- 无标题文档
查看论文信息

论文中文题名:

 基于RSSI的井下人员定位算法的研究    

姓名:

 王志刚    

学号:

 20207223089    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子与通信工程    

研究方向:

 无线传感器定位    

第一导师姓名:

 倪云峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-05-28    

论文外文题名:

 Research on Algorithm of Underground Personnel Positioning Based on RSSI    

论文中文关键词:

 无线传感器网络 ; ZigBee技术 ; RSSI测距 ; 卡尔曼滤波 ; 加权质心算法    

论文外文关键词:

 Wireless sensor network ; ZigBee technology ; RSSI ranging ; Kalman filter ; weighted centroid algorithm    

论文中文摘要:

煤矿井下环境复杂多变,开采过程存在诸多安全隐患。因此,建立一套安全可靠的井下定位系统是完善煤炭安全生产管理的重要手段。针对目前基于测距的煤矿井下定位系统成本高、定位精度低以及环境适应性差等问题,本文对井下定位算法进行了改进并通过仿真和巷道实验,验证了本文改进算法的可行性,具有一定的实际意义和参考价值。本文主要研究工作如下:

(1)针对井下巷道接收信号强度(Received Signal Strength Indicator, RSSI)传输易受多径效应和非视距(Non Line of Sight, NLOS)环境的干扰导致定位精度低的问题,本文围绕RSSI值的预处理、测距模型的建立以及定位算法的改进三个阶段展开研究。首先,在预处理阶段,采用卡尔曼滤波(Kalman Filtering, KF)对RSSI值滤波处理以实现数据的稳定平滑输出。其次,在测距模型建立阶段,采用最小二乘法(Least Square Method, LS)拟合修正信号传播模型参数。最后,在定位算法阶段,优化参考节点选择策略并改进加权质心定位算法。仿真结果表明,本文改进算法平均绝对误差为0.503m,定位误差下降明显。

(2)本文设计了基于ZigBee的井下人员定位系统,使用基于TI公司的ZigBee硬件开发板进行实验验证。利用IAR和Visual Studio开发工具分别对定位系统的下位机和上位机进行程序设计,并将改进的加权质心定位算法引入到上位机进行软件实现。其中上位机能够实现参考节点的预设、盲节点坐标显示等信息。实验结果表明,本文改进算法与仿真结果基本一致,证明了本文改进算法定位的有效性。

本文改进的加权质心定位算法可以有效提高定位精度,对在煤矿井下的实际应用提供了一种有价值的参考。

论文外文摘要:

The underground environment of coal mines is complex and changeable, and there are many safety hazards in the mining process. Therefore, establishing a safe and reliable underground positioning system is an important means to improve coal safety production management. Aiming at the problems of high cost, low positioning accuracy and poor environmental adaptability of the current ranging-based coal mine underground positioning system, this paper improves the underground positioning algorithm and verifies the feasibility of the improved algorithm in this paper through simulation and roadway experiments. Practical significance and reference value. The main research work of this paper is as follows:

(1) Aiming at the problem that the Received Signal Strength Indicator (RSSI) transmission in underground tunnels is susceptible to multipath effects and non-line-of-sight (NLOS) environment interference, which leads to low positioning accuracy, this paper focuses on the RSSI value The preprocessing, the establishment of ranging model and the improvement of localization algorithm are studied in three stages. First, in the preprocessing stage, Kalman Filtering (KF) is used to filter the RSSI value to achieve a stable and smooth output of the data. Secondly, in the stage of establishing the ranging model, the least square method (Least Square Method, LS) is used to fit and correct the parameters of the signal propagation model. Finally, in the positioning algorithm stage, the reference node selection strategy is optimized and the weighted centroid positioning algorithm is improved. The simulation results show that the average absolute error of the improved algorithm in this paper is 0.503m, and the positioning error drops significantly.

(2) This paper designs an underground personnel positioning system based on ZigBee, and uses the ZigBee hardware development board based on TI Company for experimental verification. Using IAR and Visual Studio development tools to program the lower computer and upper computer of the positioning system, and introduce the improved weighted centroid positioning algorithm to the upper computer for software implementation. Among them, the upper computer can realize the preset of reference nodes, coordinate display of blind nodes and other information. The experimental results show that the improved algorithm in this paper is basically consistent with the simulation results, which proves the effectiveness of the improved algorithm in this paper.

The improved weighted centroid positioning algorithm in this paper can effectively improve the positioning accuracy, and provides a valuable reference for the practical application in coal mines.

参考文献:

[1]蔡林美,郭佐宁,张金锁.中国煤炭行业绿色全要素生产率研究[J].中国矿业大学学报(社会科学版),2023,25(01):161-180.

[2]崔晓利.中国能源大数据报告(2022)[R].北京:中能传媒研究院,2022

[3]Li M G, Zhu H, You S Z, et al. UWB-based localization system aided with inertial sensor for underground coal mine applications[J]. IEEE Sensors Journal, 2020, 20(12): 6652-6669.

[4]Yan Z, Wang Y, Fan J. Research on safety subregion partition method and characterization for coal mine ventilation system[J]. Mathematical Problems in Engineering, 2021, 2021: 1-11.

[5]金浩. 基于RSSI的无线传感器网络井下人员定位算法研究[D].江苏大学,2022.

[6]Zhang Z, Zhang C, Li M, et al. Target positioning based on particle centroid drift in large-scale WSNs[J]. IEEE Access, 2020, 8: 127709-127719.

[7]Cui Y, Liu S, Liu Q. Navigation and positioning technology in underground coal mines and tunnels: A review[J]. Journal of the Southern African Institute of Mining and Metallurgy, 2021, 121(6): 295-303.

[8]Wu H, Tao B, Gong Z, et al. A standalone RFID-based mobile robot navigation method using single passive tag[J]. IEEE Transactions on Automation Science and Engineering, 2020, 18(4): 1529-1537.

[9]陈建国,康海静,兰英.基于分支切换并嵌套的混沌系统超宽带信号设计分析[J].计算机应用研究,2021,38(03):836-840.

[10]Sadowski S, Spachos P, Plataniotis K N. Memoryless techniques and wireless technologies for indoor localization with the internet of things[J]. IEEE Internet of Things Journal, 2020, 7(11): 10996-11005.

[11]尤晓芳. 井下移动目标跟踪定位的方法研究[D].华北理工大学,2022.

[12]钟晓玲,徐昌彪.基于煤矿井下的人员定位算法[J].电子测试,2010,No.201(05):25-28.

[13]叶培顺,刘黎,王伯槐.基于无线传感器网络的煤矿安全监测系统的研究与设计[J].电子设计工程,2013,21(18):62-65.

[14]常琳.煤矿井下无线定位技术及系统的应用现状和发展方向[J].煤矿安全,2021,52(07):94-98.

[15]王伯辰,陈俊智.KJ236井下人员定位系统在煤矿的应用研究[J].煤矿机械,2015,36(02):223-226.

[16]Wang Z, Cao Y, Kong L, et al. Reference waveforms forward concurrent transmissions in zigbee communications[J]. IEEE/ACM Transactions on Networking, 2020, 28(4): 1629-1642.

[17]Kang I, Nam H. Robust Localization System Using Vector Combination in Wireless Sensor Networks[J]. IEEE Access, 2022, 10: 73437-73445.

[18]Zazali A A, Subramaniam S K, Zukarnain Z A. Flood control distance vector-hop (FCDV-Hop) localization in wireless sensor networks[J]. IEEE Access, 2020, 8: 206592-206613.

[19]Yadav P, Sharma S C, Singh O, et al. Optimized Localization Learning Algorithm for Indoor and Outdoor Localization System in WSNs[J]. Wireless Personal Communications, 2023, 130(1): 651-672.

[20]李论,张著洪,丁恩杰等.基于RSSI的煤矿巷道高精度定位算法研究[J].中国矿业大学学报,2017,46(01):183-191+200.

[21]L. Yi, L. Tao and S. Jun, "RSSI localization method for mine underground based on RSSI hybrid filtering algorithm[C]// 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou, China, 2017: 327-332.

[22]邵小强,李康乐,陈熙等.基于改进卡尔曼滤波和参数拟合的矿井TOA定位方法[J].煤炭学报,2019,44(05):1616-1624.

[23]李康乐,邵小强,潘红光等.自适应抗差卡尔曼滤波对井下定位NLOS时延抑制方法的研究[J].西安科技大学学报,2020,40(01):173-180.

[24]胡荣明,苏瑞鹏,竞霞等.融合改进小波去噪与T-Taylor的井下定位算法[J].测绘通报,2023,No.551(02):46-51.

[25]李世银,朱媛,王晓明.考虑锚点位置误差的井下TDOA改进算法[J].工矿自动化,2019,45(11):10-13+54.

[26]李继明,张建辉,王晓涵等.改进的鲸鱼优化算法与泰勒级数相结合的井下TDOA定位方法[J].实验技术与管理,2022,39(12):30-36+54.

[27]王峰,尚超,籍锦程等.基于TDOA和AOA的煤矿井下三维定位算法[J].工矿自动化,2015,41(05):78-82.

[28]刘世森.基于AOA的矿井人员精确定位技术[J].煤矿安全,2019,50(07):140-142+146.

[29]Qiao G Z, Qi J S, Hu C F, et al. An improved RSSI localisation algorithm in coal tunnel based on beacon nodes[J]. International Journal of Wireless and Mobile Computing, 2014, 7(3): 270-274.

[30]Chen G, Bao J, Zhang L. A node division location detection scheme for chain‐type wireless sensor networks[J]. Wireless Communications and Mobile Computing, 2016, 16(1): 79-93.

[31]余修武,余昊,刘永等.基于加权混合滤波和重心法的APIT定位算法[J].北京邮电大学学报,2019,42(04):32-37+75.

[32]史明泉,崔丽珍,赫佳星.基于PSO-GRNN神经网络的煤矿井下定位算法研究[J].中国矿业,2020,29(02):88-93.

[33]曹现刚,张富强,史可欣.基于ZigBee协议的矿用设备数据采集分站设计[J].仪表技术与传感器,2023,No.482(03):65-70.

[34]张智超,李新娥,顾攀等.基于ZigBee混合滤波RSSI的室内定位算法[J].传感器与微系统,2023,42(05):126-129+134.

[35]吕晓华,闫晶,宿敬肖.基于ZigBee的煤矿救援机器人无线通信系统设计[J].煤炭技术,2022,41(07):195-197.

[36]李长松,孔巧丽,王田发等.改进的RSSI质心定位算法仿真与精度分析[J].导航定位学报,2022,10(01):48-52.

[37]费波涛,吴昊,石章松.基于改进鲸鱼优化的无线传感器网络节点定位算法[J].海军工程大学学报,2023,35(02):90-95.

[38]Zou Y, Fan J, Wu L, et al. Fixed point iteration based algorithm for asynchronous TOA-based source localization[J]. Sensors, 2022, 22(18): 6871.

[39]陈浩,李起伟,王子龙.基于改进TDOA在煤矿井下超宽带定位算法的研究[J].电子测量技术,2021,44(06):96-102.

[40]Wan X, Lu J. Improved DV-Hop Localization Algorithm Based on Weighted Least Squares Cycle Optimization in Anisotropic Networks[J]. Wireless Personal Communications, 2022, 126(1): 895-909.

[41]Zhou F, Fan L, Tang J, et al. Placement and Concise MSE Lower-Bound for UAV-Enabled Localization via RSS[J]. IEEE Transactions on Vehicular Technology, 2021, 71(2): 2209-2213.

[42]Mackey A, Spachos P, Song L, et al. Improving BLE beacon proximity estimation accuracy through Bayesian filtering[J]. IEEE Internet of Things Journal, 2020, 7(4): 3160-3169.

[43]Zhu J, Hou P, Nagayama K, et al. Two-dimensional RSSI-based indoor localization using multiple leaky coaxial cables with a probabilistic neural network[J]. IEEE Access, 2022, 10: 21109-21119.

[44]刘雨,肖本贤,尹柏强.基于修正RSSI值的四边形加权质心定位算法[J].电子测量与仪器学报,2020,34(10):107-114.

[45]Lyu X, Hu B, Li K, et al. An adaptive and robust UKF approach based on Gaussian process regression-aided variational Bayesian[J]. IEEE Sensors Journal, 2021, 21(7): 9500-9514.

[46]Alsmadi L, Kong X, Sandrasegaran K, et al. An improved indoor positioning accuracy using filtered RSSI and beacon weight[J]. IEEE Sensors Journal, 2021, 21(16): 18205-18213.

[47]任克强,潘翠敏.RSSI模型参数动态修正的协作定位算法[J].华中科技大学学报(自然科学版),2020,48(02):97-102.

中图分类号:

 TP301.6    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式