题名: |
智能综采工作面多设备协同控制决策方法研究
|
作者: |
路正雄
|
学号: |
16105301003
|
保密级别: |
保密(4年后开放)
|
语种: |
chi
|
学科代码: |
0802
|
学科: |
工学 - 机械工程
|
学生类型: |
博士
|
学位: |
工学博士
|
学位年度: |
2022
|
学校: |
西安科技大学
|
院系: |
机械工程学院
|
专业: |
机械工程
|
研究方向: |
智能综采
|
导师姓名: |
郭卫
|
导师单位: |
西安科技大学
|
提交日期: |
2021-10-25
|
答辩日期: |
2021-12-03
|
外文题名: |
Research on Cooperative Control Decision-Making Method of Various Devices on Intelligent Fully Mechanized Mining Face
|
关键词: |
综采设备 ; 协同控制 ; 智能决策 ; 模糊粗糙宽度神经网络 ; 增量式选择性集成
|
外文关键词: |
Fully mechanized equipment ; Cooperative control ; Intelligent decision-making ; Fuzzy rough broad neural networks ; Incremental selective ensemble
|
摘要: |
︿
煤矿智能化是煤炭工业高质量发展的核心技术支撑,是煤炭工业技术革命和升级发展的必然方向。综合机械化采煤(以下简称综采)智能化是煤矿智能化的关键技术之一,它的实现将会极大促进煤矿智能化的发展,有力提升煤炭的安全、高效、绿色开采水平。综采设备主要包括液压支架、采煤机、刮板输送机、转载机、破碎机和设备列车等,其中综采工作面多设备—液压支架、采煤机和刮板输送机(简称综采“三机”)相互配套、各自分工、协同作业,共同承担着综采工作面的支护、破煤和输煤任务。因此,实现综采工作面多设备的协同控制是实现综采工作面智能化的关键。
本文依托国家重点研发计划项目“煤矿智能开采安全技术与装备研发”子课题“大采高工作面多设备协同作业控制机制研究”及国家自然科学基金项目(编号:2017YFC0804310、51805428),以综采工作面多设备协同控制的决策方法为研究主线,重点解决综采工作面多设备状态数据预处理问题,综采工作面多设备协同控制决策策略学习问题和综采工作面多设备协同控制的智能决策问题,通过实验室实验和现场数据对综采工作面多设备协同控制的决策模型进行验证,具体内容如下:
(1)针对智能综采工作面工作面多设备协同控制的决策模型缺乏问题,深入分析综采工作面多设备协同作业关系及其人工操作控制过程,确定综采工作面多设备协同控制基本思路,建立综采工作面多设备协同控制系统模型与架构,给出综采工作面多设备协同控制决策模型的关键问题与解决方案,为后续研究奠定基础。
(2)针对综采工作面多设备状态数据存在噪声污染和特征参数冗余的问题,设计基于动态融合局部异常因子与堆叠去噪自编码器的数据清洗方法(DFLOF-SDAE),提升数据质量;基于综采工作面多设备协同作业的粗糙有限状态机模型,建立综采工作面多设备协同控制多源状态数据关联决策表;提出多标记自适应模糊邻域粗糙集及其特征参数选择算法(MLAFNRS),对多数据类型的综采工作面多设备决策数据表进行特征参数选择,最后采用对比实验验证提出方法的准确性。
(3)针对非线性、强耦合、时空关联数据的综采工作面多设备协同控制决策策略学习问题,首先提出一种新的基于宽度架构的模糊粗糙宽度神经网络(FRBNN),实现强耦合非线性综采工作面多设备监测数据隐性特征的提取;然后以模糊粗糙宽度神经网络为核心,构建综采工作面多设备协同控制的决策策略学习方法(SL-FRBNN),通过获得输入参数本身的时序特征信息和多输入参数间的空间关联特征信息,实现综采工作面多设备协同控制决策策略的学习,最后通过综采工作面多设备协同控制实验台对SL-FRBNN方法进行验证,结果表明:与ELM、FRNN、BLS、LSTM算法相比,SL-FRBNN方法在综采工作面多设备行为决策、采煤机滚筒调高以及刮板输送机与采煤机协同调速中均具有更高的精度和可靠性。
(4)针对动态不稳定工况下的综采工作面多设备协同控制决策问题,提出基于增量式选择性集成的综采工作面多设备协同控制决策方法(ISEDFM-FRBNN&KELM)。该模型基于集成决策思想,首先采用Bootstrap重采样方法生成多个训练集,并用该训练集构建多个具有自学习能力的二元混合异样FRBNN&KELM基决策器,然后采用双错测度选择性集成方法对基决策器进行选择性集成,用于综采工作面多设备协同作业过程的在线决策,最后通过综采工作面多设备协同控制实验台对ISEDFM-FRBNN&KELM方法进行验证,结果表明:提出的ISEDFM-FRBNN&KELM集成决策方法能有效实现综采工作面多设备的行为决策、采煤机滚筒的智能调高以及刮板输送机负载变化下采煤机的自适应调速。
(5)为进一步验证本文提出的综采工作面多设备协同控制决策模型的合理性和可行性,采用榆家梁煤矿43101综采工作面设备运行数据对算法进行验证,结果表明:本文提出的综采工作面多设备协同控制决策方法合理可行,通过应用提出的特征参数选择算法、协同控制决策策略学习算法和动态选择性集成决策方法,能有效实现综采工作面多设备的自主协同作业。
本文提出的综采工作面多设备协同控制的智能决策方法,为综采工作面关键设备的自主协同作业提供了一条新的解决途径,为综采工作面智能化发展奠定了基础。
﹀
|
外文摘要: |
︿
~The intellectualization of coal mine is core technological support for high-quality development of coal industry and is Inevitable direction for technological revolution and upgrading of coal industry. The intellectualization of comprehensive mechanized coal mining (referred to as comprehensive mining) is one of the key technologies in intellectualization of coal mine, and its realization will greatly promote the development of intelligent coal mine improving the level of safe, efficient and green mining powerfully. The equipment for comprehensive mining mainly includes hydraulic support, coal shearer, scraper conveyor, transfer machine, crusher and equipment train,etc., and hydraulic support, Shearer, and scraper conveyor in them can support each other, work divided and operate synergetic, which are responsible for the task of support, destroying and transporting coal on comprehensive mining face supporting each other, their respective division of labor, collaborative work. Therefore, realizing cooperative control to "three machines" during comprehensive mining is the key to realize intellectualization on comprehensive mechanized coal mining face.
This dissertation, which relies on sub-project "study on control mechanism of multi-equipment cooperative operation in large mining height working face" (Grant No. 2017YFC0804310) of National Key Research and Development Program "safety technology and equipment research and development of intelligent coal mining", takes the three fully mechanized coal mining machines as the research object and the cooperative control decision-making method of the three fully mechanized coal mining machines as the research main line to solve the problems of state data preprocessing, cooperative control strategy learning and intelligent decision-making in the three fully mechanized coal mining machines, verifying the cooperative control decision-making model of the three fully mechanized coal mining machines with laboratory and field data. The specific contents are as follows:
(1) In view of lacking decision-making model of "three machines" collaborative control on intelligent fully mechanized coal mining face, through analyzing cooperative operation relationship and manual collaborative control process, determining the basic idea of collaborative control, and establishing the model and framework of collaborative control system for the three fully mechanized coal mining machines, the key technologies and solutions of the decision-making model are given, which lays the foundation for subsequent research.
(2) In view of noise pollution and redundancy of characteristic parameters in the status data in "three machines" in fully mechanized coal mining, a data cleaning method based on dynamic fusion of local abnormal factors and stacking denoising self-encoder (DFLOF-SDAE) is designed to improve the data quality. Based on the rough finite state machine model of fully mechanized "three machines" cooperative operation process, the original decision data table of multi-source data association for fully mechanized "three machines" cooperative control is established. The multi-label adaptive fuzzy neighborhood rough set and its characteristic parameter selection algorithm are proposed to select characteristic parameters for the decision data table of fully mechanized mining "three machines" with multi-label mixed data type. Finally, the accuracy and reliability of this method are verified by comparative experiments.
(3) In view of the problem of learning decision-making strategy of cooperative control of fully mechanized coal mining "three machines" with nonlinear, strong coupling and spatio-temporal correlation data, firstly, a new fuzzy rough width neural network model based on width architecture is proposed, which can extract the hidden features of strongly coupled nonlinear data. Then, a decision strategy learning method for cooperative control of fully mechanized coal mining "three machines" based on fuzzy rough width neural network is constructed to obtain the time sequence feature information of input parameters and the spatial association feature information among multiple input parameters realizing the learning of cooperative control decision strategy of fully mechanized coal mining "three machines". The verification of laboratory data of fully mechanized coal mining "three machines" shows that compared with ELM, FRNN, BLS and LSTM methods, SL-FRBNN method has higher accuracy and reliability in the behavior decision of fully mechanized coal mining "three machines", the height adjustment of shearer drum, and the coordinated speed regulation of scraper conveyor and shearer.
(4) In view of the decision-making problem of "three machines" cooperative control in fully mechanized coal mining under dynamic unstable working conditions, a decision-making model of "three machines" cooperative control in fully mechanized coal mining based on incremental selective integration (ISEDFM-FRBNN&KELM) is proposed. The model is based on the idea of integrated decision-making. Firstly, Bootstrap resampling method is used to generate multiple training sets. Then, several binary mixed different base decision-maker models OIL-KELM&FRBNN with self-learning ability are constructed. Finally, the base decision-makers are integrated by the selective integration method of double error measures, to realize the online decision-making of "three machines" in fully mechanized mining. The method of ISEDFM is verified by laboratory data, and the results show that the proposed ISEDFM-FRBNN&KELM method can effectively recognize the behavior pattern of "three machines" in fully mechanized coal mining, predict the height of shearer drum and accurately predict the traction speed of shearer under the load change of scraper conveyor.
(5) To further verify the rationality and effectiveness of the decision-making model of "three-machine" cooperative control in fully mechanized coal mining, the algorithm is verified by the operation data of "three-machine" in 43101 fully mechanized coal mining face of Yujialiang Coal Mine. The results show that the decision-making method of "three-machine" cooperative control in fully mechanized coal mining is correct and feasible, and the cooperative and stable operation of "three-machine" is realized by applying the proposed characteristic parameter selection algorithm, cooperative control decision strategy learning algorithm and dynamic selective integrated decision-making method.
The decision-making method of multi-equipment cooperative control in intelligent fully mechanized coal mining face proposed in this dissertation provides a new solution for the autonomous cooperative control of "three machines" in fully mechanized coal mining face, makes a beneficial exploration for the intelligent development of fully mechanized coal mining face, and lays a foundation for realizing low-carbonization, intelligent and unmanned mining in coal mines.
In this dissertation, the decision-making method of multi-equipment cooperative control on comprehensive mining face is proposed, which provides a new solution for the autonomous cooperative operation of key equipment on comprehensive mining face and lays the foundation of low carbon, intellectualization and without worker on comprehensive mining face.
﹀
|
参考文献: |
︿
[1]刘峰,曹文君,张建明,等.我国煤炭工业科技创新进展及“十四五”发展方向[J].煤炭学报,2021,46(01):1-15. [2]黄曾华,王峰,张守祥.智能化采煤系统架构及关键技术研究[J].煤炭学报,2020, 45(06):1959-1972. [3]王国法.综采自动化智能化无人化成套技术与装备发展方向[J].煤炭科学技术,2014,42(09):30-34+39. [4]王国法,刘峰,庞义辉,等.煤矿智能化——煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(02):349-357. [5]黄曾华.综采装备单机智能化向智能协同模式转型的探索研究[J].煤炭科学技术, 2021,49(04):169-175. [6]孙继平,宋秋爽,王国法.高效综合机械化采煤成套装备技术[M].徐州:中国矿业大学出版社,2008:32-35. [7]黄曾华.中国煤矿智能开采科技创新与发展[J].煤炭科学技术, 2014,42(09):1-6+21. [8]葛世荣.智能化采煤装备的关键技术[J].煤炭科学技术,2014,42(09):7-11. [9]田成金.可视化远程干预型智能化采煤关键控制技术研究[J].煤炭科学技术, 2016,44(07):97-102. [10]高强,王军,高小强,等.连续采煤机远程智能化控制[J].工矿自动化,2021,47 (S1):51-54. [11]葛世荣,郝尚清,张世洪,等.我国智能化采煤技术现状及待突破关键技术[J].煤炭科学技术,2020,48(07):28-46. [12]陈伟华,南鹏飞,闫孝姮,等.基于深度学习的采煤机截割轨迹预测及模型优化[J].煤炭学报,2020,45(12):4209-4215. [13]任怀伟,杜毅博,侯刚.综采工作面液压支架-围岩自适应支护控制方法[J].煤炭科学技术,2018,46(01):150-155+191. [14]王国法,刘峰,孟祥军,等.煤矿智能化(初级阶段)研究与实践[J].煤炭科学技术,2019,47(08):1-36. [15]李首滨.智能化开采研究进展与发展趋势[J].煤炭科学技术,2019,47(10):102-110. [16]方新秋,何杰,张斌,郭敏江.无人工作面采煤机自主定位系统[J].西安科技大学学报, 2008(02):349-353. [17]范京道.煤矿智能化开采技术创新与发展[J].煤炭科学技术,2017,45(09):65-71. [18]汪佳彪,王忠宾,张霖,等.基于以太网和CAN总线的液压支架电液控制系统研究[J].煤炭学报,2016,41(06):1575-1581. [19]王虹,尤秀松,李首滨,等.基于遗传算法与BP神经网络的支架跟机自动化研究[J].煤炭科学技术,2021,49(01):272-277. [20]王世博,何亚,王世佳,等.刮板输送机调直方法与试验研究[J].煤炭学报,2017, 42(11):3044-3050. [21]王伟.刮板机减速器的现状及发展研究[J].机械工程师,2018(05):106-107+110. [22]胡磊.刮板输送机负载预测与调速控制研究[D].西安:西安科技大学,2020. [23]王凯.基于刮板输送机负载预测的采煤机调速技术研究[D].徐州:中国矿业大学,2015. [24]M.斯科布尔,刘廷安.加拿大的采矿自动化与CCARM研究中心[J].国外金属矿山, 1993(06):71-73. [25]J.普基拉,R.马蒂凯嫩,朱敏.矿山自动化是获利的关键[J].国外金属矿山, 1995(06):48-53. [26]谢贤平,童光煦.采矿科学和技术向智能化的发展──迎接21世纪的挑战[J].矿业研究与开发,1996(03):1-6. [27]葛世荣.智能化采煤装备的关键技术[J].煤炭科学技术,2014,42(09):7-11. [28]王国法,张德生.煤炭智能化综采技术创新实践与发展展望[J].中国矿业大学学报, 2018,47(03):459-467. [29]王国法,范京道,徐亚军,等.煤炭智能化开采关键技术创新进展与展望[J].工矿自动化,2018,44(02):5-12. [30]庞义辉,王国法,任怀伟.智慧煤矿主体架构设计与系统平台建设关键技术[J].煤炭科学技术,2019,47(03):35-42. [31]王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J].煤炭学报, 2019,44(01):34-41. [32]任怀伟,王国法,赵国瑞,等.智慧煤矿信息逻辑模型及开采系统决策控制方法[J].煤炭学报,2019,44(09):2923-2935. [33]王国法,庞义辉,任怀伟.煤矿智能化开采模式与技术路径[J].采矿与岩层控制工程学报,2020,2(01):5-19. [34]王国法,赵国瑞,胡亚辉.5G技术在煤矿智能化中的应用展望[J].煤炭学报,2020, 45(01):16-23. [35]王世博,葛世荣,王世佳,等.长壁综采工作面无人自主开采发展路径与挑战[J].煤炭科学技术2021,41(8):1-13. [36]路正雄,郭卫,张帆,等.基于数据驱动的综采装备协同控制系统架构及关键技术[J].煤炭科学技术,2020,48(07):195-205. [37]王凯.基于刮板输送机负载预测的采煤机调速技术研究[D].徐州:中国矿业大学,2015. [38]乔春光,王学文,谢嘉成,等.基于采煤机运行轨迹的刮板输送机竖直面形态解算方法[J].工程设计学报,2018,25(5):495-502. [39]Tan C, Wang Y, Zhou X, et al. An integrated denoising method for sensor mixed noises based on wavelet packet transform and energy-correlation analysis[J]. Journal of Sensors, 2014,20(2):1-11. [40]牛剑峰.综采液压支架跟机自动化智能化控制系统研究[J].煤炭科学技术,2015, 43(12):85-91. [41]Zhang L, Wang Z B, Tan C, et al. A fruit fly-optimized kalman filter algorithm for pushing distance estimation of a hydraulic powered roof support through tuning covariance[J]. Applied Sciences,2016,6(10):299-312. [42]Zhang L, Zhou X M, Wang Z B, et al. A nonmodel dual-tree wavelet thresholding for image denoising through noise variance optimization based on improved chaotic drosophila algorithm[J]. International Journal of Pattern Recognition&Artificial Intelligence,2017,31(8):238-254. [43]Fan Q G, Li W, Wang Y Q, et al. Study on control strategy for intelligent height adjusting system of shearer[J]. Mining science on control strategy for intelligent and technology, 2010,20(6):908-912. [44]Zhou X, Wang Z, Tan C, et al. A novel approach for shearer memory cutting based on fuzzy optimization method[J]. Advances in Mechanical Engineering, 2013,12(4): 319272-319272. [45]Xie J C, Yang Z, Wang X, et al. A virtual reality collaborative planning simulator and its method for three machines in a fully mechanized coal mining face[J]. Arabian Journal for Science and Engineering,2018,43(8):4835-4854. [46]Hou Z, Chi R, Gao H. An overview of dynamic-linearization-based data-driven control and applications[J]. IEEE Transactions on Industrial Electronics, 2017,64(5),4076-4090. [47]Treesatayapun, Chidentree. Stabilized adaptive controller based on direct IF-THEN knowledge of electronic systems for PWM drivers[J]. Electrical Engineering, 2016, 98(1) :77-85. [48]Zhu Y, Feng Q, Hou Z, et al. Data-driven model free adaptive control for a class of interconnected systems[C]// 2015 10th Asian Control Conference (ASCC).IEEE,2015: 114-119. [49]Sugie T, Ono T. An iterative learning control law for dynamical systems[J]. Automatica, 1991,27(4):729-732. [50]Li J.H, Wang S K, Wang J.L, et al. Iterative learning control for a distributed cloud robot with payload delivery[J]. Assembly Automation,2021,41(3):263-273. [51]Zhang B, Ma R.Q. Adaptive fuzzy control of nonlinear aeroelastic system with measurement noise[J]. Journal of Vibroengineering,2021,23(5):1184-1195. [52]Smida M B. and Sakly A. Fuzzy logic control of a hybrid renewable energy system: A comparative study[J].Wind Engineering,2021,45(4):793-806. [53]Rizzo L, Longo L. Multi-agent distributed model predictive control with fuzzy negotiation [J]. Journal of Robotics & Machine Learning, 2019,36(8):121-136. [54]Pedraza L F, Hernández H A, Hernández C.A. Artificial neural network controller for a modular robot using a software defined radio communication system[J]. Electronics, 2020,9(10):1626-1636. [55]戴小文,宋建霖,岳丽全.仿人智能控制理论及应用研究进展[J].自动化学报,2020, 21(5):1-14. [56]Yang C H, Gui W, Kong L, et al. A two-stage intelligent optimization system for the raw slurry preparing process of alumina sintering production[J]. Engineering Applications of Artificial Intelligence,2009,22(4-5):786-795. [57]Tanaskovic M, Fagiano L, Novara C, et al. Data-driven control of nonlinear systems: An on-line direct approach[J]. Automatica,2017,75(8):1-10. [58]Zhao J, Liu Q, Wei W, et al. Hybrid neural prediction and optimized adjustment for coke oven gas system in steel industry[J]. IEEE Transactions on Neural Networks & Learning Systems,2012,23(3):439-450. [59]Li J N, Gao X Z, Chai T Y, et al. Data driven industrial process operation optimization control[J]. Control Theory & Applications,2016,33(12):1584-1592. [60]Toprac A J, Liu C, Ding J, et al. Data-based adaptive online prediction model for plant-wide production indices. Knowledge and Information Systems,2014,41(2):401 -421. [61]刘强,卓洁,郎自强,等.数据驱动的工业过程运行监控与自优化研究展望[J].自动化学报,2018,44(11):1944-1956. [62]张烈平. 流程工业分布式控制多Agent模型及控制技术研究[D].昆明:昆明理工大学, 2011. [63]邵景峰. 数据驱动的轮胎帘子线质量智能控制方法[D].西安:长安大学,2017. [64]杨辉跃,涂亚庆,彭钰钦.科氏流量计仿人智能控制器参数的量子遗传优化[J].电子测量与仪器学报,2020,34(07):112-118. [65]王巍,王丹,彭周华.不确定非线性多智能体系统的分布式容错协同控制[J].控制与决策,2015,30(07):1303-1308. [66]Fan Q G, Li W, Wang Y Q, et al. An algorithm of shearer memory cutting based on grey-Markovian model[J].Journal of Central South University (Science and Technology ), 2011, 42(10):3054-3058. [67]Lu Z X, Guo W, Zhang C, et al. A Novel Intelligent Decision-Making Method of Shearer Drum Height Regulating Based on Neighborhood Rough Reduction and Selective Ensemble Learning[J]. IEEE Access, 2021,9(1),46545-46559. [68]Jiang Z H, Dou H L, Song J J, et al. Data-guided multi-granularity selector for attribute reduction[J]. Applied Intelligence,2020,51(2):876-888. [69]Wei Q J, Wang C X, Wen Y M. Minimum attribute reduction algorithm based on quick extraction and multi-strategy social spider optimization[J]. Journal of Intelligent & Fuzzy Systems,2021,40(6): 12023-12038. [70]Zhang Y, Cai X J, Zhu H L, Xu Y. Application an improved swarming optimisation in attribute reduction[J]. International Journal of Bio-Inspired Computation, 2020,16(4): 4473-4489. [71]Wang C Z, Huang Y, Ding W P, Cao Z H. Attribute reduction with fuzzy rough self-information measures[J]. Information Sciences,2021,549(01):68-86. [72]Zhang C C. Generalized dynamic attribute reduction based on similarity relation of intuitionistic fuzzy rough set[J]. Journal of Intelligent & Fuzzy Systems, 2020,39(5): 7107-7122. [73]周涛,陆惠玲,任海玲,等.基于粗糙集的属性约简算法综述[J].电子学报,2021,49 (07):1439-1449. [74]Pawlak Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5):341-356. [75]Zhang X H, Mi J S, Li M Z, Liang M S. Neighbourhood systems based attribute reduction in formal decision contexts[J].CAAI Transactions on Intelligence Technology, 2019,4(4): 245-254. [76]刘健,陈剑,刘思峰,等.风险偏好与属性约简在决策问题中的应用研究[J].管理科学学报,2013,16(08):68-79. [77]王江荣,黄建华,罗资琴,等.基于粗糙集的Logistic回归模型在矿井突水模式识别中的应用[J].煤田地质与勘探,2015,43(06):70-74. [78]Hu Q H, D Yu, Liu J, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences An International Journal, 2008, 178(18):3577-3594. [79]Hu Q H, Zhao H, Yu D R. Efficient symbolic and numerical attribute reduction with neighborhood rough sets[J]. Moshi Shibie Yu Rengong Zhineng/pattern Recognition & Artificial Intelligence, 2008, 21(6):732-738. [80]Rachid B, Imad B, Soufiane E, et al. Fast feature selection algorithm for neighborhood rough set model based on Bucket and Trie structures[J]. Granular Computing,2020,5(3): 451-465. [81]Shivam S, Anoop K T, Tanmoy S. Intuitionistic Fuzzy Neighborhood Rough Set Model for Feature Selection[J]. International Journal of Fuzzy System Applications,2018,7(2): 75-84. [82]Li W W, Huang Z Q, Jia X Y, Cai X Y. Neighborhood based decision-theoretic rough set models[J]. Acoustic bulletin,2016,69(9):1-17. [83]姚晟,徐风,赵鹏,等.基于邻域量化容差关系粗糙集模型的特征选择算法[J].模式识别与人工智能,2017,30(05):416-428. [84]姚晟,徐风,吴照玉,等.基于邻域粗糙互信息熵的非单调性属性约简[J].控制与决策,2019,34(02):353-361. [85]何松华,康婵娟,鲁敏,等.基于邻域组合测度的属性约简方法[J].控制与决策, 2016, 31(07):1225-1230. [86]段洁,胡清华,张灵均,等.基于邻域粗糙集的多标记分类特征选择算法[J].计算机研究与发展,2015,52(01):56-65. [87]杨习贝,杨静宇.邻域系统粗糙集模型[J].南京理工大学学报,2012,36(02):291-295. [88]王映龙,曾淇,钱文彬,等.变精度下不完备混合数据的增量式属性约简方法[J].计算机应用,2018,38(10):2764-2771. [89]王映龙,曾淇,钱文彬,等.变精度下不完备邻域决策系统的属性约简算法[J].智能系统学报,2017,12(03):386-391. [90]李雪岩,李学伟,李静.基于混沌集群智能优化算法的多目标粗糙集属性约减[J].运筹与管理,2020,29(12):30-37. [91]Li R H, Feng Z D, Guo H B, Zhao P. Online early warning model of underground gas concentration based on improved rough set[J]. International Journal of Intelligent Information and Management Science,2021,10(3):599-622. [92]Suo M L, Zhang M N, Zhou D, et al. Fault diagnosis of satellite power system using variable precision fuzzy neighborhood rough set[C]. //The 36th Control Conference (CCC), Chinese, Dalian, 2017:7301-7306. [93]Ali J, Ali I H, Rajihy Y. Gait and full body movement dataset of autistic children classified by rough set classifier[J]. Journal of Physics,2021,18(1):12201-12218. [94]Elbaz A H. Hybrid intelligent system-based rough set and ensemble classifier for breast cancer diagnosis[J].Neural Computing&Applications,2015,26(2):437-446. [95]Hao S, Yang L, Shi Y. Data-driven car-following model based on rough set theory[J]. IET Intelligent Transport Systems,2018,12(1):49-57. [96]陈双叶,易继锴.基于粗糙集理论的模糊模型及其在复杂控制系统中的应用[J].控制与决策,2002(S1):747-751. [97]王明慧.粗糙集理论在铁路行车调度指挥系统中应用的研究[J].中国铁道科学, 2004(04):104-108. [98]王宁玲,杨勇平,杨志平.多变边界条件下火电机组能耗基准状态诊断[J].中国电机工程学报,2013,33(26):1-8+3. [99]朱世松,汪云甲,魏连江.基于时间序列相似性度量的瓦斯报警信号辨识[J].中国矿业大学学报,2012,41(03):474-480. [100]Kim, Y, Street, W. N. An intelligent system for customer targeting: a data mining approach [J]. Decision Support Systems,2004,37(2):215-228. [101]张丽圆. 基于案例推理的煤矿瓦斯应急决策研究与应用[D].徐州:中国矿业大学, 2014. [102]Abdelwahed M F, Mohamed A E, Saleh M A. Solving the motion planning problem using learning experience through case-based reasoning and machine learning algorithms[J]. Ain Shams Engineering Journal,2019,11(1):85-106. [103]Hou Y, Edara P, Sun C. Modeling mandatory lane changing using Bayes classifier and Decision Trees[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(2): 647-655. [104]张棍,崔胜民,王剑锋.基于模糊神经网络的智能车辆循迹控制[J].汽车工程,2015,6(1):38-42. [105]Hansen, L K, Salamon, P. Neural network ensembles[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(10):993-1001. [106]Liu R, Yuan B. Multiple classifier combination by clustering and selection[J]. Information Fusion,2001,2(3):163-168. [107]Kim, M J, Kang D K. Ensemble with neural networks for bankruptcy prediction[J]. Expert Systems with Applications,2010,37(4):3373-3379. [108]Jin X, Ling X, He C, et al. Dynamic classifier ensemble model for customer classify -cation with imbalanced class distribution[J]. Expert Systems with Applications An International Journal,2012,39(3):3668-3675. [109]薛雪,孙伟,梁睿.露天煤矿卡车路段行程时间的实时动态预测新方法[J].煤炭学报, 2012,37(08):1418-1422. [110]史佳琪,张建华.基于多模型融合Stacking集成学习方式的负荷预测方法[J].中国电机工程学报,2019,39(14):4032-4042. [111]Zhang J, Wang Y, Sun Y, et al. Strength of ensemble learning in multiclass classification of rockburst intensity[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2020,21(3):114-128. [112]朱敏,许爱强,陈强强,等.一种基于改进KELM的在线状态预测方法[J].北京航空航天大学学报,2019,45(07):1370-1379. [113]Liu Y, Wang Y, Chen L, et al. Incremental Bayesian broad learning system and its industrial application[J]. Artificial Intelligence Review,2021,54(5):3517-3537. [114]He H, Chen S, Li K, et al. Transactions on incremental learning from stream data[J].IEEE Neural Networks,2011,22(12):1901-1914. [115]Bock K, Coussement K, Poel D. Ensemble classification based on generalized additive models[J]. Post-Print,2010,54(6):1535-1546. [116]Shen F,Hasegawa O. Self-organizing incremental neural network and its application[C]. //20th International Conference on Artificial Neural Networks,Thessaloniki,Greece, September,2010:535-540. [117]Li H, Ding Y S, Zhou M C, et,al. Multiple-solution optimization strategy for multirobot task allocation[J]. IEEE Transactions on Systems Man & Cybernetics Systems,2020, 50(11):4283-4294. [118]杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(01):21-28. [119]李艳霞,柴毅,胡友强,等.不平衡数据分类方法综述[J].控制与决策,2019, 34(04) :673-688. [120]Shi D X, Di S C, Zheng X Y, et, al. Fitting latent growth models with small sample sizes and non-normal missing data[J]. International journal of behavioral development,2021, 45(2):179-192. [121]Joanna B. The wavelet scaling approach to forecasting: Verification on a large set of Noisy data[J]. Journal of Forecasting,2020,39(3):353-367. [122]Zhang S C, Li X L, et al. Efficient kNN classification with different numbers of nearest neighbors[J]. IEEE transactions on neural networks and learning systems,2017,29(5): 1774-1785. [123]Sreejith K, Sheetal K. Noise statistics oblivious gard for robust regression with sparse outliers[J]. IEEE Transactions on Signal Processing,2019, 67(2):383-398. [124]Geng Y L, Li Q Y, Zheng R, et al. Recome: A new density-based clustering algorithm using relative knn kernel density[J]. Information Sciences, 2018,436(1):13-30. [125]Lowe D G. Similarity metric learning for a variable-kernel classifier[J].Neural Computation,2014,7(1):72-85. [126]Chen Y, Xu P, Chu Y, et al. Short-term electrical load forecasting using the support vector regression(SVR) model to calculate the demand response baselinefor office buildings[J]. Applied Energy,2017,195(1):659-670. [127]Li Z C, Li T, Yan X F. A novel deep quality-supervised regularized autoencoder model for quality-relevant fault detection[J]. Science China Information Sciences,2021,65(5): 1-3. [128]Vincent P, Larochelle H, Lajoie I, et al. Stacked denoising Autoencoders: learning useful representations in a deep network with a Local Denoising Criterion[J]. Journal of Machine Learning Research,2010,11(12):3371-3408. [129]娄建楼,李燕,王琦,等.基于改进堆栈降噪自编码器的锅炉设备在线监测数据清洗方法[J].计算机集成制造系统,2019,25(12):3181-3190. [130]Gadelhag M, Ahmad L, Amir P. Enhanced fuzzy finite state machine for human activity modelling and recognition[J]. Journal of Ambient Intelligence and Humanized Computing,2020,11(12),6077-6091. [131]Li J M, Ding F, Yang E F. Identification of the nonlinear systems based on the kernel functions[J]. International Journal of Robust and Nonlinear Control,2021,31(14):6917 -6933. [132]Wang C, Shao M, He Q, et al. Feature subset selection based on fuzzy neighborhood rough sets[J]. Knowledge-Based Systems,2016,111(1):173-179. [133]段洁,胡清华,张灵均,钱宇华,李德玉.基于邻域粗糙集的多标记分类特征选择算法[J].计算机研究与发展,2015,52(01):56-65. [134]Ah A, Mbd A, Np B. MFS-MCDM: Multi-label feature selection using multi-criteria decision making-ScienceDirect[J]. Knowledge-Based Systems,2020,26(4):1373-1384. [135]Jia L M, Hong Y J, Ming D L, Jia L. ML-KNN Algorithm Based on Frequent Item Sets[J]. Applied Mechanics and Materials,2013,26(17):1533-1537. [136]Takashi I, Kenichi T, Michimasa I. Obtaining repetitive actions for genetic programming with multiple trees[J]. Procedia Computer Science,2016,96(1):120-128. [137]Chen C, Liu Z. Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture[J]. IEEE Transactions on Neural Networks & Learning Systems, 2018, 29(99):10-24. [138]Dai F L, Deng J J, Chen M, et al. A new method to calculate sedimentation velocity of particle group with three-plane ECT based on the best correlation function[J]. Energy Sources Part A: Recovery, Utilization, and Environmental Effects,2019,11(2):1-16. [139]郭浩. 综采面超前支护装备智能控制策略研究[D].阜新:辽宁工程技术大学,2019. [140]王凌,潘子肖.基于深度强化学习与迭代贪婪的流水车间调度优化[J].控制与决策, 2021,36(11):2609-2617. [141]Xia Y, Xu Y, Gou B. A Data-Driven method for IGBT open-circuit fault diagnosis based on hybrid ensemble learning and sliding-window classification[J]. IEEE Transactions on Industrial Informatics,2019,16(8):5223-5233. [142]Anna M R, Etienne E K. A comparative study of fuzzy rough sets[J]. Fuzzy Sets and Systems,2002,126(2):137-155. [143]Sarkar M, Yegnanarayana B. Fuzzy-rough neural networks for vowel Classification [C].//IEEE International Conference on Systms. IEEE, 1998:4160-4165. [144]张东波,王耀南.一种新型模糊-粗神经网络及其在元音识别中的应用[J].控制与决策, 2006(02):221-224. [145]叶玉玲.模糊粗糙神经网络的结构与参数优化[J].系统工程与电子技术,2009, 31(12):2988-2993. [146]Kong Y, Wang X S, Cheng Y H. Spectral-spatial feature extraction for HSI classification based on supervised hypergraph and sample expanded CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018,11(11):4128-4140. [147]Han M, Li W, Feng S, et al. Maximum information exploitation using broad learning system for large-scale chaotic time-series prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020,32(6):2320-2329. [148]Hang R L, Liu Q S, Song H H, et al. Graph regularized nonlinear ridge regression for remote sensing data analysis[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2017,10(1):277-285. [149]Kuntal C, Debasis C, Arup K P. An entropy-based initialization method of K-means clustering on the optimal number of clusters[J]. Neural Computing and Applications, 2021, 33(12): 6965-6982. [150]Dua D,Graff C. UCI machine learning repository Dept[S]. Inf.Comput. Sci., Univ. California, Irvine, CA, USA, 2019.Available: http://archive.ics.uci.edu/ml. [151]Wang S X, Li M, et al. Short-term wind power prediction based on improved small -world neural network[J]. Neural Computing and Applications,2019,31(7):3173 -3185. [152]宋勇,蔡志平.大数据环境下基于信息论的入侵检测数据归一化方法[J].武汉大学学报(理学版),2018,64(02):121-126. [153]An R, Xu Y T, Liu X H. A rough margin-based multi-task-twin support vector machine for pattern classification[J]. Applied Soft Computing Journal,2021,112 (1):1-14. [154]Kasun L, Zhou H, Huang G B, et al. Representational learning with ELMs for big data[J]. IEEE Intelligent Systems, 2013,28(6):31-34. [155]Liu X D, Zhang L, Zhang Z R, Zhao T, Zou L. Ultra-short-term wind power prediction model based on VMD decomposition and LSTM[J]. Earth and Environmental Science, 2021,838(1):1-6. [156]Liu Y, Yao X. Ensemble learning via negative correlation[J]. Neural Networks, 1999, 12(10):1399-1404. [157]Breiman, L. Bagging predictors. Machine Learning[J].1996,24(2),123-140. [158]Freund, Y. Boosting a weak algorithm by majority[J]. Inform&Comput,1995,121(2), 256-285. [159]周志华,李楠.集成学习基础与算法[M].北京:电子工业出版社,2020:14-19. [160]谢天保,赵萌,雷西玲.基于非均衡样本集的煤矿突水预测模型[J].计算机系统应用, 2018,27(04):124-130. [161]王苏健,贾澎涛,金声尧.基于随机森林回归的围岩应力插值方法[J].西安科技大学学报,2021,41(02):274-281. [162]Suen C Y, Lam L. Multiple classifier combination methodologies for different output levels[J]. Lecture Notes in Computer Science.2000,1857,52-66. [163]Zhou Z, Wu J, Tang W. Ensemble neural networks: Many could be better than all[J]. Artificial Intelligence,2002,137(1-2):239-263. [164]Cruz R, Souza M, Sabourin R, et al. Dynamic Ensemble Selection and Data Prepro -cessing for Multi-Class Imbalance Learning[J]. International Journal of Pattern Recognition & Artificial Intelligence,2019,33(11):238-251. [165]Guo L, Hao J H, Liu M. An incremental extreme learning machine for online sequential learning problems[J]. Neurocomputing,2014,7(3):128-142. [166]Huang G, Huang G B, Song S, et al. Trends in extreme learning machines: a review[J]. Neural Networks,2015,61(3):32-48. [167]Huang J, Yu Z L, Cai Z, et al. Extreme learning machine with multi-scale local receptive fields for texture classification[J]. Multidimensional Systems and Signal Processing, 2017,28(3):995-1011. [168]William W H. Updating the inverse of a matrix[J]. SIAMRev,1989,31(2):221-239. [169]Lan Y, Song Y C, Huang G B. Ensemble of online sequential extreme learning machine[J]. Neurocomputing,2009,72(13/15):3391-3395. [170]MARTÍNEZ-MUÑOZ G, HERNÁNDEZ-LOBATO D, SUÁREZ A. An analysis of ensemble pruning techniques based on ordered aggregation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(2):245-259. [171]Guo L and Boukri S. Margin-based ordered aggregation for ensemble pruning[J]. Pattern Recognition Letters, 2013,34(6):603-609. [172]Dai Q, Zhang T, Liu N Z. A new reverse reduce-error ensemble pruning algorithm[J]. Applied Soft Computing,2015,28:237-249. [173]Cavalcanti G D, Oliveira L S, Moura T J, et al. Combining diversity measures for ensemble pruning[J].Pattern Recognition Letters,2016,74(1):38-45. [174]Tang E K, Suganthan P N, Yao X. An analysis of diversity measures[J]. Machine Learning,2006,65(1): 247-271. [175]Blagus R, Lusa L. Smote for high-dimensional class-imbalanced data[J]. BMC Bio -informatics,2013,14(1):1-16.
﹀
|
中图分类号: |
TD421.3
|
开放日期: |
2026-05-26
|