- 无标题文档
查看论文信息

论文中文题名:

 COVID-19期间上海市其他传染病发病趋势研究    

姓名:

 周会    

学号:

 21201221061    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 025200    

学科名称:

 经济学 - 应用统计    

学生类型:

 硕士    

学位级别:

 经济学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用统计    

研究方向:

 生物统计    

第一导师姓名:

 张仲华    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-15    

论文答辩日期:

 2024-06-04    

论文外文题名:

 Research on the trend of other infectious diseases in Shanghai during COVID-19    

论文中文关键词:

 法定传染病 ; 秩和检验 ; Spearman相关性 ; LSTM模型 ; ARIMA模型 ; 随机森林模型    

论文外文关键词:

 Legal infectious diseases ; Rank sum test ; Spearman correlation ; LSTM model ; ARIMA model ; Random Forest model    

论文中文摘要:

在新冠肺炎疫情的背景下,我国传染病的发病趋势呈现出显著的多变性,深受新冠肺炎疫情的影响。尤其是上海市,作为我国唯一临海的直辖市,在国际贸易中占据举足轻重的地位,曾多次经历疫情的爆发与反复。其法定传染病的发病趋势,在多轮防疫工作的影响下,显得尤为特殊和复杂。因此,对上海市9种主要法定传染病的流行趋势进行深入、系统的分析,具有一定的学术价值和实践意义。

首先,利用拉格朗日插值法对数据进行预处理,从整体层面和年龄层面对上海市发病传染病发病数进行描述性分析,并通过秩和检验和相关性分析研究2020年的发病趋势是否发生显著性变化。其次,为研究新冠肺炎疫情对上海市9种法定传染病的具体影响,分别对每种传染病构建LSTM,ARIMA和随机森林模型。并通过R^2和模型预测效果指数(PEI)拟合预测指标以及均方根误差(RMSE)、平均绝对误差误差(MAE)和平均绝对百分比误差(MAPE)性能评估指标,比较三种模型的优劣性。然后,通过最优模型LSTM预测在没有新冠肺炎疫情发生的情况下2020年上海市9种法定传染病的发病情况。最后,基于2019-2023年数据,对比分析LSTM、ARIMA和随机森林模型后,选择随机森林模型为最优模型,预测未来6个月的发病数。

研究发现,相较于前五年的平均发病数,2020年发病数(除流行性感冒外)均出现下降趋势,下降幅度前三分别为,手足口病85.91%,猩红热80.79%和其它感染性腹泻55.01%,仅流行性感冒上升了30.77%,并且每一种疾病呈现出一定的年龄分布特征。另一方面,相较于未发生新冠肺炎疫情时,2020年上海市9种主要法定传染病中,仅流行性感冒的发病数在2020年出现了激增,增加了147.72%,仅在1月份上涨。其他8种法定传染病的发病均有所下降,其中手足口病、猩红热和其它感染性腹泻为降幅前三,分别为下降82.55%、77.89%和61.47%,而肺结核在疫情期间并未受到显著性影响,2020年其病例数仅下降了9.08%。对于长期而言,比较2021-2022年上海市9种法定传染病的发病数发现,除流行性感冒外,2020年其他8种法定传染病均有一定程度的上升趋势,并在2022年均有所下降。同时,在2021年至2022年期间,手足口病和流行性感冒的发病趋势呈现出不稳定的状态。

通过研究发现,在突发全球疫情的背景下,应高度重视那些与新传染病发病特征相似的传染病流行情况。为此,相关卫生部门需加强新型病原体甄别能力,确保能够迅速、准确地识别病毒,从而避免出现误诊情况,误诊不仅会耽误宝贵的防控时间,更可能导致疫情的进一步扩散和蔓延。此外,需要特别关注手足口病的反弹现象,以防多重传染病交叉感染。

论文外文摘要:

Against the backdrop of the infectious disease COVID-19, the trend of infectious diseases in the country has shown remarkable variability and has been deeply affected by the COVID-19 epidemic. In particular, the city of Shanghai, as the only municipality directly under the central government in China facing the sea and occupying a pivotal position in international trade, has experienced many outbreaks and recurrences of epidemics. The incidence trend of its statutory infectious diseases is particularly special and complex under the influence of multiple rounds of epidemic prevention measures. Therefore, an in-depth and systematic analysis of the epidemiological trends of the nine major statutory infectious diseases in Shanghai has certain academic value and practical significance.

First, the data were preprocessed using the Lagrange interpolation method, and the number of morbid infectious diseases in Shanghai was descriptively analyzed at the overall level and at the age level, and whether the trend of morbidity in 2020 had changed significantly was investigated by the rank-sum test and correlation analysis. Second, in order to study the specific impact of the COVID-19 epidemic on nine statutory infectious diseases in Shanghai, LSTM, ARIMA and random forest models were constructed for each infectious disease respectively. Comparison of the strengths and weaknesses of the three models through the R^2 and Model Predictive Effectiveness Index (PEI) fitting prediction metrics as well as Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) performance assessment metrics Then, the optimal model LSTM was used to predict the incidence of nine statutory infectious diseases in Shanghai in 2020 in the absence of a COVID-19 outbreak. Finally, based on the 2019-2023 data, after comparing and analyzing the LSTM, ARIMA and Random Forest models, the Random Forest model was selected as the optimal model to predict the incidence number in the next 6 months.

The study found that compared to the average number of cases in the previous five years, the number of cases (except influenza) in 2020 showed a decreasing trend, with the top three decreases being 85.91%for hand-foot-mouth disease, 80.79%for scarlet fever and 55.01% for other infectious diarrhea, and only influenza increased by 30.77%, and each of these diseases showed a certain age distribution. 0.00) and each disease showed a certain age distribution. On the other hand, only the number of cases of influenza among the nine major statutory infectious diseases in Shanghai in 2020 saw a surge in 2020, increasing by 147.72%, compared to when there was no new coronary pneumonia outbreak, rising only in January. The incidence of the other eight statutory infectious diseases declined, with hand-foot-mouth disease, scarlet fever and other infectious diarrhea being the top three decreases, down 82.55%, 77.89% and 61.47%, respectively, while tuberculosis was not significantly affected during the epidemic. significantly, with the number of its cases dropping by only 9.08% in 2020. For the long term, a comparison of the number of cases of nine statutory infectious diseases in Shanghai in 2021-2022 reveals that, with the exception of influenza, the other eight statutory infectious diseases are on the rise to a certain extent in 2020, and are all declining in 2022. Meanwhile, the trend of HFMD and influenza shows an unstable trend between 2021 and 2022.

Through this study, it was found that in the context of sudden global outbreaks, high priority should be given to the epidemiology of infectious diseases that have similar characteristics to the onset of new infectious diseases. To this end, the relevant health authorities need to strengthen their screening capacity for new pathogens to ensure that the virus can be rapidly and accurately identified, so as to avoid misdiagnosis, which will not only delay valuable prevention and control time, but may also lead to further spread and propagation of the epidemic. In addition, special attention needs to be paid to the rebound phenomenon of Hand, Foot and Mouth Disease (HFMD) to prevent cross infection of multiple infectious diseases.

参考文献:

[1] 孙婵. 新型冠状病毒肺炎疫情下全球卫生治理的困境及对策[J]. 医学与社会, 2021, 34(6): 43-48.

[2] Ge Y, Chen Z, Handel A, et al. The impact of social distancing, contact tracing, and case isolation interventions to suppress the COVID-19 epidemic: A modeling study[J]. Epidemics, 2021, 36: 100483.

[3] 孙吉胜. 新冠肺炎疫情与全球治理变革[J]. 世界经济与政治, 2020 (5): 71-95.

[4] 向天雨, 谭红专, 刘富强, 等. 新冠疫情防控措施对法定传染病报告发病的影响研究[J]. 实用预防医学, 31(3): 310-313.

[5] 张蕊. 中医药治疗结核病的优势和前景[J]. 中国民间疗法, 2023, 31(15): 117-120.

[6] 盖相臻, 李吉庆, 付苹, 等. 新型冠状病毒肺炎防控措施对儿童百日咳就诊趋势的影响[J]. 预防医学论坛, 2023, 29(5): 368-373.

[7] 常楠, 周若冰, 马德龙, 等. 新型冠状病毒肺炎疫情防控措施对中国肾综合征出血热流行的影响研究[J]. 中国媒介生物学及控制杂志, 2023, 34(1): 58-64.

[8] 王姣娥, 杜德林, 魏冶, 等. 新冠肺炎疫情的空间扩散过程与模式研究[J]. GEOGRAPHICAL RESEARCH, 2020, 39(7): 1450-1462.

[9] 肖尤丹. 新冠肺炎疫情对公共卫生应急法治的重大挑战及对策建议[J]. 中国科学院院刊, 2020, 35(3): 240-247.

[10] Feng L, Zhang T, Wang Q, et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States[J]. Nature communications, 2021, 12(1): 3249.

[11] Bundgaard H, Bundgaard J S, Raaschou-Pedersen D E T, et al. Effectiveness of adding a mask recommendation to other public health measures to prevent SARS-CoV-2 infection in Danish mask wearers: a randomized controlled trial[J]. Annals of internal medicine, 2021, 174(3): 335-343.

[12] 付卫东, 周洪宇. 新冠肺炎疫情给我国在线教育带来的挑战及应对策略[J]. 河北师范大学学报: 教育科学版, 2020, 22(2): 14-18.

[13] 张夏恒. 新冠肺炎疫情对我国中小微企业的影响及应对[J]. 中国流通经济, 2020, 34(3): 26-34.

[14] 夏杰长, 丰晓旭. 新冠肺炎疫情对旅游业的冲击与对策[J]. 中国流通经济, 2020, 34(3): 3-10.

[15] 何诚颖, 闻岳春, 常雅丽, 等. 新冠病毒肺炎疫情对中国经济影响的测度分析[J]. 数量经济技术经济研究, 2020, 37(5): 3-22.

[16] Cowling B J, Ali S T, Ng T W Y, et al. Impact assessment of non-pharmaceutical interventions against coronavirus disease 2019 and influenza in Hong Kong: an observational study[J]. The Lancet Public Health, 2020, 5(5): e279-e288.

[17] Zhang N, Jia W, Lei H, et al. Effects of human behavior changes during the coronavirus disease 2019 (COVID-19) pandemic on influenza spread in Hong Kong[J]. Clinical Infectious Diseases, 2021, 73(5): e1142-e1150.

[18] Hu C, Tang Y, Su Q, et al. Public health measures during the COVID-19 pandemic reduce the spread of other respiratory infectious diseases[J]. Frontiers in Public Health, 2021, 9: 771638.

[19] Bai B, Jiang Q, Hou J. The COVID-19 epidemic and other notifiable infectious diseases in China[J]. Microbes and Infection, 2022, 24(1): 104881.

[20] Chen B, Wang M, Huang X, et al. Changes in incidence of notifiable infectious diseases in China under the prevention and control measures of COVID-19[J]. Frontiers in public health, 2021, 9: 728-768.

[21] Ma Y, Gao S, Kang Z, et al. Epidemiological trend in scarlet fever incidence in China during the COVID-19 pandemic: A time series analysis[J]. Frontiers in Public Health, 2022, 10: 923318.

[22] 张云娜, 吕强, 李蔚, 等. 2020年四川省法定传染病疫情分析[J]. 预防医学情报杂志, 2021, 37(5): 621- 628.

[23] 蔡浪英. 2019—2020 年都江堰市法定报告传染病疫情对比分析[J]. 中国公共卫生管理, 2021, 37(4): 530-533.

[24] 丁哲渊, 吴昊澄, 吴晨, 等. 浙江省新型冠状病毒肺炎疫情应急响应期间其他法定传染病监测分析[J]. 疾病监测, 2020, 35(8): 746-752.

[25] He Y, Ma C, Guo X, et al. Collateral Impact of COVID-19 Prevention Measures on Re-Emergence of Scarlet Fever and Pertussis in Mainland China and Hong Kong China[J]. International Journal of Environmental Research and Public Health, 2022, 19(16): 9909.

[26] Marome W, Shaw R. COVID-19 response in Thailand and its implications on future preparedness[J]. International journal of environmental research and public health, 2021, 18(3): 1089.

[27] Ndeh N T, Tesfaldet Y T, Budnard J, et al. The secondary outcome of public health measures amidst the COVID-19 pandemic in the spread of other respiratory infectious diseases in Thailand[J]. Travel Medicine and Infectious Disease, 2022, 48: 102348.

[28] Hibiya K, Iwata H, Kinjo T, et al. Incidence of common infectious diseases in Japan during the COVID-19 pandemic[J]. PloS one, 2022, 17(1): e0261332.

[29] Chan C P, Wong N S, Leung C C, et al. Positive impact of measures against COVID-19 on reducing influenza in the Northern Hemisphere[J]. Journal of Travel Medicine, 2020, 27(8): taaa087.

[30] Feng L, Zhang T, Wang Q, et al. Impact of COVID-19 outbreaks and interventions on influenza in China and the United States[J]. Nature communications, 2021, 12(1): 3249.

[31] Huang Q S, Wood T, Jelley L, et al. Impact of the COVID-19 nonpharmaceutical interventions on influenza and other respiratory viral infections in New Zealand[J]. Nature communications, 2021, 12(1): 1-7.

[32] Sakamoto H, Ishikane M, Ueda P. Seasonal influenza activity during the SARS-CoV-2 outbreak in Japan[J]. Jama, 2020, 323(19): 1969-1971.

[33] Lee H, Lee H, Song K H, et al. Impact of public health interventions on seasonal influenza activity during the COVID-19 outbreak in Korea[J]. Clinical Infectious Diseases, 2021, 73(1): e132-e140.

[34] 赵晓玲, 邓瑞斌, 彭光义. 传染病的预防和控制研究[J]. 中国医药科学, 2012, 2(20): 176-177.

[35] 周宇辉. 我国传染病流行现状与防控体系建设研究[J]. 中国卫生政策研究, 2023, 16(4): 74-78.

[36] 邱昭继. 新冠肺炎对我国传染病防治法的挑战及应对[J]. 理论探索, 2021(1): 121-128.

[37] 南岩东, 王娟, 姜华, 等. 方舱医院收治无症状与轻型新型冠状病毒感染者临床特征分析[J]. 医学争鸣, 2022, 13(1): 8-11.

[38] 王浩.新冠感染暴发初期中国不同人群对新冠感染的心理反应、认知及行为调查[D].北京协和医学院,2023.

[39] 王鑫, 吴际, 刘超, 等. 基于 LSTM 循环神经网络的故障时间序列预测[J]. 北京航空航天大学学报, 2018, 44(4): 772-784.

[40] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8): 1735-1780.

[41] 刘兰苓, 孙德山. 基于最优 ARIMA 模型财政收入预测研究[J]. Advances in Applied Mathematics, 2020, 9(3): 414-420.

[42] 吴家兵, 叶临湘, 尤尔科. ARIMA 模型在传染病发病率预测中的应用[J]. 数理医药学杂志, 2007, 20(1): 90-92.

[43] Khashei M, Bijari M. An artificial neural network (p, d, q) model for timeseries forecasting[J]. Expert Systems with applications, 2010, 37(1): 479-489.

[44] 赵卫红. 福建省环境空气质量变化趋势分析及对策[J]. 中国环境管理 (吉林), 2003, 22(4): 37-38.

[45] 孙小彦, 杨永宽. 秩相关分析法在苏鲁豫皖煤田统计预测中的应用[J]. 江苏煤炭, 1995 (1): 15-18.

中图分类号:

 R181.8    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式