论文中文题名: | 煤源微生物对褐煤氧化自燃特性影响研究 |
姓名: | |
学号: | 20220226063 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085224 |
学科名称: | 工学 - 工程 - 安全工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 煤火灾害防治 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
论文提交日期: | 2023-06-20 |
论文答辩日期: | 2023-06-07 |
论文外文题名: | Study on the influence of coal-derived microorganisms on the oxidation and spontaneous combustion characteristics of lignite |
论文中文关键词: | |
论文外文关键词: | Coal spontaneous combustion ; Lignite ; Microorganism ; Functional group ; Oxidation characteristics |
论文中文摘要: |
褐煤由于变质程度低、侧链及含氧基团较丰富等特点,很容易发生氧化自燃,严重制约着煤矿安全生产,高效预防或抑制煤自燃对我国褐煤等低阶煤的安全利用至关重要。根据微生物在煤炭领域的应用研究可发现,微生物可以对煤中官能团等活性结构产生破坏,这些微观层面的变化与煤氧化自燃特性紧密相关。因此,有必要开展微生物对煤氧化自燃特性及动力学影响规律的研究,这是煤炭生物领域及煤自燃绿色阻化的一种新探索,对现有煤自燃阻化技术的补充以及新型环保生物阻化剂的开发具有着重要的意义。本文以内蒙古胜利褐煤为研究对象,从煤源中分离并驯化微生物来处理褐煤,通过扫描电子显微镜(SEM-EDS)、X射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)以及同步热分析仪(TG-DSC),系统性地研究了微生物对煤微观结构以及氧化自燃特性的影响规律。主要结果如下所示: (1)利用梯度稀释、平板划线以及分子测序等方法对褐煤煤源微生物进行了分离驯化及鉴定。结果表明,从煤源中共分离出7种微生物,依次被鉴定为烟管菌、焦曲霉菌、裂褶菌、产黄青霉菌、出芽短梗霉、贝莱斯芽孢杆菌以及佩氏葡萄球菌。经过驯化的微生物菌丝生长旺盛,菌落分散密实,最终利用驯化后的微生物对褐煤进行处理,成功制备出7种微生物处理煤样以及1组空白对照煤样。 (2)通过SEM-EDS与XRD实验,研究了煤样表面形貌、元素分布以及微晶结构的变化情况。结果表明,微生物处理后煤体表面结构层次加深,孔隙与裂隙结构增大,数量减小,煤中C元素含量变化较小,O元素含量有下降趋势。煤的XRD谱图表明煤中脂族结构减少,石墨化程度比原煤更低。微生物处理煤样的芳香层间距(d002)增加,堆砌高度(Lc)和芳香片层数(Mc)减小,煤体微晶结构单元的堆叠程度减弱,芳香层片直径(La)与煤化度(P)也有所降低。微生物对煤的微晶结构产生了溶解作用,也表明微生物能破坏煤分子结构的脂肪侧链。 (3)通过FTIR实验,分析了微生物对煤中官能团以及结构参数的影响规律。结果表明,微生物对醚氢键(OH-O)有较强的破坏能力,焦曲霉菌处理煤样(ZJ-QUMJ)的减小率高达59.48%,煤中共轭C=O、羧酸等基团含量也均有减小。微生物对煤中含氧官能团与脂肪烃的破坏效果较大,含氧基团占比最大从原煤的21.73%降低至12.69%,而对煤中芳香烃占比的增加有促进作用,表现显著的是焦曲霉菌、烟管菌、产黄青霉菌以及佩氏葡萄球菌。此外,FTIR结构参数表明煤样的有机质含量增加,脂肪烃丰度降低,脂肪链长度变短,支链数量变多,含氧官能团丰度也得到了有效降低。 (4)通过TG-DSC实验,研究了煤样氧化过程中的热失重、热效应以及动力学参数。结果表明,微生物能够增加煤的临界温度(T1),最高比原煤增加了37.89 ℃。微生物处理煤在氧化燃烧阶段的质量损失比重减小,烟管菌处理煤样(ZJ-YGJ)的质量损失从原煤的67.18%降低至56.75%,且最大失重速率值大幅降低,ZJ-YGJ较原煤减小41.31%。微生物处理煤样具有较高的吸热量,煤样放热阶段的最大放热峰值有所减小,但总热释放量无明显变化,DSC曲线上增加了第三放热峰,发生了热量补偿效用。ZJ-QUMJ等煤样的表观活化能较原煤增大,基于Bagchi法得出各煤样在氧化燃烧阶段的反应机理函数均符合Avrami-Erofeev方程,但反应级数发生了变化。 综上所述,微生物对煤初始失重以及氧化燃烧阶段的影响较大,均具有抑制效果,在7种微生物中,烟管菌与焦曲霉菌对煤样氧化进程的抑制效果较佳,微生物对煤中含氧基团、脂肪侧链等活性结构的破坏,是导致煤氧化自燃性能减弱的根本原因。 |
论文外文摘要: |
Lignite was prone to oxidative spontaneous combustion due to its low metamorphic degree, rich side chains and oxygen-containing groups, which seriously restricted the safe production of coal mines. It is very important to prevent or inhibit coal spontaneous combustion effectively for the safe utilization of low-rank coals such as lignite in China. According to the application research of microorganisms in coal field, it can be found that microorganisms can destroy the active structures such as functional groups in coal, and these micro-level changes are closely related to the oxidation and spontaneous combustion characteristics of coal. Therefore, it was necessary to study the influence of microorganisms on the oxidation characteristics and kinetics of coal, which was a new exploration in the field of coal biology and the green inhibition of coal spontaneous combustion, and was of great significance to the supplement of the existing coal spontaneous combustion inhibition technology and the development of new environmental protection biological inhibitors. In this paper, Shengli lignite in Inner Mongolia was taken as the research object, and microorganisms were separated and domesticated from coal sources to treat lignite. By means of scanning electron microscope (SEM-EDS), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR) and synchronous thermal analyzer (TG-DSC), the effects of microorganisms on coal microstructure and oxidation spontaneous combustion characteristics were systematically studied. The main results are as follows: (1)The microorganisms from lignite coal were isolated, domesticated and identified by gradient dilution, plate streaking and molecular sequencing. The results showed that seven kinds of microorganisms were isolated from coal source, which were identified as Bjerkandera adusta, Aspergillus ustus, Schizophyllum commune, Penicillium chrysogenum, Aureobasidium pullulans, Bacillus velezensis and Staphylococcus pettenkoferi in turn. Domesticated microbial hyphae grew vigorously and colonies dispersed densely. Finally, lignite was treated by domesticated microorganisms, and seven kinds of microbial treated coal samples and a group of blank control coal samples were successfully prepared. (2)The changes of surface morphology, element distribution and microcrystalline structure of coal samples were studied by SEM-EDS and XRD experiments. The results showed that after microbial treatment, the surface structure of coal body deepened, the structure of pores and cracks increased, and the number decreased. The content of C element in coal changed little, and the content of O element decreased. The XRD spectrum of coal showed that the aliphatic structure in coal decreased and the graphitization degree was lower than that of raw coal. The spacing (d002) between aromatic layers of coal samples treated by microorganisms increased, the stacking height (Lc) and the number of aromatic layers (Mc) decreased, the stacking degree of coal microcrystal structural units weakened, and the diameter (La) and coalification degree of aromatic layers also decreased. Microorganisms had dissolved the microcrystalline structure of coal, which also showed that microorganisms could destroy the fatty side chain of coal molecular structure. (3)Through FTIR experiments, the influence of microorganisms on functional groups and structural parameters in coal was analyzed. The results showed that microorganisms had strong destructive ability to ether hydrogen bonds (OH-O), and the reduction rate of coal sample (ZJ-QUMJ) treated by Aspergillus ustus was as high as 59.48%, and the contents of conjugated C=O, carboxylic acid and other groups in coal were also reduced. Microbes had a great destructive effect on oxygen-containing functional groups and aliphatic hydrocarbons in coal, and the largest proportion of oxygen-containing groups decreased from 21.73% of raw coal to 12.69%, while it promoted the increase of aromatic hydrocarbons in coal. The above performances were obvious, such as Aspergillus ustus, Bjerkandera adusta, Penicillium chrysogenum and Staphylococcus pettenkoferi. In addition, FTIR structural parameters showed that the content of organic matter in coal samples increased, the abundance of aliphatic hydrocarbons decreased, the length of aliphatic chains became shorter, the number of branched chains increased, and the abundance of oxygen-containing functional groups also decreased effectively. (4)Through TG-DSC experiment, the thermal weight loss, thermal effect and kinetic parameters of coal sample during oxidation were studied. The results showed that microorganism could increase the critical temperature T1 of coal, which was 37.89 ℃ higher than that of raw coal. The proportion of mass loss of coal treated by microorganism in the oxidation combustion stage was reduced. The mass loss of coal sample treated by Bjerkandera adusta (ZJ-YGJ) was reduced from 67.18% to 56.75% of that of raw coal, and the maximum weight loss rate was greatly reduced. ZJ-YGJ was 41.31% lower than that of raw coal. Microbial treatment of coal samples had higher heat absorption, and the maximum heat release peak of coal samples was reduced, but the total heat release did not change significantly. The third heat release peak was added to the DSC curve, and the heat compensation effect occurred. The apparent activation energy of ZJ-QUMJ and other coal samples was higher than that of raw coal. Based on Bagchi method, the reaction mechanism function of each coal sample in the oxidation combustion stage was in accordance with Avrami-Erofeev equation, but the reaction order changed. To sum up, microorganisms had a great influence on the initial weight loss of coal and the oxidation combustion stage, and both of them had inhibitory effects. Among the seven kinds of microorganisms, the Bjerkandera adusta and Aspergillus ustus had better inhibition effect on the oxidation process of coal samples, and the destruction of active structures such as oxygen-containing groups and fatty side chains in coal by microorganisms was the fundamental reason for the weakening of coal oxidation spontaneous combustion performance. |
参考文献: |
[2] 丁肖肖, 李洪娟, 王亚涛. 褐煤低温热解分级利用现状分析及展望[J]. 洁净煤技术, 2019, 25(05): 1-7. [3] 李鑫, 李臣威, 张海军, 等. 浅析我国褐煤应用现状及问题研究[J]. 应用化工, 2020, 49(05): 1226-1230. [4] 朱书全. 褐煤提质技术开发现状及分析[J]. 洁净煤技术, 2011, 17(1): 1-4. [5] 郝建秀, 丁志伟, 刘倩, 等. 褐煤解聚产物利用及分离研究进展[J]. 煤炭学报, 2022, 47(04): 1679-1691. [7] 徐英, 秦晓伟, 张国杰, 等. 褐煤干燥提质技术研究进展[J]. 天然气化工(C1化学与化工), 2019, 44(06): 130-136. [9] 康德. 煤炭生物转化技术研究进展[J]. 煤炭加工与综合利用, 2015(1): 50-54. [10] 张明旭, 欧泽深, 王龙贵. 煤的生物溶解产物在制备水煤浆中的应用[J]. 选煤技术, 2007(4): 30-32. [11] 陈慧, 陶秀祥, 石开仪, 等. 褐煤生物转化及其研究展望[J]. 洁净煤技术, 2008, 14(5): 39-42. [12] 王龙贵, 张明旭, 欧泽深, 等. 生物技术在煤炭加工处理中应用[J]. 煤质技术, 2004 (2/3): 61-63. [13] 王静. 微生物降解宝鸡麟游长焰煤的实验研究[D]. 西安: 西安科技大学, 2016. [14] 李建涛, 刘向荣, 皮淑颖, 等. 山西临汾褐煤微生物降解工艺条件的优化[J]. 煤炭转化, 2017, 40(02): 65-72. [15] 尹苏东, 陶秀祥. 微生物溶煤研究进展[J]. 洁净煤技术, 2005(4): 34-38. [16] 王龙贵. 煤炭的微生物转化与利用[M]. 北京: 化学工业出版社, 2006. [18] 康红丽, 刘向荣, 赵顺省, 等. 4种细菌降解内蒙古赤峰褐煤的实验研究[J]. 煤炭技术, 2019, 38(10): 130-133. [19] 梅娟. 真菌处理高汞煤过程中汞元素的形态迁移特征研究[D]. 徐州: 中国矿业大学, 2020. [20] 邓军, 张嬿妮. 煤自然发火微观机理[M]. 徐州: 中国矿业大学出版社, 2015. [24] 邓存宝. 煤的自燃机理及自燃性危指数研究[D]. 阜新: 辽宁工程技术大学, 2006. [25] 王晓东. 基于热动力学分析煤自燃特性研究[D]. 天津:天津理工大学, 2020. [26] 秦波涛, 仲晓星, 王德明, 等. 煤自燃过程特性及防治技术研究进展[J]. 煤炭科学技术, 2021, 49(01): 66-99. [29] 肖旸, 徐凡, 张浩, 等. 离子液体[BMIM][BF4]浸泡时间对煤微观活性结构的影响[J]. 西安科技大学学报, 2021, 41(03): 394-401. [30] 戴广龙. 煤低温氧化过程中微晶结构变化规律研究[J]. 煤炭学报, 2011, 36(2): 322-325. [32] 王彩萍, 邓军, 王凯. 不同煤阶煤氧化过程活性基团的红外光谱特征研究[J]. 西安科技大学学报, 2016, 36(03): 320-323. [34] 白刚, 周西华, 宋东平, 等. 不同变质程度煤燃烧特性及动力学参数研究[J]. 中国安全科学学报, 2017, 27(09): 63-68. [37] 李建涛, 刘向荣, 黄璐, 等. 内蒙胜利褐煤微生物降解工艺条件优化[J]. 煤炭技术, 2017, 36(07): 266-268. [38] 石开仪, 陶秀祥, 尹苏东, 等. 抚顺褐煤的微生物溶煤[J]. 中国矿业大学学报, 2007, 36(3): 339-342. [39] 牛显, 牛煜, 索永录. 本源菌降解褐煤的生物学特性及微观结构分析[J]. 西安科技大学学报, 2021, 41(05): 836-844. [40] 杨杰, 刘向荣, 徐云龙. 多噬香鞘氨醇单胞菌降解陕西神府褐煤的工艺条件及产物研究[J]. 煤炭转化, 2021, 44(02): 62-70. [42] 王英, 王力, 王学民. 微生物溶煤产物的分析[J]. 湿法冶金, 2006, 25(3): 165-168. [43] 汪少洁. 白腐菌降解转化低阶煤的试验及机理研究[D]. 武汉: 华中科技大学,2008. [44] 佟威, 赵秀深, 孙玉梅, 等. 云芝培养胞外液溶煤产物的应用[J]. 煤炭转化, 1996, 19(4): 62-67. [45] 王龙贵, 张明旭, 欧泽深, 等. 白腐真菌对煤炭的降解转化试验[J]. 煤炭学报, 2006, 31(2): 241-244. [46] 袁红莉, 陈文新. 煤的微生物液化[J]. 微生物学通报, 1997, 24(5): 284-286. [47] 杨金水, 倪晋仁. 褐煤的微生物洁净化技术研究[J]. 洁净煤技术, 2005, 13(3): 69-72. [48] 张昕, 林启美, 赵小蓉. 风化煤的微生物转化:I菌种的筛选及转化能力测定(待续)[J]. 腐殖酸, 2002, 7: 18-23. [49] 柳丽芬, 阳卫军, 成莹, 等. 鹤岗风化煤的微生物降解研究[J]. 大连理工大学学报. 1996, 36(4): 434-438. [50] 石开仪, 陶秀祥, 洪芬芬. 煤炭液化真菌的鉴定及其对煤炭的液化[J]. 科技致富向导, 2011(9): 11-12. [51] 赵帅伟, 潘结南. 不同来源微生物的溶煤效果分析[J]. 中国煤炭, 2014(11): 84-87. [52] 冯晓霄, 杨红梅, 张涛, 等. 新疆低阶煤微生物转化菌种的选育及转化能力测定[J]. 新疆农业科学, 2014, 51(3): 511-516. [53] 冯晓霄. 新疆低阶煤微生物液化研究[D]. 乌鲁木齐: 新疆大学,2014. [54] 邵雪嫚. 煤炭及含硫模型化合物生物降解转化的研究[D]. 淮南: 安徽理工大学, 2016. [55] 王爱梅, 王龙贵. 球红假单胞菌诱变育种及用于煤炭降解转化试验研究[J]. 煤质技术, 2006, (2): 23-25. [56] 徐敬尧, 张明旭. 球红假单胞菌的微波诱变及对煤炭转化的影响[J]. 煤炭科学技术, 2009, 378(5): 125-128. [57] 徐敬尧. 煤炭生物降解转化新菌种基因工程的构建研究[D]. 淮南: 安徽理工大学, 2013. [58] 王德强. 脱硫微生物的菌种驯化培养[J]. 煤化工, 2008(3): 56-59. [59] 孙景红. 木霉菌的筛选及其对山西褐煤生物降解机理[D]. 天津: 天津理工大学, 2021. [60] 李建涛, 刘向荣, 杨杰, 等. 真菌筛选及降解光-氧氧化褐煤工艺条件优化研究[J]. 矿产综合利用, 2020, No.225(05): 82-86+157. [61] 张明旭, 徐敬尧, 欧泽深. 几种真菌对煤炭的固体溶煤转化研究[J]. 安徽理工大学学报(自然科学版), 2008, 28(04): 58-61. [64] 李建涛, 刘向荣, 皮淑颖, 等. 放线菌降解云南昭通褐煤工艺条件优化研究[J]. 应用化工, 2017, 46(09): 1683-1687+1691. [65] 王春颖, 田瑞华, 段开红, 等. 一株放线菌降解风化煤的工艺研究[J]. 内蒙古农业大学学报(自然科学版), 2011, 32(02): 166-169. [67] 易欣, 张少航, 葛龙, 等. 好氧微生物抑制煤自燃机理研究现状及展望[J]. 洁净煤技术, 2023, 29(02): 198-205. [68] 张羽, 马爱进, 高利芬, 等. 微生物资源分子鉴定技术的研究进展[J]. 中国工程科学, 2021, 23(05): 86-93. [69] 蔡海莺, 张婷, 沈灵智, 等. 甜米酒酒曲微生物分离和菌种鉴定[J]. 食品研究与开发, 2019, 40(24): 204-210. [70] 胡双, 李海峰, 符加珂, 等. 酸面团中微生物基因组DNA提取方法的优化[J]. 河南工业大学学报(自然科学版), 2021,42(03): 38-43+92. [71] 阳卫军, 彭长宏. 煤的微生物转化[J]. 现代化工, 2001, 21(6): 12-15. [72] 王英. 煤的微生物溶解及液化机理的研究[D]. 青岛: 山东科技大学, 2006. [73] 胡婷婷, 张梦君, 朱振宇, 等. 生物技术在煤炭清洁化利用中的应用[J]. 煤炭加工与综合利用, 2018, (1): 76-80. [74] 李建涛, 刘向荣, 皮淑颖, 等. 煤的微生物转化研究进展[J]. 西安科技大学学报, 2017, 37(01): 106-120. [76] 王满, 王英伟. 平顶山矿区煤体微观结构的扫描电镜分析[J]. 煤矿安全, 2014, 45(07): 169-171 [77] 郑鑫, 由吉春, 朱雨田, 等. 扫描电镜技术在高分子表征研究中的应用[J]. 高分子学报, 2022, 53(05): 539-560. [78] 陈佳阳, 陈耀文. SEM/EDS快速检测分散在预涂层中的纳米SiO2[J]. 电子显微学报, 2020, 39(02): 214-217. [79] 何勇军. 水浸烟煤低温氧化过程中微观结构变化规律研究[D]. 西安: 西安科技大学, 2016. [80] 臧静坤, 程伟. 煤炭微生物脱硫研究进展[J]. 洁净煤技术, 2020, 26(S1): 26-34. [82] 张嬿妮. 煤氧化自燃微观特征及其宏观表征研究[D]. 西安: 西安科技大学, 2012. [84] 侯亚男. 抗氧化剂阻化煤自燃及动力学机理研究[D]. 西安: 西安科技大学, 2021. [86] 王凯. 陕北侏罗纪煤低温氧化反应性及动力学研究[D]. 西安: 西安科技大学, 2015. [87] 张国枢, 谢应明, 顾建明. 煤炭自燃微观结构变化的红外光谱分析[J]. 煤炭学报, 2003, 28(5): 473~476. [93] 庞攀, 肖旸, 刘昆华, 等. 煤质活性炭氧化自燃热失重及传热特性研究[J]. 煤矿安全, 2020, 51(12): 33-39. [94] 张玖. 热处理对含碳耐火材料的性能影响及机理研究[D]. 沈阳: 东北大学, 2012. [96] 张玉涛, 史学强, 李亚清, 等. 锌镁铝层状双氢氧化物对煤自燃的阻化特性[J]. 煤炭学报, 2017, 42(11): 2892–2899. [98] 吕慧菲. 咪唑类离子液体抑制煤自燃热效应及动力学研究[D]. 西安: 西安科技大学, 2018. |
中图分类号: | TD752.2 |
开放日期: | 2023-06-20 |