论文中文题名: | 基于数据挖掘的中国低碳城市发展水平评价研究 |
姓名: | |
学号: | 20202097029 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 120100 |
学科名称: | 管理学 - 管理科学与工程(可授管理学、工学学位) - 管理科学与工程 |
学生类型: | 硕士 |
学位级别: | 管理学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿业系统决策理论与方法 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-15 |
论文答辩日期: | 2023-06-08 |
论文外文题名: | Evaluation of the development level of low-carbon cities in China based on data mining |
论文中文关键词: | |
论文外文关键词: | Low carbon city ; LDA model ; Data mining ; Projection pursuit method ; Obstacle analysis |
论文中文摘要: |
党的二十大报告指出“绿色发展”是实现人与自然和谐共生的根本路径,推动经济社会发展绿色化、低碳化也是实现高质量发展的关键环节。而在我国,城市作为碳减排的主要领域,城市的低碳发展与整个社会发展密不可分。因此,在“双碳”背景下,构建新的低碳城市评价指标体系,对低碳城市发展水平进行评价,不仅有助于深入剖析我国不同城市低碳发展特点,而且有助于探索出低碳城市未来发展路径,提出新的策略。本文在对低碳城市相关概念、内涵及低碳发展相关理论研究基础上,应用数据挖掘方法,对全国有代表性的低碳城市发展水平进行测度和综合分析,具有一定的研究意义。 本文具体工作及成果如下: (1)基于数据挖掘构建低碳城市评价指标体系。本文基于数据挖掘,爬取低碳城市相关政策文件及其他信息,运用LDA主题模型深入挖掘文本结构,找到影响低碳城市发展水平的6大重点领域,根据数据挖掘出的6大领域,构建了以经济结构、能源结构、交通运输结构、生产方式、生活方式以及环境为一级指标和17个二级指标的城市低碳发展水平指标体系。 (2)使用投影寻踪评价算法对中国低碳城市发展水平进行评价。基于构建的指标体系,本文使用投影寻踪法对我国31个城市低碳发展水平进行评价,发现中国低碳城市发展水平可以分为四个梯队,低碳城市发展水平区域之间差异较大,东部、中部、西部低碳城市发展水平呈“阶梯式”降低,经济发达城市与欠发达城市间发展不平衡不充分矛盾尤为严重。 (3)通过层次聚类法对城市低碳发展水平进行分类。使用层次聚类分析城市指标数据特点,并据此将31个城市低碳发展类型分为了经济主导型城市、生产主导型城市、环境主导型城市和居民生活主导型城市四类城市。 (4)使用障碍度模型识别不同城市类型的限制因素。本文还通过障碍度模型计算指标的障碍度,深入地找出影响中国低碳城市发展的主要障碍因素。经济主导类城市准则层障碍度最高的是生产方式;生产主导类城市、环境主导类城市和居民生活主导类城市准则层障碍度最高的均为经济结构。并且针对分析出的问题提出相应的低碳发展对策措施。 |
论文外文摘要: |
The report of the 20th National Congress of the Communist Party of China pointed out that "green development" is the fundamental path to achieve harmonious coexistence between man and nature, and promoting green and low-carbon economic and social development is also a key link to achieve high-quality development. In China, cities are the main areas of carbon emission reduction, and the low-carbon development of cities is inseparable from the development of the entire society. Therefore, under the background of "dual carbon", the construction of a new low-carbon city evaluation index system and the evaluation of the development level of low-carbon cities will not only help to deeply analyze the characteristics of low-carbon development in different cities in China, but also help to explore the future development path of low-carbon cities and propose new strategies. Based on the research on the relevant concepts, connotations and theories related to low-carbon development, this paper applies data mining methods to measure and comprehensively analyze the development level of representative low-carbon cities in China, which has certain research significance. The specific work and results of this paper are as follows: (1) Build a low-carbon city evaluation index system based on data mining. Based on data mining, this paper crawls relevant policy documents and other information of low-carbon cities, uses the LDA theme model to dig deep into the text structure, finds six key areas affecting the development level of low-carbon cities, and constructs an urban low-carbon development level index system with economic structure, energy structure, transportation structure, production mode, lifestyle and environment as the first-level indicators and 17 second-level indicators according to the six major areas mined by the data. (2) The projection tracing evaluation algorithm was used to evaluate the development level of low-carbon cities in China. Based on the constructed index system, this paper uses the projection tracing method to evaluate the low-carbon development level of 31 cities in China, and finds that the development level of low-carbon cities in China can be divided into four echelons, the development level of low-carbon cities varies greatly between regions, the development level of low-carbon cities in the east, central and western regions is "stepped" down, and the imbalance and insufficient development between economically developed cities and underdeveloped cities are particularly serious. (3) Classify the low-carbon development level of cities through hierarchical clustering. Hierarchical clustering was used to analyze the characteristics of urban index data, and according to this, the 31 urban low-carbon development types were divided into four types of cities: economy-oriented cities, production-oriented cities, environment-oriented cities and residents' life-oriented cities. (4) Use barrier models to identify constraints for different city types. This paper also calculates the obstacle degree of the index through the obstacle degree model, and deeply identifies the main obstacles affecting the development of low-carbon cities in China. The highest obstacle to the criterion layer of economically dominant cities is the production mode; Production-oriented cities, environment-oriented cities and residents' life-oriented cities have the highest degree of barriers to economic structure. And put forward corresponding low-carbon development countermeasures for the problems analyzed. |
参考文献: |
[1]戴亦欣.中国低碳城市发展的必要性和治理模式分析[J].中国人口·资源与环境,2009,19(03):12-17. [2]任晓松,孙天美,赵国浩.中国碳排放研究热点演化知识图谱分析[J].科技管理研究,2018,38(10):235-243. [7]辛章平,张银太.低碳经济与低碳城市[J].城市发展研究,2008(04):98-102. [8]刘伟,刘亮,陈超凡.中国低碳城市发展规划与展望[J].现代城市研究,2013,28(04):65-70. [9]王建国,王兴平.绿色城市设计与低碳城市规划—新型城市化下的趋势[J].城市规划,2011,35( 02):20-21. [10]叶祖达.建立低碳城市规划工具——城乡生态绿地空间碳汇功能评估模型[J].城市规划,2011,35(02):32-38. [11]张彬,姚娜,刘学敏.基于模糊聚类的中国分省碳排放初步研究[J].中国人口·资源与环境,2011,21(01):53-56. [12]张丽君,李宁,秦耀辰等.基于DPSIR模型的中国城市低碳发展水平评价及空间分异[J].世界地理研究,2019,28(03):85-94. [13]庄贵阳,窦晓铭.新发展格局下碳排放达峰的政策内涵与实现路径[J].新疆师范大学学报(哲学社会科学版),2021,42(06):124-133. [14]邓翔,任伊梦,玉国华.低碳城市建设与产业结构优化升级——来自低碳城市试点工作的经验证据[J].软科学,2023,37(02):10-19. [31]杜小云. 低碳城市建设水平评价研究——以低碳试点城市为例[D]. 重庆大学, 2018. [32]赵平平. 重庆市低碳城市建设水平评价与分析[D].中南财经政法大学,2021. [33]陈楠, 庄贵阳. 中国低碳试点城市成效评估[J]. 城市发展研究, 2018, 25(10):88-95. [34]李代花. 低碳城市试点、绿色技术创新与生产性服务业发展[J]. 环境经济研究,2022,7(03):43-60. [35]史修艺,徐盈之. 低碳城市试点政策的公平性碳减排效果评估——基于工业碳排放视角[J]. 公共管理学报,2023,20(01):84-96+173. [36]路超君, 秦耀辰, 张金萍. 低碳城市发展阶段划分与特征分析[J]. 城市发展研究, 2014, 21(8):12-16. [37]朱婧,刘学敏,初钊鹏.低碳城市能源需求与碳排放情景分析[J].中国人口·资源与环境,2015,25(07):48-55. [38]王德怀. 遵义市碳排放及低碳城市评价研究[D].贵州师范大学,2019. [39]段锦.基于DPSIR模型的山西低碳城市建设战略研究[J].科技创新与生产力,2022,No.340(05):33-37. [40]黄盛航. 天府新城空间形态的低碳化评价及规划策略研究[D].西安建筑科技大学,2021. [41]朱婧, 刘学敏, 张昱. 中国低碳城市建设评价指标体系构建[J]. 生态经济, 2017, 33(12): 52-56.. [42]刘骏,胡剑波,罗玉兰.低碳城市测度指标体系构建与实证[J].统计与决策,2015(05):59-62. [43]付允,刘怡君,汪云林.低碳城市的评价方法与支撑体系研究[J].中国人口·资源与环境,2010,20(08):44-47. [44]庄贵阳, 朱守先, 袁路,等. 中国城市低碳发展水平排位及国际比较研究[J]. 中国地质大学学报:社会科学版, 2014, 14(2):17-23. [45]华坚,任俊.基于ANP的低碳城市评价研究[J].科技与经济,2011,24(06):101-105. [46]吴健生,许娜,张曦文.中国低碳城市评价与空间格局分析[J].地理科学进展,2016,35(02):204-213. [47]李德智, 聂骁, 黄冠英. 我国典型低碳城市建设水平比较研究[J]. 江苏建筑, 2021(5):6-8. [48]石龙宇, 孙静. 中国城市低碳发展水平评估方法研究[J]. 生态学报, 2018, 38(15):5461-5472. [49]王锋,傅利芳,刘若宇,刘娟,吴从新.城市低碳发展水平的组合评价研究——以江苏13城市为例[J].生态经济,2016,32(03):46-51. [50]王磊,周亚楠,张宇.基于熵权-TOPSIS法的低碳城市发展水平评价及障碍度分析——以天津市为例[J].科技管理研究,2017,37(17):239-245. [51]许源溪,周波,苏杰. 基于InVEST模型的四川省宜宾市2010—2020年碳承载力评价[J]. 水土保持通报,2023,43(01):350-358. [55]刘骏,胡剑波,罗玉兰.低碳城市测度指标体系构建与实证[J].统计与决策,2015(05):59-62. [57]刘亚天,丁生喜.基于投影寻踪模型权重优化的城市高质量发展评价及其影响因素分析[J].数学的实践与认识,2021,51(24):53-63. [58]程麒铭,陈垚,刘臻等.基于随机森林-投影寻踪法的生物滞留系统多目标评价方法[J].水资源与水工程学报,2022,33(04):85-90+96. [59]黄显峰,贾永乐,方国华.基于投影寻踪法的城市水生态文明建设评价[J].水资源保护,2016,32(06):117-122. [60]李争,王泽,冯威等.基于CNN与K-means聚类的非侵入式电器负荷识别方法[J].河北科技大学学报,2022,43(04):365-373. [62]城市碳达峰碳中和指数研究课题组. 中国城市碳达峰碳中和指数摘要报告(2020-2021)[R]. 北京:公众环境研究中心, 2021年12月. [63]胡军燕,修佳钰,潘灏.基于面板数据的城市智慧度评价与分类[J].统计与决策,2020,36(07):76-80. [64]黄孝起.福建省电力能源行业的现状与出路[J].发展研究,2019(06):73-79. [65]郑晓舟,郭晗,卢山冰,胡先功.中国十大城市群环境规制与产业结构升级的耦合协调发展研究[J].经济问题探索,2021(06):93-111. |
中图分类号: | F299.2 |
开放日期: | 2023-06-15 |