- 无标题文档
查看论文信息

论文中文题名:

 煤矸石基高性能SiO2气凝胶制备及其特性研究    

姓名:

 张盼盼    

学号:

 22213226072    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2025    

培养单位:

 西安科技大学    

院系:

 化学与化工学院    

专业:

 资源与环境    

研究方向:

 煤系矿产资源加工利用    

第一导师姓名:

 杜美利    

第一导师单位:

 西安科技大学    

第二导师姓名:

 杜美利    

论文提交日期:

 2025-06-15    

论文答辩日期:

 2025-05-28    

论文外文题名:

 Preparation and characterization of high performance SiO2 aerogel based on coal gangue    

论文中文关键词:

 煤矸石 ; 纳米SiO2气凝胶 ; 表面改性 ; 疏水材料    

论文外文关键词:

 Coal gangue ; Nano-SiO2 aerogel ; Surface modification ; Hydrophobic material    

论文中文摘要:

黄陵矿区是陕北侏罗纪煤田主要矿区之一,年产煤炭2800余万吨,煤炭开发伴生200余万吨的固体废弃物-煤矸石,长期以来区内矸石的主要利用途径集中在制砖、制陶粒、回填、发电等低值领域。本文在对区内煤矸石基本性质充分认识基础上,以其富集的硅源(SiO2达60%)为对象,通过常压干燥技术制备了具有高附加值的纳米多孔SiO2气凝胶。作为硅基纳米多孔材料的典型代表,SiO2气凝胶因其独特的结构特征引起学界广泛关注,从材料构效关系分析,SiO2气凝胶通过溶胶-凝胶法制备形成的三维网络结构,呈现出显著的三维孔隙分布特征和纳米级孔道结构(孔隙率>90%)。这种特殊拓扑形态使其同时具备多重功能特性:低导热系数和低密度等优异性能,在保温隔热、光能材料和吸附等方面有着广阔的应用价值。本研究是区内煤矸石绿色、低碳、高效和高值化利用新途径的有益尝试。
本研究煤矸石样品取自陕西黄陵矿区中侏罗世延安组2号煤层夹矸,其主要矿物组成为石英、高岭石、伊利石和蒙脱石等,其灰成分主要由SiO2(61.31%)和Al2O3(27.87%)组成,黄陵矿区煤矸石高硅含量为其提取Al2O3和制备SiO2气凝胶提供了理论基础。
采用Na2CO3 助剂对区内煤矸石煅烧活化,继而通过HCl酸浸和NaOH碱浸提取SiO2,以浸出的SiO2为硅源,正硅酸乙酯作为前驱体,通过溶胶-凝胶法和常压干燥制得SiO2气凝胶。在Na2CO3 助剂煅烧活化-HCl浸取阶段,系统考察了物料比、煅烧温度、酸浓度、液固比等因素对区内矸石Al2O3浸出效率的影响。结果显示:对Al2O3浸出率影响最大的因素是煅烧温度;煤矸石中Al2O3的最佳浸出条件是:煅烧温度850 ℃、液固比10:1 mL·g-1、物料比5:6、酸浓度8 mol·L-1,此条件下Al2O3的浸出率为94.27%。NaOH碱浸法浸取SiO2阶段,系统考察了碱浓度、固液比、反应温度和反应时间等参数对SiO2浸出率的影响。结果表明,煤矸石中SiO2的最佳浸出条件为:反应温度100 ℃、碱浓度4 mol·L-1、固液比1:10 mL·g-1,反应时间30 min,此条件下SiO2的浸出率为 96.57%。在制备SiO2气凝胶过程中,发现酸催化剂种类、酸浓度是影响气凝胶性能的关键因素。最佳条件下制备得到的煤矸石基SiO2气凝胶最大疏水角为141.3 °,耐热温度为750 ℃,最小密度为0.125 g·cm-3,孔隙率为94.32%,最大比表面积为455 m2·g-1。
为提高气凝胶的力学性能,设计在溶胶阶段引入羟基封端聚二甲基硅氧烷(PDMS)进行改性,通过溶胶-凝胶、无水乙醇老化和常压阶梯干燥制备得到了高性能的SiO2气凝胶。最短凝胶时间为5 min,疏水角最高为151.3°,耐热温度为800 ℃,密度最小为0.131 g·cm-3,孔隙率为94.05%,比表面积最大为379 m2·g-1。
采用傅里叶变换红外光谱(FTIR)、X射线衍射分析(XRD)、比表面积测试(BET)、热重分析仪(TGA5500)、扫描电镜(SEM)、氮气吸附、接触角测试等方法研究了SiO2气凝胶的性能。结果表明,SiO2气凝胶中均含疏水特征基团-CH3;气凝胶为典型的非晶材料;气凝胶的吸附特性主要与材料的孔隙结构和外观形貌有关;改性后的SiO2气凝胶具有更加丰富的纳米三维网络结构;改性前后的气凝胶均有良好的热稳定性,改性后的气凝胶耐热温度更高,达800 ℃;改性后的气凝胶接触角更大,最大可达151.3 °。
 

论文外文摘要:

The Huangling Mining Area, as one of the principal production zones in the Jurassic coalfield of Northern Shaanxi, yields an annual coal output exceeding 28 million metric tons, concomitantly generating over 2 million metric tons of coal gangue solid waste. Historically, the utilization of this byproduct within the region has been predominantly restricted to low-value applications including brick manufacturing, ceramsite production, backfilling, and power generation. Based on comprehensive characterization of the intrinsic properties of local coal gangue, this study focuses on its silicon-rich composition (SiO₂ content up to 60%) to synthesize high-value-added nano-porous SiO₂ aerogels through ambient pressure drying technology.
As a representative silicon-based nanoporous material, SiO₂ aerogels have attracted extensive academic attention due to their unique structural characteristics. Structure-property relationship analysis reveals that the three-dimensional network architecture formed via sol-gel processing exhibits significant porosity (>90%) and nanoscale pore channels. This distinctive topology endows the material with multifunctional properties, including ultralow thermal conductivity and density, thereby demonstrating broad application potential in thermal insulation, photonic materials, and adsorption technologies. The present research represents a pioneering endeavor toward green, low-carbon, and high-value utilization of coal gangue resources in the Huangling region.
The investigated coal gangue samples were obtained from the Middle Jurassic Yan’an Formation No.2 coal seam in Huangling, with mineralogical composition dominated by quartz, kaolinite, illite, and montmorillonite. Ash composition analysis identified SiO₂ (61.31%) and Al₂O₃ (27.87%) as primary constituents, providing a theoretical foundation for both Al₂O₃ extraction and SiO₂ aerogel synthesis.
A sequential processing methodology was implemented, beginning with Na₂CO₃-assisted calcination activation of coal gangue, followed by HCl acid leaching for Al₂O₃ extraction, and subsequent NaOH alkaline leaching for SiO₂ recovery. The extracted SiO₂ served as a silicon source, with tetraethyl orthosilicate as the precursor, enabling sol-gel synthesis of SiO₂ aerogels under ambient pressure drying conditions. Systematic investigation of Al₂O₃ leaching parameters identified calcination temperature as the most influential variable, with optimal conditions achieving 94.27% leaching efficiency at 850 °C calcination temperature, 10:1 mL·g⁻¹ liquid-solid ratio, 5:6 material ratio, and 8 mol·L⁻¹ HCl concentration. For SiO₂ extraction, maximum recovery efficiency of 96.57% was attained under conditions of 100°C reaction temperature, 4 mol·L⁻¹ NaOH concentration, 1:10 mL·g⁻¹ solid-liquid ratio, and 30-minute duration. Acid catalyst selection and concentration were identified as critical factors governing aerogel performance, with optimized specimens exhibiting a maximum hydrophobicity contact angle of 141.3°, thermal stability up to 750 °C, minimal density of 0.125 g·cm⁻³, porosity of 94.32%, and specific surface area of 455 m²·g⁻¹.
To enhance mechanical properties, hydroxyl-terminated polydimethylsiloxane (PDMS) was introduced during the sol phase for material modification. The resultant aerogels demonstrated accelerated gelation within 5 minutes, superior hydrophobicity with a contact angle of 151.3°, enhanced thermal resistance up to 800 °C, preserved porosity of 94.05%, and specific surface area of 379 m²·g⁻¹.
Comprehensive characterization through Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), nitrogen adsorption isotherms, and contact angle measurements confirmed the following: the presence of hydrophobic -CH₃ functional groups in all aerogel specimens; amorphous microstructure characteristics; adsorption properties predominantly governed by pore architecture and surface morphology; enhanced three-dimensional nanoporous networks in modified aerogels; exceptional thermal stability in both pristine and modified aerogels, with the latter exhibiting increased thermal resistance up to 800 °C; and maximized hydrophobicity with PDMS modification, achieving a maximum contact angle of 151.3°.
 

参考文献:

[1] 自然资源部. 全国矿产资源储量统计表[Z]. 2023.

[2] 李军, 乔中鹏, 刘治中等. 煤炭资源开发管理现状分析及对策建议[J]. 中国煤炭, 2023, 49(09): 1-6.

[3] 匡立春, 温声明, 李树新等. 低煤阶煤层气成藏机制与勘探突破-以吐哈-三塘湖盆地为例[J]. 天然气工业, 2022, 42(06): 33-42.

[4] 王双明, 刘浪, 朱梦博等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报, 2024, 49(03): 1-21.

[5] 郭文超, 朱晓波, 张治国等. 煤矸石焙烧活化-酸浸提取氧化铝的实验研究[J]. 煤炭转化, 2023, 46(06): 80-89.

[6] Brian W, Philippe C, Ivan A J, et al. Pathways for balancing CO2 emissions and sinks[J]. Nature Communication, 2017, 8: 14856.

[7] 王若迪. 基于煤矸石Al、Fe掺杂SiO2疏水气凝胶的制备及吸油性能研究[D]. 西安建筑科技大学, 2022.

[8] 沈军, 王珏, 吴翔. 气凝胶-一种结构可控的新型功能材料[J]. 材料科学与工程, 1994, (03): 1-5+37.

[9] Kistler S.S. Coherent Expanded Aerogels[J]. Physical Chemistry, 1932, 36: 52.

[10] 李妍洁. 煤矸石制备块状SiO2气凝胶及其特性研究[D]. 西安科技大学, 2018.

[11] 朱金萌. 以煤矸石为硅源制备SiO2气凝胶材料及其性能研究[D]. 西安科技大学, 2015.

[12] Nicolaon G A, Teichner S J. Preparation des aerogels de silice apartir d'orthosilicate demethyle en milieu alcooliquet leurs proprites[J].Bull Soc Claim France, 1968, 5: 1906-1911.

[13] Yokogawa H, Yokoyama M. Hydrophobic silica aerogels[J]. Journal of Non-Crystalline Solids, 1995, 186(2): 23-29.

[14] 张爱满. SiO2气凝胶的快速制备与增韧改性研究[D]. 武汉理工大学, 2019.

[15] Gawel B, Gawel K, Oye Gisle. Sol-Gel Synthesis of Non-Silica Monolithic Materials[J]. Materials, 2010, 3(4): 2815-2833.

[16] Gu J, Ji C, Fu R, et al. Robust SiO2-Al2O3/Agarose composite aerogel beads with outstanding thermal insulation based on coal gangue[J]. Gels, 2022, 8(3): 165.

[17] 季登会, 罗文波, 龙潇, 等. 赤泥活化煤矸石提取Al2O3试验研究[J]. 矿产保护与利用, 2023, 43 (02): 142-147.

[18] Zhang Y G, Sun J M, Lv G Z, et al. Kinetics of alumina extraction from coal gangue by hydrochloric acid leaching[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(6): 1932-1942.

[19] 李浩林, 夏举佩, 曾德恢, 等. 加压酸浸煤矸石中氧化铝工艺及动力学研究[J]. 煤炭转化, 2020, 43 (02): 89-96.

[20] 马利国, 孙艳荣, 李东来, 等. 二氧化硅气凝胶硅源选择的研究进展[J]. 无机盐工业, 2020, 52 (08): 11-16.

[21] 张瑶瑶. 功能化二氧化硅气凝胶的制备及其对废水中重金属离子(Pb2+, Cu2+)吸附性能的研究[D]. 长安大学, 2023.

[22] 张志华, 王文琴,祖国庆, 等. SiO2气凝胶材料的制备、性能及其低温保温隔热应用 [J]. 航空材料学报, 2015, 35(01): 87-96.

[23] 周颖博. 常压干燥制备柔性疏SiO2气凝胶及其性能研究[D]. 华南理工大学, 2022.

[24] 冯坚. 气凝胶高效隔热材料[M]. 北京: 科学出版社, 2016.

[25] 洪新华, 李保国. 溶胶-凝胶(Sol-Gel)方法的原理与应用[J]. 天津师范大学学报(自然科学版). 2001(01): 5-8.

[26] 郝名远, 陈欢乐, 李淑敏等. 煤矸石制备气凝胶研究进展[J]. 矿产保护与利用, 2022, 42(01): 172-178.

[27] 康爽. 低密度高绝热性能SiO2气凝胶的常压制备及结构性能研究[D]. 长安大学.

[28] Hench L L, West J K. The sol-gel process[J]. Chemical reviews. 1990, 90(1): 33-72.

[29] Estella J, Echeverria J C, Laguna M, et al. Effects of aging and drying conditions on the structural and textural properties of silica gels[J].Microporous and Mesoporous Materials. 2007, 102(1-3): 274-282.

[30] Strom A R, Masmoudi Y, Rigacci A, et al. Strengthening and aging of wet silica gels for up-scaling of aerogel preparation[J]. Journal of Sol-Gel Science and Technology. 2007, 41(3): 291-298.

[31] 杨凯, 庞佳伟, 吴伯荣, 等.二氧化硅气凝胶改性方法及研究进展[J]. 北京理工大学学报. 2009, 29(09): 833-837.

[32] Rao V A, Hegde D N, Shewale M P. Imperviousness of the hydrophobic silica aerogels against various solvents and acids[J]. Applied Surface Science, 2006, 253 (9): 4137-4141.

[33] 姚超. SiO2气凝胶及其复合材料的常压制备与性能研究[D]. 济南大学, 2022.

[34] 卢斌, 陈琴, 曾杰, 等.不同改性剂制备疏水型SiO2气凝胶的对比[J]. 机械工程材料, 2011, 35(6): 53-56.

[35] 陈宇卓, 欧忠文, 刘朝辉, 等. 隔热材料SiO2气凝胶改性研究进展[J]. 化工新型材料, 2017, 45(08): 45-47.

[36] 刘维海, 夏晨康, 张鑫源, 等. 液-液溶剂置换法制备超疏水SiO2气凝胶[J]. 硅酸盐通报, 2023, 42(06): 2233-2241.

[37] Morris C A, Anderson M L, Stroud R M, et al. Silica sol as a nanoglue: Flexible synthesis of composite aerogels[J]. Science. 1999,2 84(5414): 622-624.

[38] 马荣, 童跃进, 关怀民. SiO2气凝胶的研究现状与应用 [J]. 材料导报, 2011, 25 (01): 58-64.

[39] 陈当家. 柔性桥联型硅氧烷气凝胶的常压制备及性能调控[D]. 北京科技大学, 2019.

[40] 秦慧元. 二氧化硅气凝胶材料的研究进展[J]. 科协论坛(下半月). 2013(01): 40-43.

[41] 郑秋颖. 二氧化硅气凝胶复合材料的制备及其传感性能研究[D]. 长春工业大学, 2021.

[42] 谷婕. 煤矸石中硅铝元素的提取及其高值化利用[D]. 内蒙古科技大学, 2022.

[43] Kalinin S V, Kheifets L I, Mamchik A I, et al. Influence of the drying technique on the structure of silica gels[J]. Journal of Sol-Gel Science and Technology. 1999, 15(1): 31-35.

[44] Tretyakov Y D, Shlyakhtin O A. Recent progress in cryochemical synthesis of oxide materials[C]. 1999.

[45] 孙志辉, 赵帅. “双碳”背景下煤矸石高附加值功能化改性技术现状与展望[C]//中国稀土学会稀土晶体专业委员会,中国有色金属学会稀有金属冶金学术委员会.稀土与稀有金属材料创新发展论坛论文集.中国矿业大学矿业工程学院; 2023: 10.

[46] 周楠, 姚依南, 宋卫剑等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(01): 136-146.

[47] 李瑾. 论山西阳泉矿区煤矸石堆积对周围土壤的影响[J]. 华北国土资源, 2014, (04): 96-98.

[48] 徐良骥, 黄璨, 章如芹, 等. 煤矸石充填复垦地理化特性与重金属分布特征[J]. 农业工程学报, 2014, 30(5): 211-219.

[49] 武彦辉. 我国煤矸石的处置利用现状及展望[J]. 中国环保产业, 2019(1): 53-55.

[50] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(06): 165-178.

[51] 吴宇. 煤矸石基多孔硅纳米材料的制备及吸附CO2的研究[D]. 内蒙古工业大学2019.

[52] 张伟辉. 煤矸石综合利用存在的问题及对策分析[J]. 能源与节能, 2021, (02): 101-102.

[53] 雷建红. 煤矸石的污染危害与综合利用分析[J]. 能源与节能, 2017, (04): 90-91.

[54] 运波, 沈照理, 汤鸣皋, 等. 煤矸石堆放对水环境的影响—以山东省一些煤矸石堆为例[J]. 地学前缘, 2001(01): 163-169.

[55] 惠鹏岳. 煤矸石的特性分析及综合利用研究[J]. 内蒙古煤炭经济, 2023, 366(1): 70-72.

[56] 宋欢, 刘利波, 徐宏祥. 准格尔露天矿高品质煅烧高岭土分选工艺研究[J]. 煤炭加工与综合利用, 2021(11): 81-5+91.

[57] 范剑明. 准格尔煤田高铝煤矸石矿物特征及热活性研究[J]. 煤炭加工与综合利用, 2017(11):74-7+84+8.

[58] Belkheiri D, Diouri A, Taibi M, et al. Recycling of Moroccan coal gangue in the elaboration of a Portland clinker[J]. Journal of Materials and Environmental Science, 2015, 6(6): 1570-1577.

[59] 冯来宏, 陈良发, 李义朝等. 双碳背景下我国煤矸石资源化利用现状与进展[J]. 矿产综合利用, 2024(3): 1-14.

[60] 高平强, 魏建雄, 陈嘉, 等. TiO2/改性煤矸石复合光催化材料的制备及其去除水体中苯酚[J]. 矿产综合利用, 2021(6): 73-80.

[61] 王思阳, 王晓丽, 臧晔. 内蒙古地区煤矸石合成X型沸石的试验研究[J]. 应用化工, 2019, 48(5): 1071-1075.

[62] Li D, Wu D S, Xu F G, et al. Literature overview of Chinese research in the field of better coal utilization[J]. Journal of Cleaner Production, 2018, 185: 959-980.

[63] LI J Y, WANG J M. Comprehensive utilization and environmental risks of coal gangue: A review[J]. Journal of Cleaner Production, 2019, 239: 117946.

[64] 李尉卿, 崔淑敏. 煤矸石活化制作吸附材料的初步研究[J]. 环境工程, 2004, 22(1): 53-56.

[65] Li H , Zheng F , Wang J , et, al. Facile preparation of zeolite-activated carbon composite from coal gangue with enhanced adsorption performance[J]. Chemical Engineering Journal, 2020, 390:124513-124513.

[66] Li H, Li M J, Zheng F, et al. Efficient removal of water pollutants by hierarchical porous zeolite-activated carbon prepared from coal gangue and bamboo[J]. Journal of Cleaner Production, 2021, 325.

[67] 徐培杰, 朱毅菲,曹永丹等. 煤矸石资源高值化利用研究进展[J]. 环境工程学报, 2023, 17(10): 3137-3147.

[68] Zhang H, Zhao R B, Liu Z L. et al. Enhanced adsorption properties of polyoxometalates/coal gangue composite: The key role of kaolinite-rich coal gangue[J]. Applied Clay Science, 2023, 231

[69] 孙统才, 李巧玲. ZnCl2改性煤矸石对甲基橙的吸附性能研究[J]. 现代化工, 2016, 36(1): 93-97.

[70] 凌陈月, 张蕊, 牛萌, 等. 煤矸石制备水处理絮凝剂室内实验研究[J]. 石油化工应用, 2021, 40(9): 94-98.

[71] 何丽莉, 徐新阳. 煤矸石制备聚合氯化铝铁钙的形态表征与混凝性能研究[J]. 安全与环境学报, 2014, 14(1): 212-215.

[72] 张宇航, 宋子岭, 孔涛, 等. 煤矸石对盐碱土壤理化性质的改良效果[J]. 生态环境学报, 2021, 30(1): 195-2041(1).

[73] 张先凤, 朱安宁, 张佳宝, 等. 集约化种植下潮土养分肥力与团聚体特征相互关系研究[J]. 土壤, 2017, 49(1): 33-39.

[74] 王琼, 张强, 王斌, 等. 高硫煤矸石对苏打盐化土的改良效果研究[J]. 中国农学通报, 2017, 33(36): 119-123.

[75] 郝志飞, 张印民, 张永锋, 等. 准格尔地区煤矸石的矿物学分析和热活化研究[J]. 硅酸盐通报, 2016, 35(4): 1198-1202.

[76] 刘成龙, 许爱华, 夏举佩, 等. 煤矸石浸渣制备白炭黑工艺优化及性能分析[J]. 精细化工, 2019, 36(11): 2177-2184.

[77] 宫晨琛, 宋旭艳, 李东旭. 煅烧活化煤矸石的机理探讨[J]. 材料科学与工程学报,2005, 23(01): 88-91+108.

[78] 王海霞, 倪文, 黄屹, 等. 用活化煤矸石制备新型胶凝材料[J]. 金属矿山, 2011,417(03): 165-168.

[79] 高孟华, 公明明, 王吉晶, 等. 煤矸石的活化及氧化铝提取[J]. 中国矿业, 2007, (06): 88-90+102.

[80] Li X B , Wang H Y, Zhou Q S, et al. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting-alkaline leaching process [J]. Waste Management, 2019, 87: 798-804.

[81] Arslan V. Optimal factor evaluation for the extraction of alumina from clays by sulfuric acid leaching process using Box-Behnken Design Methodology[J]. Russian Journal of Non–Ferrous Metals, 2022, 63(2): 146-156.

[82] 张又中, 车敏, 刘义青, 等. 热活化—酸浸法提取煤矸石中铝和铁的实验研究[J]. 能源环境保护, 2024, (02): 1-10.

[83] 何飞, 郁万军,方旻翰, 等. 基于双硅氧烷先驱体制备的氧化硅基气凝胶研究进展[J]. 无机材料学报. 2015, 30(12): 1243-1253.

[84] Zhang X X, Xia B B, Ye H P, et al. One-step sol–gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings[J]. Journal of Materials Chemistry, 2012, 22(26): 13132-13140.

[85] 杨万吉. 疏水、柔性SiO2气凝胶的制备与性能研究[D]. 北京化工大学, 2013.

[86] Zhong L, Chen X H, Song H H, et al. Highly flexible silica aerogels derived from methyltriethoxysilane and polydimethylsiloxane[J]. New Journal of Chemistry, 2015, 39 (10): 7832-7838.

[87] 牛敏, 叶书华, 谢拥群, 等. 硅凝胶植物纤维复合材料的微观构造[J]. 福建农林大学学报, 2014, 43(06): 652-656.

[88] 蹇守卫, 马保国, 金磊, 等. SiO2 /十八烷酸相变微胶囊的制备与表征[J]. 功能材料, 2008, 39(12): 2025-2031.

[89] 姚超. SiO2气凝胶及其复合材料的常压制备与性能研究[D]. 济南大学, 2022.

[90] 刘景雯. 氮化硼改性气凝胶的疏水及其防冰霜性能研究[D]. 东北石油大学, 2021.

中图分类号:

 TQ536.9    

开放日期:

 2025-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式