- 无标题文档
查看论文信息

论文中文题名:

 半双工中继信道下空间耦合RA码的设计与研究    

姓名:

 李进达    

学号:

 20207223062    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 信息论与编码理论    

第一导师姓名:

 刘洋    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-16    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Design of Spatially Coupled RA Codes for Half-duplex Relay Channel    

论文中文关键词:

 空间耦合LDPC码 ; 空间耦合RA码 ; 密度进化 ; 译码转发 ; 中继信道    

论文外文关键词:

 Spatially coupled LDPC codes ; spatially coupled RA codes ; density evolution ; decode and forward ; relay channel    

论文中文摘要:

对于半双工中继信道,协作通信能够提高链路可靠性,提升资源效率和系统容量。如何设计编码方案在充分利用协作分集增益的基础上,获得额外的编码增益,提升系统性能一直是该领域的研究热点。空间耦合LDPC(Spatially Coupled LDPC, SC-LDPC)码因其在次最优的置信传播(Belief Propagation, BP)译码算法下能够达到最优的最大后验概率(Maximum a Posterior, MAP)译码性能而引起广泛关注。而空间耦合重复累加(Spatially Coupled Repeat Accumulate, SC-RA)码是一类特殊的SC-LDPC码,相较于传统SC-LDPC码,具有编码结构简单,阈值更优,译码复杂度低等优点。针对半双工译码转发中继信道,提出一种可逼近中继信道容量限的SC-RA码的设计方法,主要工作内容如下: (1)针对单源单中继的三节点中继信道,基于半双工译码转发中继策略,提出了一种可逼近三节点中继信道容量限的SC-RA码的设计方法。具体来说,针对二进制删除信道,源节点分别向中继节点和目的节点发送SC-RA码,中继节点先正确恢复出源节点发送的SC-RA然后再次编码产生额外的校验比特并转发给目的节点,目的节点结合中继节点发送的额外校验比特和源节点发送的SC-RA码进行译码,正确恢复出源节点的信息。为了评估所设计的SC-RA码在三节点中继信道下的渐近性能,推导了密度进化算法用于计算阈值。阈值分析结果表明所提出的SC-RA码能够同时逼近源到中继链路和源到目的链路的容量限。同时,基于半双工二进制删除中继信道,仿真了所设计的SC-RA码的误码性能。仿真结果表明,误码性能与所推导的密度进化算法计算的阈值结果一致,呈现出逼近于容量限的优异性能,且优于采用传统SC-LDPC码的性能。 (2)针对双源单中继的多址接入中继信道,根据半双工译码转发模式的可达速率和编码策略,研究基于SC-RA码的中继节点网络编码方案。具体来说,两个源节点分别向中继节点和目的节点发送SC-RA码,中继节点分别对两个源节点消息进行译码,恢复出源节点信息后再进行联合网络编码,将联合网络编码产生的校验比特发送给目的节点,目的节点将接收到两个源节点的信息和中继产生的校验比特合并后进行联合译码。接着,推导阈值分析算法来计算阈值结果与容量限的差值,阈值分析结果表明所提出的SC-RA码能够同时逼近源到中继链路和源到目的链路的容量限。最后,在二进制删除中继信道下仿真了所设计的编码方案在中继节点和目的节点的译码性能。仿真结果表明,误码性能与所推导的密度进化算法计算的阈值结果相吻合,相较于采用传统SC-LDPC码的性能有显著提升。

论文外文摘要:

For half-duplex relay channel, cooperative communication technology can improve the reliability and the resource efficiency and increase the capacity of wireless communication system. How to design the coding scheme to obtain the coding gain combined with the spatial gain in order to further enhance the system performance is always a research focus. Spatially coupled LDPC (SC-LDPC) codes attract wide attention due to their ability to reach maximum a posterior (MAP) decoding performance under the belief propagation (BP) decoding algorithm. As a particular class of SC-LDPC codes, spatially coupled repeat accumulate (SC-RA) codes have the advantages of simple coding structure, better threshold value and low decoding complexity in comparison with SC-LDPC codes. For half-duplex decode-and-forward relay channel, one method to design the capacity-approaching SC-RA codes is proposed in this paper. The main works are as follows:

(1) For a three-node relay channel with one source and one relay, design of capacity-approaching SC-RA codes for half-duplex decode-and-forward relay channel is proposed in this paper. Specifically, for binary erasure channels, the source node sends one SC-RA code to the relay node and the destination node respectively. After receiving the information from the source node, the relay node first correctly recover this information and then encode them to generate additional check bits sent to the destination node. The destination node can correctly recover the information from the source node by combining the additional check bits sent by the relay node with the information sent by the source node. To evaluate the asymptotic performances of the proposed SC-RA codes in the three-node relay channel, a modified density evolution algorithm is derived to compute the decoding thresholds. The threshold analysis results show that the proposed SC-RA codes can approach the capacity of the source-to-relay link and the source-to-destination link simultaneously. Moreover, the decoding performances over the binary erasure half-duplex relay channels are also simulated to demonstrate the threshold analysis results. Simulation results show that the bit-error-rate performances are consistent with the decoding thresholds obtained by the derived density evolution algorithm, which can exhibit the excellent capacity-approaching performances and also are better than spatially coupled LDPC codes.

(2) For multiple access relay channel with two sources and one relay, according to the achievable rate and coding strategy of decode-and-forward mode, a network coding scheme based on SC-RA codes was studied. Specifically, two source nodes send the messages to the relay node and the destination node respectively. The relay node decodes the messages of the two source nodes respectively, and then jointly encode the recovered messages to generate the additional parity bits, which are then sent to the destination node. The destination node can jointly decode the information by combining the additional parity bits sent by the relay node with the information sent by the source node. A modified density evolution algorithm is derived to compute the gap between decoding threshold and Shannon limits. Moreover, the decoding performances over the binary erasure half-duplex relay channels are also simulated to demonstrate the threshold analysis results. Simulation results show that the bit-error-rate performances are consistent with the decoding thresholds obtained by the derived density evolution algorithm, which can exhibit the excellent capacity-approaching performances and also are better than SC-LDPC codes.

参考文献:

[1] You X, Wang C X, Huang J, et al. Towards 6G wireless communication networks: Vision, enabling technologies, and new paradigm shifts[J]. Science China Information Sciences, 2021, 64: 1-74.

[2] Wang Z, Du Y, Wei K, et al. Vision, application scenarios, and key technology trends for 6G mobile communications[J]. Science China Information Sciences, 2022, 65(5): 151301.

[3] De Alwis C, Kalla A, Pham Q V, et al. Survey on 6G frontiers: Trends, applications, requirements, technologies and future research[J]. IEEE Open Journal of the Communications Society, 2021, 2: 836-886.

[4] Letaief K B, Shi Y, Lu J, et al. Edge artificial intelligence for 6G: Vision, enabling technologies, and applications[J]. IEEE Journal on Selected Areas in Communications, 2021, 40(1): 5-36.

[5] Tataria H, Shafi M, Molisch A F, et al. 6G wireless systems: Vision, requirements, challenges, insights, and opportunities[J]. Proceedings of the IEEE, 2021, 109(7): 1166-1199.

[6] Van Der Meulen E C. Three-terminal communication channels[J]. Advances in applied Probability, 1971, 3(1): 120-154.

[7] Kramer G, van Wijngaarden A J. On the white Gaussian multiple-access relay channel[C]// 2000 IEEE International Symposium on Information Theory (ISIT). IEEE, 2000, 40.

[8] R. Ahlswede, N. Cai, S. Li, et al. Network information flow[J]. IEEE Trans. Inf. Theory, 2000, 46(4): 1204-1216.

[9] Alberto Jiménez Feltström, Kamil Sh. Zigangirov. Time-varying periodic convolutional codes with low-density parity-check matrix [J]. IEEE Trans. Information Theory, 1999, 45(6): 2181-2191.

[10] Lentmaier M, Sridharan A, Costello D J, et al. Iterative decoding threshold analysis for LDPC convolutional codes[J]. IEEE Transactions on Information Theory, 2010, 56(10): 5274-5289.

[11] Kudekar S, Richardson T J, Urbanke R L. et al. Threshold Saturation via Spatial Coupling: Why Convolutional LDPC Ensembles Perform So Well over the BEC[J]. IEEE Transactions on Information Theory, 2011, 57(2): 803-834.

[12] Lentmaier M, Sridharan A, Costello D J, et al. Iterative decoding threshold analysis for LDPC convolutional codes[J]. IEEE Transactions on Information Theory, 2010, 56(10): 5274-5289.

[13] Johnson Sarah, Lechner Gottfried. Spatially coupled repeat-accumulate codes[J]. IEEE communications letters, 2013, 17(2): 373-376.

[14] Khan L U, Saad W, Niyato D, et al. Digital-twin-enabled 6G: Vision, architectural trends, and future directions[J]. IEEE Communications Magazine, 2022, 60(1): 74-80.

[15] Uchikawa H, Kasai K, Sakaniwa K, et al. Spatially Coupled Protograph-Based LDPC Codes for Decode-and-Forward in Erasure Relay Channel[J]. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2011, 94(11): 2127-2134.

[16] Si Z, Thobaben R, Skoglund M. Bilayer LDPC convolutional codes for half-duplex relay channels[C]// 2011 IEEE International Symposium on Information Theory Proceedings. IEEE, 2011: 1464-1468.

[17] S Zhongwei, Thobaben R, Skoblund M, et al. Bilayer LDPC Convolutional Codes for Decode-and-Forward Relaying [J]. IEEE Transactions on Communications, 2013,61(8): 3086-3099.

[18] Hern B, Narayanan K. Joint compute and forward for the two way relay channel with spatially coupled LDPC codes[C]// 2012 IEEE Global Communications Conference. IEEE, 2012: 2340-2345.

[19] Noor-A-Rahim M, Nguyen K D, Lechner G. Anytime spatially coupled codes for relay channel[C]// 2014 Australian Communications Theory Workshop. IEEE, 2014: 39-44.

[20] Golmohammadi A, Mitchell D G M. Concatenated spatially coupled LDPC codes with sliding window decoding for joint source-channel coding[J]. IEEE Transactions on Communications, 2021, 70(2): 851-864.

[21] Schwandter S, i Amat A G, Matz G. Spatially coupled LDPC codes for two-user decode-and-forward relaying[C]// 2012 7th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2012: 46-50.

[22] Schwandter S, Alexander G, Matz G, et al. Spatially-Coupled LDPC Codes for Decode-and-Forward Relaying of Two Correlated Sources over the BEC[J]. IEEE transactions on communications, 2014, 62(4): 1324-1337.

[23] Wei L, Costello D J, Fuja T E. Coded cooperation using rate-compatible spatially-coupled codes[C]// 2013 IEEE International Symposium on Information Theory. IEEE, 2013: 1869-1873.

[24] Jayakody D N K, Rosnes E. Spatially-coupled LDPC coding in threshold-based lossy forwarding scheme[C]// 2016 IEEE 84th Vehicular Technology Conference. IEEE, 2016: 1-6.

[25] Jayakody D N K, Skachek V, Chen B. Spatially coupled LDPC coding in cooperative wireless networks[J]. EURASIP Journal on Advances in Signal Processing, 2016, 2016(1): 1-11.

[26] Takabe S, Wadayama T, Hayashi M. Asymptotic behavior of spatial coupling LDPC coding for compute-and-forward two-way relaying[J]. IEEE Transactions on Communications, 2020, 68(7): 4063-4072.

[27] Takabe S, Wadayama T, Hayashi M. Asymptotic analysis on LDPC-BICM scheme for compute-and-forward relaying[C]// 2019 IEEE International Symposium on Information Theory (ISIT). IEEE, 2019: 2923-2927.

[28] Divsalar D, Jin H, McEliece R J. Coding theorems for "turbo-like" codes[C]// Proceedings of the annual Allerton Conference on Communication control and Computing. University Of Illinois, 1998, 36: 201-210.

[29] Jin H, McEliece R J. General coding theorems for turbo-like codes[C]// 2000 IEEE International Symposium on Information Theory. IEEE, 2000: 120-130.

[30] Iryna Andriyanova. Finite-length scaling of turbo-like code ensembles on the binary erasure channel[J]. IEEE Journal on Selected Areas in Communications, 2009, 27(6): 918-927.

[31] 李宗徽. 空间耦合RA码有限长性能分析[D]. 西安: 西安电子科技大学, 2015.

[32] Liu Y, Liu X, Cheng S, et al. Design of Parallelly Concatenated Spatially Coupled RA Codes[C]// 2020 IEEE 3rd International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2020: 771-775.

[33] Koganei Y, Oyama T, Sugitani K, et al. Multilevel coding with spatially coupled repeat-accumulate codes for high-order QAM optical transmission[J]. Journal of Lightwave Technology, 2019, 37(2): 486-492.

[34] Noor-A-Rahim M, Anjum M N, Liang G Y. Spatially coupled repeat-accumulate codes over half-duplex relay channel[C]// 2016 IEEE International Conference on Communication Systems. IEEE, 2016: 1-6.

[35] Zhang Y, Hou W, Li Y, et al. Robust rateless spatially coupled repeat-accumulate-repeat multi-user codes on IDMA systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(11): 11523-11537.

[36] Takeishi N. Ishibashi K. Spatially coupled repeat-accumulate coded cooperation[C]// Wireless Communications and Networking Conference. IEEE, 2015:516-521.

[37] Takai M, Ishibashi K. Spatially Coupled Repeat-Accumulate Signal Codes[C]// 2019 IEEE Radio and Wireless Symposium . IEEE, 2019: 1-3.

[38] Tanaka R, Ishibashi K. Robust coded cooperation based on multi-dimensional spatially-coupled repeat-accumulate codes[C]// 2017 IEEE Wireless Communications and Networking Conference. IEEE, 2017: 1-6.

[39] Yeung R W, Zhang Z. Distributed source coding for satellite communications[J]. IEEE Transactions on Information Theory, 1999, 45(4): 1111-1120.

[40] Effros M, Médard M, Ho T, et al. Linear network codes: A unified framework for source, channel, and network coding[J]. 2003. 197-216.

[41] Hausl C, Dupraz P. Joint network-channel coding for the multiple-access relay channel [C]// 2006 3rd annual ieee communications society on sensor and ad hoc communications and networks. IEEE, 2006, 3: 817-822.

[42] Xue F, Sandhu S. PHY-layer network coding for broadcast channel with side information [C]// 2007 IEEE Information Theory Workshop. IEEE, 2007: 108-113.

[43] Davey M C, MacKay D J C. Low density parity check codes over GF (q)[C]// 1998 Information Theory Workshop. IEEE, 1998: 70-71.

[44] Jin H, Khandekar A, McEliece R. Irregular repeat-accumulate codes[C]//Proc. 2nd Inernational Symposium. Turbo codes and related topics. 2000: 1-8.

[45] Luby M G, Mitzenmacher M, Shokrollahi M A, et al. Improved low-density parity-check codes using irregular graphs[J]. IEEE Transactions on information Theory, 2001, 47(2): 585-598.

[46] Tanner R M. A recursive approach to low complexity codes[J]. IEEE Transactions onInformation Theory, 1981, 27(9): 533-547.

[47] 刘欣, 刘洋, 王斌, 等. 空间耦合低密度奇偶校验码的深度迭代译码算法设计[J]. 科学技术与工程, 2022, 22(12): 4849-4853.

[48] 周华, 葛旗伟, 张锐等. 消息复用下的空间耦合LDPC码窗译码优化算法[J].电讯技术, 2022, 62(09): 1265-1271.

[49] Yacoub E B, Matuz B, i Amat A G, et al. Quaternary Message Passing Decoding of LDPC Codes: Density Evolution Analysis and Error Floor[C]//2021 11th International Symposium on Topics in Coding (ISTC). IEEE, 2021: 1-5.

[50] Jesy P, Deepthi P P. Joint source channel network coding using QC-LDPC codes[C]// 2014 International Conference on Communication and Signal Processing. IEEE, 2014: 81-85.

中图分类号:

 TN911.22    

开放日期:

 2023-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式