- 无标题文档
查看论文信息

题名:

 电流控制全桥LLC谐振变换器研究与设计    

作者:

 李帮主    

学号:

 21206227126    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 085800    

学科:

 工学 - 能源动力    

学生类型:

 硕士    

学位:

 工程硕士    

学位年度:

 2024    

学校:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 开关电源    

导师姓名:

 刘树林    

导师单位:

 西安科技大学    

第二导师姓名:

 王传良    

提交日期:

 2024-06-26    

答辩日期:

 2024-06-05    

外文题名:

 Research and design of current-controlled full-bridge LLC resonant converter    

关键词:

 LLC谐振变换器 ; 动态性能 ; 电流控制 ; 软开关    

外文关键词:

 LLC resonant converter ; Dynamic response ; Current mode control ; Soft switching    

摘要:

LLC谐振变换器作为一种高效率、高功率密度的开关变换器,在现代电力电子技术中具有广泛的应用场合。但在服务器电源等特殊场合,对系统的动态响应提出了更高的要求,而目前常用的单电压环控制方法存在闭环动态响应差等问题,为此,本文对LLC变换器的电流控制方法及其数字实现方式进行研究,对于提高LLC变换器的动态响应性能具有重要意义。

首先,对全桥LLC谐振变换器的工作原理和特性进行了分析,使用基波近似法搭建近似等效模型,对谐振腔参数和开关频率归一化处理后,利用Maple绘制的变换器增益曲线研究品质因数Q和电感比Ln对电路的影响,并对电压控制策略进行了分析。然后对电流控制策略的工作原理进行了详细的研究,并对该种控制方法下电路稳态特性和动态特性进行分析。随后利用拓展描述函数法建立了变换器的小信号模型,将得到的高阶模型在谐振点处中低频段等效简化,推导了二阶小信号模型,利用扫频法对简化后的模型精确度检验,验证了简化模型的实用性和可靠性。接着对电流控制环路进行分析,得到了相应的控制-输出电压传递函数和环路增益表达式,分析了关键参数积分电容的大小对电路性能影响的趋势,通过对两种控制手段的环路增益Bode图比较,证明了电流控制策略的动态性能优于单电压控制方法。

最后,搭建了变换器的闭环仿真模型和实验样机,两种控制方式稳态响应证明参数设计的合理性和理论分析的正确性,动态响应表明:当负载跳变时,电流控制的负载瞬态响应速度比单电压控制提升了一个数量级,输出电压在数个开关周期左右便能稳定,大大降低了后级变换器因前级动态性能差而损坏的风险。

外文摘要:

The LLC resonant converter, as a high efficiency, high power density switching converter, has a wide range of applications in modern power electronics.. However, special occasions such as server power supplies have put forward higher requirements for the dynamic response of the system, and the currently commonly used voltage-type control has problems such as poor closed-loop dynamic response. For this reason, this article discusses the current control method of LLC converter and its digital implementation. Research in this way is of great significance for improving the dynamic response performance of LLC converter.

First, the operating principle and characteristics of the full-bridge LLC resonant converter are analyzed, an approximate equivalent model is constructed using the fundamental wave approximation method, and after normalizing the resonant cavity parameters and the switching frequency, the Maple-drawn gain curves of the converter are used to study the effects of the quality factor Q and the inductance ratio Ln on the circuit. Then the working principle and control flow of the current-type control method are studied in detail, and the dynamic characteristics of this control method are analyzed when the input voltage and load are perturbed. Subsequently, a small-signal model of the converter was developed using the expanded describing function method, and the obtained high-order model is simplified equivalently in the middle and low frequency bands at the resonance point to derive a second-order small-signal model, and the accuracy of the simplified model is examined by using the frequency sweep method, which verifies the practicability and reliability of the model. Then the current control loop is analysed, the corresponding control-output voltage transfer function and loop gain expression are obtained, the trend of the effect of the size of the key parameter integrating capacitance on the circuit performance is analysed, and by comparing the loop gain Bode plots of the two control means, it is demonstrated that the dynamic performance of the current control strategy is superior to that of the single-voltage control method.

Finally, the simulation model and experimental prototype of the converter are built. The simulation and experimental results of the dynamic response of the two control modes show that when the load jumps, the current-type control improves the load transient response speed by an order of magnitude compared with the voltage-type control, and the output voltage can be stabilized in a few switching cycles, which greatly reduces the risk of the damage of the back-end converter due to the poor dynamic performance of the front-end.

参考文献:

[1]Robert W E, Dragan M. Fundamentals of power electronics[M]. Kluwer Academic Publishers, 2001.

[2]唐建山,林国庆.脉宽调制DC/DC全桥变换器软开关技术的研究[J].电工电气,2009,(04):37-40.

[3]Zeng J, Zhang G, Yu S S, et al. LLC resonant converter topologies and industrial applications—A review[J]. Chinese Journal of Electrical Engineering, 2020, 6(3): 73-84.

[4]廖志凌,潘骁,顾赟,等.一种新型车载宽输出范围LLC谐振变换器[J].电力电子技术,2023,57(07):107-112.

[5]刘松林,潘健,陈庆东.用于车载充电机的谐振变换器及其控制策略研究[J].电源学报,2023,21(02):29-37.

[6]丁超,李勇,姜利,等.电动汽车直流充电系统LLC谐振变换器软开关电压边界分析[J].电工技术学报,2022,37(01):3-11.

[7]Baek J B, Kim J T, Cho B H. Low-profile AC/DC converter for laptop adaptor[C]//2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2011: 60-64.

[8]Demirel I, Erkmen B. A very low-profile dual output LLC resonant converter for LCD/LED TV applications[J]. IEEE Transactions on Power Electronics, 2013, 29(7): 3514-3524.

[9]肖灿坤,钱挺.用于光伏发电的级联谐振变换器效率优化研究[J].电力电子技术,2022,56(09):66-69.

[10]Ahmed M H, Nabih A, Lee F C, et al. High-efficiency, high-density isolated/regulated 48V bus converter with a novel planar magnetic structure[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2019: 468-475.

[11]Nabih A, Ahmed M, Li Q, et al. Simplified optimal trajectory control for 1 MHz LLC converter with wide input voltage range[C]//2019 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2019: 212-219.

[12]林辉品.宽范围LLC谐振变换器的研究[D].杭州:浙江大学,2019.

[13]Yang B. Topology investigation for front end DC/DC power conversion for distributed power system[D]. Virginia Polytechnic Institute and State University, 2003.

[14]俞珊.一种快速动态响应的LLC变换器控制策略[J].电子器件,2022,45(02):305-310.

[15]Wei Y, Mantooth A, Luo Q, et al. Control strategies generation mechanism for LLC resonant converter[C]//2020 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2020: 2892-2897.

[16]Cao Q, Li Z, Wang H. Wide voltage gain range LLC DC/DC topologies: State-of-the-art[C]//2018 International Power Electronics Conference (IPEC-Niigata 2018-ECCE Asia). IEEE, 2018: 100-107.

[17]Lu B, Liu W, Liang Y, et al. Optimal design methodology for LLC resonant converter[C]//Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, 2006. APEC'06. IEEE, 2006: 6 pp.

[18]金涛,肖晓森,张钟艺,等.基于宽范围增益和效率的LLC谐振变换器设计方法[J].电机与控制学报,2023,27(10):108-119.

[19]Yang R, Mcdonald B, Li Y. A Practical Analytical Small Signal Mode Applied for the LLC Converter Based on Hybrid Hysteretic Charge Control[C] // 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), November 4-7, 2018, Shenzhen, China. IEEE. 2018:1-8.

[20]马建光.LLC半桥谐振变换器及其应用研究[D].北京:北京交通大学,2019.

[21]邹颖.基于Floquet理论的LLC谐振变换器稳定性分析及改善[D].北京:北京交通大学,2020.

[22]Fei C, Lee F C, Li Q. Digital Implementation of Soft Start-Up and Short-Circuit Protection for High-Frequency LLC Converters with Optimal Trajectory Control (OTC)[J]. IEEE Transactions on Power Electronics, 2017, 32(10):8008-8017.

[23]殷起明,王志刚,周玲,等.全桥LLC谐振变换器的轻载时域模型[J].电力电子技术,2019,53(12):4-8.

[24]史永胜,李利,田卫东,等.宽范围输入高效LLC谐振变换器的研究[J].电子器件,2017,40(1):256-261.

[25]朱建华,罗方林.功率谐振变换器及其发展方向[J].电工电能新技术,2004(01):55-59.

[26]李杰.半桥LLC谐振变换器的研究[D].北京交通大学,2018.

[27]谢华林.LLC谐振变换器的研究[D].华南理工大学,2010.

[28]Agarwal V, Bhat A K S. Large signal analysis of the LCC-type parallel resonant converter using discrete time domain modeling[J]. Power Electronics, IEEE Transactions on, 1995, 10(2):222-238.

[29]Severns R. Topologies for three element resonant converters[C] // 1990 Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition, March 11-16, 1990, Los Angeles, CA, USA. IEEE. 1990:712-722.

[30]高亚男.高效率快速动态响应LCC谐振变换器研究[D].西南交通大学,2020.

[31]Bhat A K S, Dewan S B. Analysis and design of a high-frequency resonant converter using LCC-type commutation[J]. IEEE transactions on Power Electronics, 1987 (4): 291-301.

[32]Chen H, Sng E K K, Tseng K J. Optimum trajectory switching control for series-parallel resonant converter[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1555-1563.

[33]战丽娜.基于扩展描述函数法的LLC谐振变换器建模[D].青岛大学,2014.

[34]Sewell H I, Foster M P, Bingham C M, et al. Analysis of voltage output LCC resonant converters, including boost mode operation[J]. IEE Proceedings-Electric Power Applications, 2003, 150(6): 673-679.

[35]Steigerwald R L. A comparison of half-bridge resonant converter topologies[J]. IEEE transactions on Power Electronics, 1988, 3(2): 174-182.

[36]Vorperian V, Cuk S. A complete DC analysis of the series resonant converter[C]//1982 IEEE Power Electronics Specialists conference. IEEE, 1982: 85-100.

[37]Groves J. Small-signal analysis using harmonic balance methods[C]//PESC'91 Record 22nd Annual IEEE Power Electronics Specialists Conference. IEEE, 1991: 74-79.

[38]Cheng B, Musavi F, Dunford W G. Novel small signal modeling and control of an LLC resonant converter[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE, 2014: 2828-2834.

[39]Stahl J, Hieke T, Oeder C, et al. Small signal analysis of the resonant LLC converter[C]//2013 IEEE ECCE Asia Downunder. IEEE, 2013: 25-30.

[40]Yang B, Lee F C, Jovanovic M. Small-signal analysis for LLC resonant converter[C]//Cpes Seminar. 2003, 7(3): 144-149.

[41]Huang H. Feedback loop design of an LLC resonant power converter[J]. Application Report, Texas Instruments, 2010.

[42]Chang C H, Chang E C, Cheng C A, et al. Small signal modeling of LLC resonant converters based on extended describing function[C]//2012 International Symposium on Computer, Consumer and Control. IEEE, 2012: 365-368.

[43]Buccella C, Cecati C, Latafat H, et al. Linearization of LLC resonant converter model based on extended describing function concept[C]//2013 IEEE International Workshop on Inteligent Energy Systems (IWIES). IEEE, 2013: 131-136.

[44]Zahid Z U, Lai J S J, Huang X K, et al. Dam impact on dynamic analysis of LLC resonant converter[C]//2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014. IEEE, 2014: 2834-2841.

[45]Buccella C, Cecati C, Latafat H, et al. Observer-based control of LLC DC/DC resonant converter using extended describing functions[J]. IEEE Transactions on Power Electronics, 2014, 30(10): 5881-5891.

[46]Yin Y, Zane R, Glaser J, et al. Small-signal analysis of frequency-controlled electronic ballasts[J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2003, 50(8): 1103-1110.

[47]Tian S. Equivalent circuit model of high frequency PWM and resonant converters[D]. Virginia Tech, 2015.

[48]Tian S, Lee F C, Li Q. Equivalent circuit modeling of LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2020, 35(8): 8833-8845.

[49]蒋正荣,牛冰月.LLC谐振变换器分析及控制方法综述[J].电子测试,2021, (19):63-65.

[50]赵升.双频率控制LLC谐振变换器研究[D].四川:西南交通大学,2014.

[51]赵升,贺明智,陈章勇,等.双频率控制LLC谐振变换器分析与设计[J].电力电子技术,2014, 48(4):74-76.

[52]Jang J, Joung M, Choi S, et al. Current Mode Control for LLC Series Resonant DC-to-DC Converters[C] // 2011 Twenty-Sixth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), March 6-11, 2011, Fort Worth, TX, USA. IEEE. 2011:21-27.

[53]Hu Z, Wang L, Liu Y F, et al. Bang-Bang Charge Control for LLC Resonant Converters[J]. IEEE Transactions on Power Electronics, 2015, 30(2):1093-1108.

[54]Feng W, Lee F C, Mattavelli P. Simplified Optimal Trajectory Control (SOTC) for LLC Resonant Converters[J]. IEEE Transactions on Power Electronics, 2013, 28(1):457-466.

[55]Ma, Liu, Guo. A sliding-mode control scheme for LLC resonant DC/DC converter with fast transient response[C]// Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada : IEEE ,2012:162-167.

[56]王义普. LLC谐振式数字电源的技术改进研究与实现[D].大连理工大学,2023.

[57]苏祺钧. LLC 谐振变换器高性能控制策略研究[D].山东大学,2022.

[58]Tang W, Lee F C, Ridley R B, et al. Charge control: modeling, analysis and design[C]//PESC'92 Record. 23rd Annual IEEE Power Electronics Specialists Conference. IEEE, 1992: 503-511.

中图分类号:

 TM46    

开放日期:

 2027-06-26    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式