论文中文题名: |
毛乌素沙地风积砂混凝土力学特性及 冻融盐蚀劣化机理研究
|
姓名: |
李玉根
|
学号: |
18104053008
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085213
|
学科名称: |
工学 - 工程 - 建筑与土木工程
|
学生类型: |
博士
|
学位级别: |
工学博士
|
学位年度: |
2021
|
培养单位: |
西安科技大学
|
院系: |
建筑与土木工程学院
|
专业: |
建筑与土木工程
|
研究方向: |
混凝土耐久性
|
第一导师姓名: |
张慧梅
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2021-06-16
|
论文答辩日期: |
2021-05-30
|
论文外文题名: |
Research on Mechanical Properties and Deterioration Mechanism of Aeolian Sand Concrete under Freeze-thaw and Salt Corrosion Environment in Mu Us Sandy Land
|
论文中文关键词: |
风积砂混凝土 ; 力学特性 ; 冻融盐蚀 ; 耐久性 ; 劣化机理 ; 水分传输 ; 冻胀破坏模型 ; 寿命预测
|
论文外文关键词: |
Aeolian sand concrete ; Mechanical properties ; Freeze-thaw and salt corrosion ; Durability ; Deterioration mechanism ; Moisture transmission ; Frost heave failure model ; Life prediction
|
论文中文摘要: |
︿
随着基建规模的不断扩大,建筑用砂需求量与日俱增。但优质用砂资源面临枯竭,导致建设成本不断上涨,探究建筑用砂新来源成为混凝土工程领域亟待解决的问题。风积砂在全球储量丰富,开采方便、造价低廉,应用前景广泛。以毛乌素沙地地表风积砂为原材料试配混凝土,研究了风积砂掺量对混凝土力学性能的影响规律,结合扫描电镜(SEM)、核磁共振(NMR)及X射线断层扫描(X-CT)等物理表征技术,X射线单晶衍射(XRD)、原位红外光谱(FT-IR)等化学表征技术,从物理、化学角度多尺度揭示了影响机理。模拟不同服役工况开展了风积砂混凝土耐久性劣化试验,分析了质量、动弹性模量及抗压强度等宏观性能劣化规律;结合SEM、NMR、XRD等表征手段,揭示了孔隙结构、界面过渡区(ITZ)、水化产物形貌及物相组成等微观指标演化规律。基于一维毛细吸水理论及多孔弹性介质理论,构建了水分传输模型及冻胀破坏力学模型,分析了冻融作用下风积砂混凝土吸水特性及冻结应力演化规律,阐明了冻融盐蚀劣化机理;结合室内外冻融试验确立了寿命预测模型,为风积砂混凝土在沙漠地区基建中推广使用提供服务。主要研究内容及结论如下:
(1)研究了风积砂掺量对混凝土塌落度及抗压强度的影响规律,从多尺度揭示了影响机理。结果表明,适量风积砂代替河砂可以配制出工作性能及基本力学性能可靠的风积砂混凝土,本研究中最优掺量为20-30%。风积砂影响混凝土力学特性的物理机理在于其粒径细小,表面浑圆,掺入后改善了细骨料的颗粒级配,减轻了“微区泌水”及“边界”效应,改善了ITZ结构;化学机理在于其呈弱碱性,有化学活性及异相成核效应,可与水泥水化产物发生二次水化反应,改变了水化产物的化学结构(官能团)及微观形貌,减小了混凝土内部的初始缺陷。在此基础上,定义了有害孔隙率,发现了有害孔隙率与混凝土抗压强度间的线性关系,构建了考虑风积砂化学活性或砂子细度模数影响的混凝土强度预测模型,较好地预测了风积砂混凝土早期强度发展规律。
(2)开展了水冻、气冻气融、冻融盐蚀(3%NaCl溶液)作用下风积砂混凝土耐久性试验,从物理、化学角度多尺度揭示了耐久性劣化机理。结果表明,在水冻工况下,混凝土的损伤是“力-热-渗流”三场耦合的结果,以物理损伤为主,化学作用微弱,外界持续不断的水分传输是造成混凝土冻融劣化的根本原因。100%掺量风积砂混凝土力学性能较差,但抗冻性能最优越。由冻融盐蚀造成的混凝土损伤是一个物理-化学过程。盐溶液进入混凝土内部后既可与水化产物发生复杂的化学反应,生成腐蚀性产物Friedel盐,又可在低温下以晶体形式析出,从而使混凝土冻融损伤加剧。在冻融循环次数一定的情况下,混凝土在各种介质中的损伤程度依次为3% NaCl>清水>空气(气冻气融)。在氯盐长期浸泡下,风积砂混凝土质量及相对动弹性模量相对较为稳定,经浸泡后混凝土内部小尺寸孔隙有减小趋势。
(3)分析了冻融损伤风积砂混凝土吸水特性演化规律,基于一维毛细吸水理论确立了水分传输模型;基于多孔弹性介质理论及孔隙相对饱和度确立了冻胀破坏力学模型,分析了冻结应力演化规律。结果表明,损伤混凝土的吸水系数、吸水深度及孔隙饱水速度均随冻融循环次数的增大而增大,毛细吸水曲线呈现典型的“双线性”特征。混凝土冻融损伤速度随孔隙饱和速度及相对饱和度的增大而增大,随风积砂掺量的增大而减小。冻结应力是水-冰相变导致的体积膨胀及过冷现象造成的水分迁移产生的结晶压力、静水压力等共同作用的结果,其值大小与孔隙结构及相对饱和度、液相饱和度及过冷度密切相关。孔径尺寸及相对饱和度越大、液相饱和度越小,冻结应力越大,混凝土的冻融损伤速度越快,损伤越严重。
(4)开展了自然暴露试验,模拟了季冻区半干旱气候条件下混凝土结构冻融劣化规律,基于最冷月(1月)气象条件及室内外冻融损伤等效机制,确立了自然服役寿命预测模型。结果表明,在陕北地区,混凝土在一个受冻龄期内大约经历了118次自然冻融循环,相当于室内清水介质中快速冻融12.66次。质量损失率、动弹性模量损失率等耐久性评价指标劣化行为与外界环境湿度(影响空气-混凝土界面处水分传输方向)密切相关。经历一个受冻龄期后,风积砂混凝土质量、动弹性模量及抗压强度损失较小。基于质量损失率及动弹性模量损失率均可预测混凝土的服役寿命。据预测,水下风积砂混凝土结构在陕北地区的自然冻融寿命为21年左右,水上结构的自然冻融寿命在54.96-61.56年间。
﹀
|
论文外文摘要: |
︿
With the continuous expansion of the scale of infrastructure construction, the demand of sand for building is increasing day by day. However, the high-quality sand resources are facing depletion, which leads to the rising of construction costs. Therefore, it is of great importance to explore new sand sources for the field of concrete engineering. The aeolian sand, which is widely distributed around the world, can become a green resource after the processes of reasonable utilization due to its convenient mining and low cost. In this paper, the aeolian sand on the surface of Mu Us sand land was used as raw material to product concrete, and the influence of aeolian sand content on the mechanical properties of concrete was studied, as well as its influence mechanism was revealed combining with the physical characterization techniques such as SEM, NMR and X-CT, and the chemical ones of X-ray single crystal diffraction (XRD) and in situ infrared spectrometer (FT-IR) from multi-scale. Meanwhile, the durability deterioration tests of aeolian sand concrete were carried out to simulate different service conditions, the deterioration laws of macroscopic properties such as mass, dynamic elastic modulus and compressive strength were analyzed; the evolution of pore structure, interfacial transition zone (ITZ), morphology and phase composition of hydration products were characterized by the SEM, NMR, XRD and other equipment. At the same time,
the water transport model and frost heave failure mechanical model were established based on the one-dimensional capillary water absorption theory and porous elastic media theory, the water absorption characteristics and freezing stress evolution of aeolian sand concrete under freeze-thaw action were analyzed, and the degradation mechanism of freeze-thaw and salt erosion was revealed. In addition, a life prediction model was established to predict the service life of aeolian sand concrete based on the indoor and outdoor tests results to provide services for the promotion and use of aeolian sand concrete in infrastructure construction in desert areas, and the main research contents and conclusions are as follows:
The influence of aeolian sand content on the slump and compressive strength of concrete was studied, and its mechanism was revealed from multi-scale. The results show that using a proper amount of aeolian sand to take the place of river sand can configure aeolian sand concrete that has reliable workability and mechanical properties, and the best content is 20-30%. The physical mechanism of aeolian sand affecting the mechanical properties of concrete lies in its small particle size and low surface friction. It can perfect the particle gradation of fine aggregates, reduce both the effects of "micro-zone bleeding" and "boundary" and strengthen the ITZ structure. The chemical mechanism is that it is weakly alkaline, and the small particles have active and heterogeneous nucleation effects, which can have secondary hydration reactions with the cement hydration products, thereby changing the chemical structure (functional groups) and microscopic morphology of hydration products and reducing the initial defects inside the concrete. Then, the harmful pore rate was defined, the linear relationship between it and concrete strength was found, and the concrete strength prediction model was established by considering the influence of the chemical activity of aeolian sand or the fineness modulus of sand, which can better predict the early strength development law of aeolian sand concrete.
The durability degradation test of aeolian sand concrete with the environments of freeze-thaw in water and air, as well as freeze-thaw and salt corrosion (3%NaCl solution) were carried out to analyze its durability degradation law, and the damage mechanism was revealed from the physical, chemical points of view and multi-scale. The results indicate that the damage of concrete is the result of the coupling of "force - heat - flow", and the concrete mainly exhibits physical damage and weak chemical damage when subjected to freeze-thaw cycles in water. The continuous moisture transmission from the outside is the fundamental reason of concrete freeze-thaw deterioration. The concrete with aeolian sand content of 100% has the worst mechanical properties but best frost resistance. The damage of concrete caused by the freeze-thaw and salt corrosion is a physical-chemical process. On the one hand, part of NaCl in concrete has a complex chemical reaction with the hydration products to form the corrosive product Friedel salt. On the other hand, part precipitates in the form of crystals at the low temperatures, thus aggravated the freeze-thaw damage of concrete. The freeze-thaw damage degree of concrete in various media is 3% NaCl> water > air when the number of freeze-thaw cycles is fixed. The mass and dynamic modulus of aeolian sand concrete are relatively stable, and the small-size pores in concrete tend to decrease after immersion in 3% NaCl solution for the long-term.
The evolution law of water absorption characteristics of aeolian sand concrete with freeze-thaw damage was analyzed, and the water transport model was established based on the one-dimensional capillary water absorption theory. Based on the theory of poroelastic medium and pore relative saturation, the frost heave failure mechanics model was established and the evolution law of freezing stress was analyzed. The results show that the water absorption coefficient, water absorption depth and pore saturation velocity of damaged concrete all increase with the increase of the number of freeze-thaw cycles, and the capillary water absorption curve presents the typical "bilinear" characteristic. The freeze-thaw damage rate of concrete is positively correlated with the pore saturation rate and relative saturation, and negatively correlated with aeolian sand content. The freezing stress is the result of the combined effect of the crystallization pressure and hydrostatic pressure caused by the volume expansion caused by the water-ice phase transition and the water migration caused by the supercooling phenomenon, and its value is closely related to the pore structure, relative saturation, liquid saturation and the degree of supercooling. The larger the pore size and pore relative saturation, the smaller the liquid saturation, the greater the freezing stress, the faster the freeze-thaw damage rate of concrete, and the more serious the damage.
The natural exposure test was carried out to simulate the deterioration law of concrete structure in the semi-arid climate of seasonal freezing zone, and the natural service life prediction model was established based on the meteorological conditions of the coldest month (January) and the equivalent effects of indoor and outdoor freeze-thaw. The results show that aeolian sand concrete experienced 118 natural freeze-thaw cycles in a frozen age in northern Shaanxi, which is equivalent to 12.66 cycles of damage caused by the rapid freeze-thaw cycles in water environment. The deterioration behavior of durability evaluation indexes such as mass loss rate and dynamic elastic modulus loss rate is closely related to the external environmental humidity (which affects the direction of water transport at the air-concrete interface). After a frozen age, the mass, dynamic elastic modulus and compressive strength of aeolian sand concrete suffered little damage. The service life of concrete can be predicted based on both the mass loss rate and the dynamic modulus loss rate. It is predicted the natural freeze-thaw life of aeolian sand concrete in water environment in northern Shaanxi is about 21 years, and that of superstructure is about 54.96-61.56 years.
﹀
|
参考文献: |
︿
[1] 郭晓华, 牛凯征, 王曙明, 等.全球预拌混凝土市场研究[J].混凝土与水泥制品, 2019(2): 13-17. [2] 董伟, 申向东, 林艳杰, 等.风积砂的掺入对浮石轻骨料混凝土性能的影响[J].硅酸盐通报, 2015, 34(8): 2089-2094+2106. [3] 曹昌, 李永华.疯狂的河砂[J].中国经济周刊, 2014(18): 28-32. [4] Sverdrup, H. U., Koca, D. & Schlyter. A simple system dynamics model for the global production rate of sand, gravel, crushed rock and stone, market prices and long-term supply embedded into the world 6 model[J].Biophysical economics and resource quality, 2017, 2(3): 1-20. [5] Zhang G. X., Song J. X., Yang J. S., et al. Performance of mortar and concrete made with a fine aggregate of desert sand[J].Building and Environment, 2006, 41 (11): 1478-1481. [6] Bendixen M., Best J., Hackney C. et al. Time is running out for sand[J].Nature, 2019(571): 29-31. [7] 吴俊臣.复杂环境下风积砂混凝土的耐久性能研究与寿命预测[D].呼和浩特: 内蒙古农业大学, 2018. [8] E.S. Seif. Assessing the engineering properties of concrete made with fine dune sands: an experimental study[J].Arabian journal of geosciences, 2013, 6(3): 857- 863. [9] María G., Elipe M., López-Querol S. Aeolian sands: characterization, options of improvement and possible employment in construction-the state of the art[J]. Construction and building materials, 2014(73): 728-739. [10] 张开银, 王常亮, 陈发明, 等.风积砂路基干压实技术研究[J].华中科技大学学报(城市科学版), 2009, 26(1): 27-30. [11] H. F. Liu, J. R. Ma, Y. Y. Wang, et al. Influence of desert sand on the mechanical properties of concrete subjected to impact loading[J].Acta mechanica solida sinica, 2017(30): 583-595. [12] 高玉生, 程汝恩, 李英海, 等.中国沙漠风积砂工程性质研究及工程应用[M].北京: 中国水利水电出版社, 2013. [13] Yusuf, Y. Adamu, A. Billihaminu. Comparative study on strength properties of concrete made with river sand and dune sand as fine aggregate[J].IOSR journal of mechanical and civil engineering, 2015, 12(4): 71-75. [14] Y. G. Li, H. M. Zhang , G. X. Liu , et al. Multi-scale study on mechanical property and strength prediction of aeolian sand concrete[J].Construction and building materials, 2020(247):118538. [15] 马菊荣, 刘海峰, 杨维武.毛乌素沙漠砂混凝土力学性能研究[J].科学技术与工程, 2015, 15(4): 267 -272. [16] 龚洛书, 刘春圃.混凝土的耐久性及其防护修补[M].北京: 中国建筑工业出版社, 1990. [17] 李清富, 赵国藩, 王恒栋.混凝土结构的耐久性预评估[J].混凝土, 1995(1): 54-56. [18] 薛慧君.风蚀区冻融盐蚀环境下风积砂混凝土耐久性损伤劣化机理研究[D].呼和浩特: 内蒙古农业大学, 2018. [19] 金伟良, 赵羽习.混凝土结构耐久性[M].北京: 科学出版社, 2014. [20] 高海平, 金志强, 李华.水泥混凝土路面修补技术[M].北京: 人民交通出版社, 1998. [21] 张誉, 蒋利学, 张伟平, 等.混凝土结构耐久性概论[M].上海: 上海科学技术出版社, 2003. [22] 赵青.加拿大魁北克省对全省立交桥进行大检查[EB/OL]. (2006-10-02) [2006-10-03]. http://news.xinhuanet.com/world/2006-10/03/content_5165796.htm. [23] 杜鹏.多因素耦合作用下混凝土的冻融损伤模型与寿命预测[D].北京: 中国建筑材料科学研究总院, 2014. [24] 秦晓川.混凝土及预应力混凝土冻融机理及耐久性评估研究[D].南京: 东南大学, 2017. [25] 王媛俐, 姚燕.重点工程混凝土耐久性的研究与工程应用[M].北京: 中国建材工业出版社, 2006. [26] 侯博文.陕北地区混凝土抗冻融与抗碳化性能研究[D].西安: 西安建筑科技大学, 2015. [27] 张翀, 任志远.陕北地区土地生态系统固碳释氧价值量动态测评[J].地理研究, 2015, 34 (8): 1522 -1534. [28] Zhu B. Q., Yang X. P., Liu Z. T., et al. Geochemical compositions of soluble salts in aeolian sands from the Taklamakan and Badanjilin deserts in northern China, and their influencing factors and environmental implications[J].Environ earth sci, 2012(66): 337-353. [29] 牟献友, 谷攀.国内风积砂工程特性研究综述[J].内蒙古农业大学学报, 2010, 31 (1): 307-310. [30] 袁玉卿, 王选仓.风积砂压实特性试验研究[J].岩土工程学报, 2007, 29(3): 360 -365. [31] 宋焱勋, 彭建兵, 王治军, 等.毛乌素沙漠风积砂力学特性室内试验研究[J].工程地质学报, 2010(9): 894-899. [32] 蔡燕燕, 江浩川, 俞缙, 等.水泥固化滨海风积砂力学特性试验及细观数值仿真[J].岩土工程学报, 2016, 38(11): 1973-1980. [33] 张展弢, 龚海科, 谢永利, 等.内蒙古自治区风积砂的工程特性[J].河北工业大学学报, 2006(3): 112 -117. [34] 霍永成, 辛淑珍.风积砂的压实特性与承载力试验研究[J].铁道建筑, 2007(9): 49-51. [35] 张浩, 李哲, 折学森, 等.毛乌素沙漠区不同级配风积砂的压实特性与压缩特性试验研究[J].干旱区资源与环境, 2015, 29(8): 167-172. [36] 赵聪敏, 何清, 杨兴华, 等.巴丹吉林沙漠风沙流输沙沙粒形貌特征分析[J].沙漠与绿洲气象, 2012, 6(2): 25-29. [37] 贾海牛, 刘娟红, 宋少民.粉煤灰特细砂混凝土在固原车站建筑工程的应用[J].粉煤灰综合利用, 2001(2): 10-11. [38] 陈志飞, 谢欣欣, 墨红超.沙漠沙与机制砂掺配使用配制C50混凝土[J].商品混凝土, 2012(7): 57-60. [39] 朱腾明, 党涛, 孙为民.用沙漠沙代替工程砂做基础工程材料的试验研究与应用[J].建筑科学, 1997(4): 26. [40] 王娜, 李斌.撒哈拉沙漠沙高强度混凝土配合比设计及研究[J].混凝土, 2004(1): 139-146. [41] B. H. Jin, J. X. Song, H. F. Liu. Engineering characteristics of concrete made of desert sand from Maowusu sandy land[J].Applied mechanics and materials, 2012 (174-177): 604-607. [42] G. P. Padmakumar, K Srinivas, K. V. Uday, et al. Characterization of aeolian sands from Indian desert[J].Engineering geology, 2012, 139-140(9): 38-49. [43] E. S. Seif. Performance of cement mortar made with fine aggregates of dune sand, Kharga Oasis, Western Desert, Egypt: an experimental study[J].Jordan journal of civil engineering, 2013, 7(3): 270 -284. [44] C. L. Amel, E. H. Kadri, Y. Sebaibi, et al. Dune sand and pumice impact on mechanical and thermal lightweight concrete properties[J].Construction and building materials, 2017, 133(15): 209-218. [45] S. Al-Harthy, M. A. Halim, R.Taha, et al. The properties of concrete made with fine dune sand[J]. Construction and building materials, 2007, 21(8): 1803-1808. [46] 刘艳华, 王铁良, 白义奎, 等.沙漠砂混合砂浆性能正交性试验[J].沈阳农业大学学报, 2015, 46(3): 373-378. [47] 陈美美, 宋建夏, 赵文博, 等.掺粉煤灰的沙漠沙混凝土力学性能研究[J].宁夏工程技术, 2011, 3(1): 61-63. [48] G. X. Zhang, J. X. Song, W. W. Yang. Effects of different desert sand on properties of cement mortar and concrete[J].Journal of ningxia university (natural science edition), 2003, 24(1): 63-65. [49] X. A. Li, H. F. Zheng, X. X. Li, et al. Test on the mortar mix ratio with Aeolian sand of Mu Us desert[J].Advanced materials research, 2011, 152-153(10): 892- 896. [50] 李玉根, 马小莉, 胡大伟, 等.风积砂掺量对砂浆混凝土性能影响及机理研[J].硅酸盐通报, 2017, 36(6): 2128-2133. [51] Y. G. Li, H. M. Zhang, X. Y. Liu, et al. Time-varying compressive strength model of aeolian sand concrete considering the harmful pore ratio variation and heterogeneous nucleation effect[J].Advances in civil engineering, 2019(2019): 5485630. [52] 董伟, 申向东.不同风积砂掺量对水泥砂浆流动度和强度的研究[J].硅酸盐通报, 2013, 32(9): 1900-1904. [53] F. J. Luo, L. He, Z. Pan, et al. Effect of very fine particles on workability and strength of concrete made with dune sand[J].Construction and building materials, 2013, 47(5): 131-137. [54] 杨维武, 陈云龙, 刘海峰, 等.沙漠砂高强混凝土力学性能研究[J].混凝土, 2014 (11): 100-102. [55] 刘娟红, 靳冬民, 包文忠, 等.沙漠沙混凝土试验研究[J].混凝土世界, 2013, 9 (51): 66-68. [56] 刘海峰, 马菊荣, 付杰, 等.沙漠砂混凝土力学性能研究[J].混凝土, 2015(9): 80- 83+86. [57] 杨维武, 陈云龙, 刘海峰, 等.毛乌素沙漠砂替代率对高强混凝土抗压强度实验研究[J].四川建筑科学研究, 2015(1): 217-219. [58] 谢和平.岩石混凝土损伤力学[M].北京: 中国矿业大学出版社, 1990. [59] Mehta P. K. Concrete durability-fifty year's progress[C].Proceeding 2nd international conference on concrete durability, american concrete institution. ACI SPI126-1, 1991: 1-31. [60] 雷斌, 邹俊, 扶名福, 等.混凝土抗冻性能多尺度研究进展[J].硅酸盐通报, 2016, 35(7): 2135-2141. [61] 王苏然, 杜曦, 陈有亮, 等.不同粉煤灰掺量的混凝土抗冻融性能研究[J].上海理工大学学报, 2015, 37(5): 493-499. [62] 李金玉, 曹建国, 徐文雨, 等.混凝土冻融破坏机理的研究[J].水利学报,1999, 44(1): 42-50. [63] 施士升.冻融循环对混凝土力学性能的影响[J].土木工程学报,1997, 30(4): 35 -42. [64] 李曙光, 陈改新, 纪国晋, 等.基于数字图像处理技术的引气混凝土冻融损伤定量评价[J].硅酸盐学报, 2014, 42(8): 951-959. [65] Kumar R., Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete[J].Cement and concrete research, 2003, 33(1): 155-164. [66] 秦晓川, 孟少平, 涂永明.高强混凝土材料细观冻融损伤与抗压强度的关系[J].材料导报B, 2017, 31(1): 117-120. [67] Kosmatka S. H., Panarese W. C. Design and control of concrete mixtures[M]. Skokie, Illinois Skokie (IL): Portland cement association, 1994. [68] 肖前慧, 牛荻涛, 朱文凭.粉煤灰引气混凝土冻融循环后性能的试验研究[J].武汉理工大学学报, 2010, 32(7): 35-38. [69] 杨全兵.混凝土盐冻破坏机理(1) -毛细管饱水度和结冰压[J].建筑材料学报, 2007, 10(5): 522-527. [70] 田威, 李小山, 王峰.冻融循环与硫酸盐溶液耦合作用下混凝土劣化机理试验研究[J].硅酸盐通报, 2019, 38(3): 702-710. [71] 王永福.大体积混凝土垂直施工缝处裂缝开展的控制[J].电力建设, 2002, 23(3): 27-28. [72] Z. D. Wang, Q. Zeng, L. Wang, et al. Characterizing blended cement pastes under cyclic freeze-thaw actions by electrical resistivity[J].Construction and building materials, 2013(44): 477-486. [73] 武海荣, 金伟良, 张锋剑, 等.关注环境作用的混凝土冻融损伤特性研究进展[J].土木工程学报, 2018, 51(08): 37-46. [74] 文志祥, 刘方文.声波CT无损检测技术在混凝土质检中的应用[J].中国三峡建设,2002(7): 18-19. [75] 王媛俐, 姚燕.重点工程混凝土耐久性的研究与工程应用[M].中国建材工业出版社, 2001. [76] Powers T. C. Working hypothesis for further studies of frost resistance of concrete [J].American concrete institute journal, 1945, 16(4): 245-272. [77] Powers T. C., Helmuth R. A. Theory of volume changes in hardened Portland cement paste during freezing[J].Proceedings, highway research board, 1953(32): 285-297. [78] Scherer G. W. Crystallization in pores[J].Cement and concrete research, 1999, 29 (8): 1347-1358. [79] Setzer M. J. Micro-ice-lens formation in porous solid[J].Journal of colloid and interface science, 2001, 243(1): 193-201. [80] 冯乃谦, 邢锋.混凝土与混凝土结构的耐久性[M].北京: 机械工业出版社, 2009. [81] 戈雪良, 陆采荣, 梅国兴.降温速率对混凝土冻结应力的影响及机理研究[J].材料导报, 2020, 34(4): 08051-08057. [82] 肖前慧, 牛荻涛.冻融和碳化共同作用下混凝土损伤分析[J].工业建筑, 2015(5): 763 -766. [83] 蒋华林, 那彬彬, 周晓明, 等.冻融与碳化交替作用下的混凝土性能试验[J].水利水电科技进展, 2012, 32(4): 34 -36. [84] 张金喜, 冉晋, 马宝成, 等.碳化对混凝土抗冻性的影响及机理[J].建筑材料学报, 2017, 20(1): 12 -17. [85] 冉晋, 张金喜, 杨米加, 等.碳化与冻融交替作用下的混凝土抗压强度[J].建筑材料学报, 2017, 20(4): 517-521+542. [86] Rao M. J., Li M. X., Yang H. Q., et al. Effects of carbonation and freeze-thaw cycles on microstructure of concrete[J].Journal of Wuhan university of technology (materials science), 2016, 5(1): 1018-1025. [87] 于琦.冻融环境混凝土碳化及寿命预测研究[D].西安: 西安建筑科技大学, 2012. [88] 郑佳明.干湿循环与碳化对混凝土硫酸盐侵蚀的影响研究[D].扬州: 扬州大学, 2009. [89] 赵高升, 何真, 杨华美.冻融循环和碳化交替作用下的混凝土耐久性[J].武汉大学学报(工学版), 2013(5): 604-609. [90] 董伟, 申向东, 赵占彪, 等.风积砂轻骨料混凝土冻融损伤及寿命预测研究[J].冰川冻土, 2015, 37(4): 1009-1015. [91] W. Dong, X. D. Shen, H. J. Xue, et al. Research on the freeze-thaw cycle test and damage model of aeolian sand lightweight aggregate concrete[J].Construction and building materials, 2016, 123(1): 792-799. [92] 吴俊臣, 申向东.风积沙混凝土的抗冻性与冻融损伤机理分析[J].农业工程学报, 2017, 33(10): 184-190. [93] 薛慧君, 申向东, 邹春霞, 等.基于NMR的风积沙混凝土冻融孔隙演变研究[J].建筑材料学报, 2019, 22(2): 199-205. [94] 吴俊臣, 申向东.风积沙混凝土盐冻损伤规律与机理分析[J].材料功能, 2017, 48 (12): 12182-12188. [95] 薛慧君, 申向东, 刘倩.高寒灌区风沙吹蚀对农业水利工程混凝土抗冻耐久性的影响[J].农业工程学报, 2017, 33(15): 133-140. [96] 邹欲晓, 申向东, 李根峰, 等.MgSO4-冻融循环作用下风积沙混凝土的微观孔隙研究[J].建筑材料学报, 2018, 21(5): 817-824. [97] 申向东, 邹欲晓, 薛慧君, 等.风积沙掺量对冻融-碳化耦合作用下混凝土耐久性的影响[J].农业工程学报, 2019, 35(2): 161-167. [98] 阎培渝, 钱觉时, 王立久, 等译.结构混凝土的评估寿命预测修复[M].重庆: 重庆大学出版社, 2007. [99] 牛荻涛.混凝土结构耐久性与寿命预测[M].北京: 科学出版社, 2003. [100] Somerville G. The design life of structures[M].Glasgow and London: Blackie and Son Ltd., 1992. [101] 金伟良, 吕清芳, 赵羽习, 等.混凝土结构耐久性设计方法与寿命预测研究进展[J].建筑结构学报, 2007, 28(1): 7-13. [102] 曹明莉, 丁言兵, 郑进炫, 等.混凝土碳化机理及预测模型研究进展[J].混凝土, 2012(9): 35-38. [103] 关虓, 牛荻涛, 王家滨.基于耐久性检测的运煤栈桥碳化寿命预测[J].西安建筑科技大学学报(自然科学版), 2015, 47(1): 71-76. [104] 周洪培.基于随机性的混凝土碳化寿命预测[J].城市道桥与防洪, 2015(2): 162-165. [105] Wu Q. L., Yu H. F., Chen X. X. Service life prediction method of concretes based on mass loss rate: establishment and narration of mathematical model[C].Tenth international conference of Chinese transportation professionals, Beijing: American society of civil engineering, August 4-8, 2010: 3253-3260. [106] 肖前慧, 牛荻涛, 朱文凭.冻融环境下混凝土强度衰减模型与耐久性寿命预测[J].建筑结构, 2011, 41(S2): 203-207. [107] 张峰, 李术才, 李守凯.混凝土随机冻融损伤三维预测模型[J].土木建筑与环境工程, 2011, 33(1): 31-35. [108] 余红发, 孙伟, 麻海燕, 等.基于损伤演化方程的混凝土寿命预测方法[J].建筑科学与工程学报, 2012, 29(1): 1-7. [109] 于孝民, 任青文.冻融循环作用下普通混凝土断裂能试验[J].河海大学学报(自然科学版), 2010, 38(1): 80-82. [110] 乔宏霞, 郭向柯, 朱彬荣.三参数Weibull分布的多因素作用下混凝土加速寿命试验[J].材料导报, 2019, 33(2): 639 -643. [111] Frohnsdorf G., Masters L. W., Martin J. W. An approach to improved durability test for building materials and components[R].NBS Technical Note 1120, Gaithersburg, Maryland: national bureau of standards, 1980: 1-10. [112] Vesikari E. Service life design of concrete structures with regard to the frost resistance of concrete[J]. Nordic concrete research, 1987(5): 215-228. [113] 李金玉, 彭小平, 邓正刚, 等.混凝土抗冻性的定量化设计[J].混凝土, 2000(9): 61-65. [114] 王丽学, 单晓婷.冻融环境下混凝土耐久性试验及寿命预测[J].人民长江, 2014, 45(13): 72-74+105. [115] 杨春峰, 叶文超, 吴文辉.混凝土冻融破坏分析及剩余寿命预测[J].沈阳大学学报(自然科学版), 2013, 25(3): 238-240. [116] 高升.基于耐久性的混凝土寿命预测方法研究进展[J].混凝土, 2018(6): 25-30. [117] Chen F. L., Qiao P. Z. Probabilistic damage modeling and service-life prediction of concrete under freeze-thaw action[J]. Materials and structures, 2015, 48 (8):1-15. [118] Qiao P. Z., Chen F. L. Cohesive fracture and probabilistic damage analysis of freezing thawing degradation of concrete[J].Construction and building materials, 2013 (47): 879-887. [119] 乔宏霞, 朱彬荣, 路承功.基于Copula函数的现场暴露混凝土寿命预测方法[J].建筑材料学报, 2017, 20(2): 191-197. [120] Possan E., Andrade J. J. D. Markov chains and reliability analysis for reinforced concrete structure service life[J].Mater research, 2014, 17 (3): 593-602. [121] 杨璐, 周志云, 张定博, 等.基于灰色理论预测再生混凝土的抗冻性寿命[J].上海理工大学学报, 2019, 41(4): 403 -408. [122] 王观虎, 蔡良才, 邵斌, 等.机场水泥混凝土道面使用寿命的改进灰色预测模型[J].交通运输工程学报, 2009, 9(3): 45-48. [123] 蒋金洋, 孙伟, 金祖权, 等.疲劳载荷与碳化耦合作用下结构混凝土寿命预测[J].建筑材料学报, 2010, 13(3): 304-309. [124] 冉晋.复杂环境条件下混凝土耐久性变化规律及寿命预测[D].北京, 北京工业大学, 2017. [125] 刘斯凤, 邢锋.多因素作用下混凝土寿命的BP神经网络预测[J].材料导报, 2008, 22(7): 85-87. [126] 刘志勇, 孙伟.多因素作用下混凝土碳化模型及寿命预测[J].混凝土, 2003(12): 3-7. [127] 姚燕, 王玲, 王振地, 等.荷载与服役环境作用下混凝土耐久性的研究和进展[J].中国材料进展, 2018, 37(11): 855-869. [128] 普通混凝土用砂、石质量及检验方法标准: JGJ52-2006[S].北京: 中国建筑工业出版社, 2006. [129] Standard specification for concrete aggregates: ASTM C33/C33M[S].West Conshohocken, PA, USA, 2013. [130] British standard specification for aggregates from natural sources: BS 882[S]. London, UK, 1983. [131] 郑娟荣, 周同和, 陈晓堂.地质聚合物合成中偏高岭土活性的快速检测方法研究[J].硅酸盐通报, 2007, 26(5): 887-891+900. [132] 混凝土物理力学性能试验方法标准: GB/T 50081-2019[S].北京: 中国建筑工业出版社, 2019. [133] 普通混凝土拌合物性能试验方法标准: GB/T50080-2016[S].北京: 中国建筑工业出版社, 2019. [134] 吴永根, 李文哲, 韩照, 等.砂细度模数对道面混凝土性能的影响[J].空军工程大学学报(自然科学版), 2013, 14(4): 5-8. [135] Ken W. Day. Concrete mix design, quality control and specification (3rd edition) [M].London and New York: Taylor & Francis, 2006. [136] D. P. H. Hasselman, R. M., Fulrath. Effect of small fraction of spherical porosity on elastic moduli of glass[J].Journal of the american ceramic society, 1964, 47(1): 52-53. [137] F. P. Knudsen. Dependence of mechanical strength of brittle polycrystalline specimens on porosity and grain size[J].Journal of the American ceramic society, 1959, 42(8): 376-387. [138] 贾金青, 胡玉龙, 王东来, 等.混凝土抗压强度与孔隙率关系的研究[J].混凝土, 2015(10): 56-59 +63. [139] Tayeb B., Madani B., Mourad H. Effect of dune sand on the properties of flowing sand-concrete (FSC)[J].International journal of concrete structures and materials, 2012, 6(1): 59-64. [140] 施惠生, 孙丹丹, 吴凯.混凝土界面过渡区微观结构及其数值模拟方法的研究进展[J].硅酸盐学报, 2016, 44(5): 678-685. [141] Scrivener, K. L., Crumbie, A. K., Laugesen, P. The interfacial transition zone (ITZ) between cement paste and aggregate in concrete[J].Interface science, 2004, 12(4), 411-421. [142] Sandemir M. Effect of silica fume and ground pumice on compressive strength and modulus of elasticity of high strength concrete[J].Construction and building materials, 2013, 49(12): 484-489. [143] 李玉根, 张慧梅, 刘光秀, 等.风积砂混凝土基本力学性能及影响机理[J].建筑材料学报, 2020, 23(5):1212-1221. [144] De Larrard F. Concrete mixture proportioning: A scientific approach[M].London: Spon Press, 1999. [145] Whiting D., Stark D. Control of air content in concrete[R].Report 258, National Cooperative Highway Research Program, Washington, 1983. [146] 石妍, 杨华全, 陈霞, 等.骨料种类对混凝土孔结构及微观界面的影响[J].建筑材料学报, 2015, 18(1): 133-138. [147] 崔宏志, 邢锋.用SEM和FT-IR研究轻骨料混凝土界面过渡区[J].混凝土, 2010(1): 18-20. [148] 谢依金A. E., 契霍夫斯基Ю В, 勃鲁谢尔М И.水泥混凝土的结构与性能[M].胡春芝, 袁孝敏, 高学善, 译.北京: 中国建筑工业出版社, 1984. [149] 吴中伟.混凝土科学技术近期发展方向的探讨[J].硅酸盐学报, 1979, 7(3): 262- 270. [150] Omkar D., Neithalath N. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure Features[J].Materials science and engineering, 2010, 528(1): 402-112. [151] 刘倩, 申向东, 董瑞鑫, 等.孔隙结构对风积沙混凝土抗压强度影响规律的灰熵分析[J].农业工程学报, 2019, 35(10):108-114. [152] 何雨丹, 毛志强, 肖立志, 等.核磁共振T2分布评价岩石孔径分布的改进方法[J].地球物理学报, 2005, 48(2): 373-378. [153] 张臻, 闫宁霞, 张迎雪.基于CT图像的界面强度对混凝土力学性能影[J].混凝土, 2017(10): 37-40+51. [154] 杜向琴, 张臻, 娄宗科, 等.基于CT图像的细观混凝土孔隙缺陷研究[J].建筑材料学报, 2020, 23(3): 603-610. [155] Neville, Adam M. Properties of concrete[M].Pitman:[s.n.]:1973. [156] 施惠生, 居正慧, 郭晓潞, 等. ITZ形成机制及其对混凝土力学性能与传输性能的影响[J].建材应用与技术, 2014(6): 11-18. [157] Thomas J. J., Jennings H. M. A colloidal interpretation of chemical aging of the C-S-H gel and its effects on the properties of cement paste[J].Cement and concrete research, 2006, 36(1): 30-38. [158] X. Xie, Y. Zhao, P. H. Qiu, et al. Investigation of the relationship between infrared structure and pyrolysis reactivity of coals with different ranks[J].Fuel, 2018(216): 521-530. [159] 余丽武.碱激发粉煤灰水泥胶凝体系的水化机理分析[J].铁道科学与工程学报, 2009, 6(6): 49-53. [160] Guettala S., Mezghiche B. Compressive strength and hydration with age of cement pastes containing dune sand powder[J].Construction and building materials, 2011, 25(3): 1263-1269. [161] R. Talero, L. Trusilewicz, A. Delgado, et al. Comparative and semi-quantitative XRD analysis of Friedel's salt originating from Pozzolan and Portland cement[J]. Construction and building materials, 2011, 25(5): 2370-2380. [162] 王磊, 何真, 张博, 等.基于红外与核磁共振技术揭示C-S-H聚合机理[J].建筑材料学报, 2011, 14(4): 447-451+458. [163] 冯奇, 王培銘.煤矸石热活化及水泥水化的红外分析[J].建筑材料学报, 2005, 8(3): 215-221. [164] M. Y. A. Mollah, W. H. Yu, R. Schennach, et al. A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate[J].Cement and concrete research, 2000(30): 267-273. [165] 李文伟, 李家正, 杨华全, 等.水工混凝土抗压强度时变模型研究[J].水力发电学报, 2009, 28(4): 102-107. [166] X. X. Ding, C. Y. Li, Y. Y. Xu, et al. Experimental study on long-term compressive strength of concrete with manufactured sand[J].Construction and building materials, 2016(108): 67-73. [167] 王伟, 周爱兆, 冯丽, 等.再生粗骨料混凝土抗压强度-龄期数学模型[J].建筑材料学报, 2012, 15(5): 633-637. [168] 毕海鹏.水灰比对水泥混凝土路用性能影响的试验研究[J].工程与试验, 2011, 51(2): 32-34. [169] N. Jee, S. Yoon, H. Cho. Prediction of compressive strength of in-situ concrete based on mixture proportions[J].Journal of asian architecture and building engineering, 2004, 3(1): 9-16. [170] H. Yiğiter, H.Yazıcı, S. Aydın. Effects of cement type, water cement ratio and cement content on sea water resistance of concrete[J].Building and environment, 2007, 42(4): 1770-1776. [171] C. Peter Hewlett. Lea's Chemistry of cement and concrete (Chapter 6) [M].Elsevier Butterworth-Heinemann, New York, USA, 2005. [172] 刘杰胜, 余俊, 张宗旺, 等.水泥渗透结晶型防水材料研究[J].武汉工业学院学报, 2012(3): 72-74. [173] Arnfelt H. Damage on concrete pavements by winter time salt treatment[J].Statens vaeginst (Sweden), meddelande, 1943: 66. [174] Valenza J. J., Scherer G. W. Mechanism for salt scaling of a cementitious surface[J].Materials and structures, 2007, 40(3): 259-268. [175] 李根峰.风积沙粉体混凝土耐久性能及服役寿命预测模型研究[D].呼和浩特: 内蒙古农业大学, 2019. [176] 杨静.混凝土的碳化机理及其影响因素[J].混凝土, 1995(6): 23-28. [177] Babushkin V. i., Matveyev G. M., Mchedlov-Petrossyan O. P. Thermodynamics of silicates[M].Springer-Verlag, 1985. [178] 吴松波, 万旭升, 杨婷婷, 等.混合侵蚀和冻融循环条件下混凝土力学机制试验研究[J].南京理工大学学报, 2020, 44(4): 493-500. [179] Powers T. C. Measuring Young’s modulus of elasticity by means of sonic vibrations[A].Proceedings of ASTM[C].1938: 460-469. [180] Thomson W. T. Measuring changes in physical properties of concrete by the dynamic method[A]. Proceeding of ASTM[C].1940, 1113. [181] Stanton T. E. Tests comparing the modulus of elasticity of Portland cement concrete as determined by the dynamic (sonic) and compression (scant at 1000 psi) methods[J]. ASTM Bull, 1944(131): 17. [182] Dougill J. W., Lau J. C., Buet N. J. Mechanics in Engineering[J].AS CE. EMD., 1976: 333-355. [183] 王家滨, 王斌, 张凯峰.盐冻损伤喷射混凝土衬砌结构氯离子扩散及其模型[J].材料导报, 2020, 34(8):16055-16061. [184] 商怀帅, 宋玉普, 覃丽坤.普通混凝土冻融循环后性能的试验研究[J].混凝土与水泥制品, 2005(2): 9 -11. [185] 覃丽坤, 宋玉普, 王玉杰, 等.冻融循环对海水中混凝土抗压性能的影响[J].混凝土, 2004(1): 16 -18. [186] 肖前慧.冻融环境多因素耦合作用混凝土结构耐久性研究[D].西安: 西安建筑科技大学, 2010. [187] 张俊萌, 方从启, 段桂珍.约束混凝土和素混凝土抗冻性能对比研究[J].混凝土, 2014(3): 25-29. [188] 张亚栋, 邹宾, 田杨, 等.冻融循环对混凝土静动力特性的影响[J].解放军理工大学学报(自然科学版), 2017, 18(1): 1-8. [189] Omkar D., Neithalath N. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure Features[J].Materials science and engineering, 2010, 528(1): 402-112. [190] 姜文镪, 刘清风.冻融循环下混凝土中氯离子传输研究进展[J].硅酸盐学报, 2020, 48(2): 258 -272. [191] Gao Y., Schutter G. D., Ye G. Micro-and meso-scale pore structure in mortar in relation to aggregate content[J].Cement and concrete research, 2013(52): 149-160. [192] Cwirzen A., Penttala V. Aggregate-cement paste transition zone properties affecting the salt frost damage of high performance concretes[J].Cement and concrete research, 2005(35): 671-679. [193] 陈磊, 何俊辉, 赵艳纳.孔结构对水泥混凝土抗冻性的影响[J].交通标准化, 2009 (Z1): 70-73. [194] 陈立军.混凝土孔径尺寸对其使用寿命的影响[J].武汉理工大学学报, 2007, 29 (6): 50-53. [195] 孔丽娟, 许旭栋, 杜渊博.不同集料混凝土抗冻性能与孔结构的关系[J].石家庄铁道大学学报(自然科学版), 2014, 27(1): 88-94. [196] Qu F., Niu D. T. Effect of Freeze-thaw on the concrete pore structure features[J]. Advanced materials research, 2012(368-373): 361-364. [197] 李泽乾.冻融循环引起混凝土内部破坏的吸含水率评测试验方法研究[D].重庆: 重庆大学, 2018. [198] 刘泉声, 康永水, 刘小燕.冻结岩体单裂隙应力场分析及热-力耦合模拟[J].岩石力学与工程学报, 2011, 30(2): 217-223. [199] Miller R. D. Freezing and heaving of saturated and unsaturated soils[J].Highway research record, 1972, 39 (1): 1-11. [200] 南雪丽, 王超杰, 刘金欣, 等.冻融循环和氯盐侵蚀耦合条件对聚合物快硬水泥混凝土抗冻性的影响[J].材料导报, 2017, 31(23): 177-181. [201] Van Belleghem B., Montoya R., Dewanckele J., et al. Capillary water absorption in cracked and uncracked mortar comparison between experimental study and finite element analysis[J].Construction and building materials, 2016(110): 154-162. [202] Yang Z. F., Jason W. W., Olek J. Water transport in concrete damaged by tensile loading and freeze-thaw cycling[J].Journal of materials in civil engineering, 2006, 18(3): 424-434. [203] 王新友, 蒋正武, 高相东, 等.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报, 2002, 5(1): 66-71. [204] 鲁良辉.多添加环境下混凝土的毛细吸水试验研究[J].科技通报, 2016, 32(10): 98-102. [205] 郭秋生.混凝土的毛细吸水特性及其与孔结构的关系[J].工业建筑, 2020, 50(3): 119-123. [206] 张鹏, 赵铁军, wittmann F. H.,等.基于中子成像的水泥基材料毛细吸水动力学研究[J].水利学报, 2011, 4(2): 81-87. [207] 王立成, 鲍玖文.开裂混凝土中水分传输过程的细观模型[J].建筑材料学报, 2014, 17(6): 972-977+983. [208] 邱继生, 郑娟娟, 关虓, 等.冻融环境下煤矸石混凝土毛细吸水性能[J].建筑材料学报, 2017, 20(6): 881-886. [209] 罗大明, 牛荻涛.不同水胶比及养护条件对内养护混凝土吸水性能的影响[J].建筑结构学报, 2019, 40(1): 165-173. [210] Martys N. S., Ferraris C. F. Capillary transport in mortars and concrete[J].Cement and concrete research, 1997, 27(5): 747-760. [211] Hall C. Water sorptivity of mortars and concrete:a review[J].Magazine of concrete research, 1989(41): 51-61. [212] 高世桥, 刘海鹏.毛细力学[J].北京: 科学出版社, 2010. [213] 谈云志, 吴军, 黄龙波.冻融作用下水泥改良软黏土的性能演化过程[J].建筑材料学报, 2017, 20(2): 373-378. [214] 黄士元, 蒋家奋, 杨南如, 等.近代混凝土技术[M].西安: 陕西科学技术出版社, 1997. [215] 谭聪, 李宗利, 韩进生, 等.不同强度等级和尺寸混凝土自由吸水规律研究[J].混凝土, 2019(11): 33-38. [216] Wang L. C. Analytical methods for prediction of water absorption in cement-based material[J].China ocean engineering, 2009, 23(4):719-728. [217] Parlange J.Y., Lisle I. G., Prasad S. N. Wetting front analysis of the nonlinear diffusion equation[J]. Water resources research, 1984, 20 (5): 636-638. [218] Lockington D., Parlange J. Y., Dux. P. Sorptivity and the estimation of water penetration into unsaturated concrete[J].Materials and structures, 1999, 32(5): 342- 347. [219] L. Liu, D. J. Shen, H. S. Chen, et al. Analysis of damage development in cement paste due to ice nucleation at different temperatures[J].Cement and concrete composites, 2014(53): 1-9. [220] 秦赛男, 刘琳, 王学成.冻融循环作用下水泥净浆孔结构和力学性能演变规律研究[J].河南科学, 2018, 36(2): 227-236. [221] Coussy O.,Monterio P. Poroelastic model for concrete exposed to freezing temperat-ures[J].Cement and concrete research, 2008, 38(1): 40-48. [222] Coussy O., P. Monteiro. Unsaturated poroelasticity for crystallization in pores[J]. Computers and geotechnics, 2007, 34: 279–290. [223] 杨全兵.冻融循环条件下氯化钠浓度对混凝土内部饱水度的影响[J].硅酸盐学报, 2007, 35(1): 96-100. [224] Setzer M. J. The micro ice lens model of frost attack-basics and consequences for testing and application[C].The 5th International Symposium on cement and concrete, Shanghai, 2002: 105. [225] 王家滨, 牛荻涛, 袁斌.冻融损伤喷射混凝土本构关系及微观结构[J].土木建筑与环境工程, 2016, 38(1): 30-39. [226] Geiker M., Thaulow N. Ingress of moisture due to freeze-thaw exposure[A]. In: Lindmark Sed. Frost Resistance of Building Materials[C].Lund Institute of Technology, division building materials, 1996: 159-162. [227] J. J. Valenza II., G. W. Scherer. A Review of salt scaling:I. Phenomenology[J]. Cement and concrete research, 2007(37): 1007-1021. [228] C. J. Shi. Formation and Stability of 3CaO·CaCl2·12H2O[J].Cement and concrete research, 2001(31): 1373-1375. [229] 肖前慧, 曹志远, 关虓, 等.冻融与硫酸盐侵蚀耦合作用下再生混凝土劣化规律[J].硅酸盐通报, 2020, 39(2): 352-358. [230] 方灶生.除冰盐条件下疏水性水泥混凝土路面性能研究[D].长沙: 长沙理工大学, 2016. [231] Brownę F. P., Cady P. D. Deicing scaling mechanism in concrete[J].Special publication, 1975(47): 101. [232] Mehta P. K., Monyeiro P. J. M. Concrete: microstructure, properties and materials [M].New York: The Mcgraw-Hill, Companies, Inc, 2006. [233] 杨全兵.混凝土盐冻破坏机理(Ⅱ):冻融饱水度和结冰压[J].建筑材料学报, 2012, 15(6): 741-746. [234] Limeira J., Etxeberria M., Agullo L., et al. Mechanical and durability properties of concrete made with dredged marine sand[J].Construction and building materials, 2011, 25(11): 4165-4174. [235] 邢小光, 陈震, 许金余, 等.混凝土受氯盐腐蚀后动力学特性损伤研究[J].硅酸盐通报, 2017, 36(2): 589-594. [236] 刘勇.氯盐侵蚀对混凝土微观结构损伤的影响研究[J].西安建筑科技大学学报(自然科学版), 2020, 52(3): 390-395. [237] 金祖权, 孙伟, 赵铁军, 等.在不同溶液中混凝土对氯离子的固化程度[J].硅酸盐学报, 2009, 37(7): 1068-1078. [238] 耿健, 莫利伟.碳化环境下矿物掺合料对固化态氯离子稳定性的影响[J].硅酸盐学报, 2014, 42(4): 500-505. [239] 王新友, 蒋正武, 高相东, 等.混凝土中水分迁移机理与模型研究评述[J].建筑材料学报, 2002, 5(1): 66-71. [240] 刘西拉, 唐光普.现场环境下混凝土冻融耐久性预测方法研究[J].岩石力学与工程学报, 2007, 26(12): 2412-2419. [241] 蔡昊.混凝土抗冻耐久性预测模型[D].北京: 清华大学, 1998. [242] 王越洋, 欧忠文, 刘晋铭, 等.利用海砂、珊瑚制备混凝土研究进展[J].混凝土, 2018(9): 114-118. [243] 李悦, 张广泰, 陈柳浊, 等.沥青及橡胶沥青沙漠砂混合料路用性能研究[J].公路工程,2017, 42(4): 16-20.
﹀
|
中图分类号: |
TU528
|
开放日期: |
2021-06-16
|