压裂方位及扩展研究[D].燕山大学,2016:64. [49]龚小卫,李玮,乔中山.致密油层压裂过程中裂缝延伸对地应力的影响[J].北京石油化工学院学报, 2017,25(3):24-28. [50]贾文超,张明杰,梁锡明,等.地应力与孔隙压力对定向水力压裂效果影响研究[J].煤炭科学技术, 2018,46(12):151-157. [51]孟召平,田永东,李国富.沁水盆地南部地应力场特征及其研究意义[J].煤炭学报, 2010,35(6):975-981. [52]马耕,张帆,刘晓,等.地应力对破裂压力和水力裂缝影响的试验研究[J].岩土力学,2016,37(S2):216-222. [53]吕俊丰,刘鹏,林庆祥,等.地应力分析解释技术在压裂中的应用[J].大庆石油地质与开发, 2005(2):64-66. [54]张来功.地应力及天然裂缝对致密砂岩水压致裂的影响研究[D].中国地质大学(北京),2016:66. [55]侯鹏,高峰,张志镇,等.基于声发射和能量演化规律评价岩石脆性的方法[J].中国矿业大学学报,2016,45(4):0702-0708. [56]赵玉成,林斌,唐兴宜,等.单轴压缩下煤体声发射特征及损伤演化过程分析[J].山东科技大学学报,2013,32(5):1-7. [57]左建平,裴建良,刘建锋,等.煤岩体破裂过程中声发射行为及时空演化机制[J].岩石力学与工程学报,2011,30(8):1564-1570. [58]刘保县,黄敬林,王泽云,等.单轴压缩煤岩损伤演化及声发射特性研究[J].岩石力学与工程学报, 2009,28(S1):3234-3238. [64]窦林名,冯龙飞,蔡武,等.煤岩灾变破坏过程的声震前兆识别与综合预警模型研究[J]. 采矿与安全工程学报,2020,37(5):960-968+976. [65]Gang Qi,Wavelet-based acoustic emission analysis of composites[D].Texas,Techz,1998. [67]高保彬,李回贵,王晓蕾,等.基于小波包变换的不同强度煤样的声发射特性[J].煤田地质与勘探,2013,41(6):53-57. [68]唐守峰,童敏明,秦海鹏,等.突水过程煤岩破裂声发射试验系统研究[J].采矿与安全工程学报, 2010,27(3):429-437. [69]王云海,何学秋,窦林名.煤样变形破坏声电效应的演化规律及机理研究[J].地球物理学报,2007,(5):1569-1575. [70]李宏艳,康立军,徐子杰,等.不同冲击倾向煤体失稳破坏声发射先兆信息分析[J].煤炭学报,2014,39(2):384-388. [71]黄炳香.煤岩体水力致裂弱化的理论与应用研究[D].徐州:中国矿业大学,2009. [72]朱君,叶鹏,王素玲,等.低渗透储层水力压裂三维裂缝动态扩展数值模拟[J].石油学报,2010,31(01):119-123. [73]徐海铎.不同采深裂隙岩体损伤断裂规律研究[D].辽宁工程技术大学,2023. [74]林海飞,龙航,李树刚,等.煤体瓦斯吸附解吸与压裂渗流全过程真三轴试验系统研发与应用[J].岩石力学与工程学报,2022,41(S2):3294-3305. |
中图分类号: | TD324 |
开放日期: | 2024-06-24 |