- 无标题文档
查看论文信息

论文中文题名:

 ZnO/ZnSe复合材料的制备及其光电性能的研究    

姓名:

 龙妍    

学号:

 21207223076    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 通信与信息工程学院    

专业:

 电子信息    

研究方向:

 半导体材料与器件    

第一导师姓名:

 刘进    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-12-19    

论文答辩日期:

 2024-12-05    

论文外文题名:

 Preparation and Investigation of the photoelectric properties of ZnO/ZnSe composite materials    

论文中文关键词:

 ZnO ; ZnO/ZnSe ; 异质结 ; 溶胶-凝胶法 ; 水热法 ; 光电探测性能    

论文外文关键词:

 ZnO ; ZnO/ZnSe ; heterojunction ; sol-gel method ; hydrothermal method ; photoelectric detection performance    

论文中文摘要:

光电探测器利用光电效应将光信号转换为电信号,在通信、安防监控、医疗诊断等领域应用广泛。近年来,ZnO(Eg=3.37 eV)因其宽带隙、高电子迁移率、易制备等特性作为光电探测器的理想材料备受关注。然而,纯ZnO纳米材料的光电性能受表面状态、结构缺陷、晶体质量和沉积工艺等因素的制约,影响了载流子传输和寿命,导致器件性能不佳。本论文引入异质结结构,将ZnSe和ZnO纳米材料结合成异质结结构光电探测器,提高了器件的灵敏度和响应速度。这种设计不仅克服了ZnO器件的性能不佳的影响,还在波长选择性、响应速度等性能方面取得显著提升。基于ZnSe和ZnO的异质结结构光电探测器在紫外至可见光范围内表现出优异性能,具备高稳定性和制备可行性。这种异质结结构光电探测器有望成为光电子器件领域的重要发展方向,为实现更高性能和更广泛应用的光电探测器提供了新的技术支持。以下是主要研究内容:

(1)利用溶胶-凝胶和水热法,采用单因素实验来制备ZnO种子层和ZnO纳米棒阵列。首先,通过改变退火温度和溶胶溶剂种类来优化ZnO种子层的制备工艺,之后通过改变水热法工艺中的Zn2+浓度和[Zn2+]/[(CH2)6N4]浓度比来优化ZnO纳米棒阵列。通过SEM和XRD表征ZnO种子层和ZnO纳米棒阵列结构和形貌,PL谱测试表征其光学性能。优化后的工艺参数为:溶胶溶剂为乙二醇甲醚,退火温度400 ℃、水热[Zn2+]/[(CH2)6N4]浓度比为1:3、水热Zn2+浓度为0.04 mol/L。优化后所得的ZnO纳米棒阵列的光学性能相对较好。

(2)在使用优化工艺制备的ZnO纳米棒阵列的基础上,通过水溶液化学法制备了ZnO/ZnSe复合纳米棒阵列,并对其进行了形貌、结构和光电性能的研究。结果表明:ZnO纳米棒阵列光电探测器器件的暗电流为1.79 mA,光电流为333 mA,光电响应为186。且ZnO纳米棒阵列光电探测器器件的电流并没有急剧下降,光电响应和恢复过程都比较缓慢,出现了光电导弛豫现象。ZnO/ZnSe复合纳米棒阵列光电探测器器件的暗电流为0.0361 mA,光电流为43.9 mA,光电响应为1216。这是由于异质结结构的存在,ZnO纳米棒/ZnSe纳米颗粒可以有效分离光生载流子,延长电子和空穴重组所需时间,从而提高了ZnO/ZnSe复合纳米棒阵列光电探测器器件的光电流。

(3)通过改变反应温度和Se浓度两个单因素,制备ZnO/ZnSe复合纳米棒阵列,并研究这两个单因素对ZnO/ZnSe复合纳米棒阵列结构和形貌的影响,随后进行光电性能测试。随着反应温度的提高,ZnO/ZnSe复合纳米棒阵列中存在Se单质,其影响了器件的光电性能。优化的工艺参数为:Se浓度为0.010 mol/L,反应时间30 min,反应温度为55 ℃。优化参数所制备的ZnO/ZnSe复合纳米棒阵列光电探测器器件的暗电流为1.7×10-7 A,光电流为1.002×10-3 A,光电响应为5894.2。

论文外文摘要:

Photodetectors use the photoelectric effect to convert light signals into electrical signals, and are widely used in fields such as communication, security monitoring, and medical diagnosis. In recent years, ZnO (Eg=3.37 eV) has attracted much attention as an ideal material for photodetectors due to its wide bandgap, high electron mobility, and ease of preparation. However, the optoelectronic properties of pure ZnO nanomaterials are constrained by factors such as surface state, structural defects, crystal quality, and deposition process, which affect carrier transport and lifetime, resulting in poor device performance. This Thesis introduces a heterojunction structure and combines ZnSe and ZnO nanomaterials to form a heterojunction structure photodetector, which improves the sensitivity and response speed of the device. This design not only overcomes the poor performance of ZnO devices, but also achieves significant improvements in wavelength selectivity, response speed, and other performance aspects. Heterojunction photodetectors based on ZnSe and ZnO exhibit excellent performance in the ultraviolet to visible light range, with high stability and fabrication feasibility. This heterojunction structure photodetector is expected to become an important development direction in the field of optoelectronic devices, providing new technical support for achieving higher performance and wider applications of photodetectors. The following are the main research contents:

(1) ZnO seed layers and ZnO nanorod arrays were prepared by single factor experiments using sol-gel and hydrothermal methods. Firstly, the preparation process of ZnO seed layer was optimized by changing the annealing temperature and the type of sol solvent. Then, the ZnO nanorod array was optimized by changing the Zn2+concentration and the [Zn2+]/[(CH2) 6N4] concentration ratio in the hydrothermal process. Characterization of ZnO seed layer and ZnO nanorod array structure and morphology by SEM and XRD, and characterization of their optical properties by PL spectroscopy. The optimized process parameters are as follows: the sol solvent is ethylene glycol methyl ether, the annealing temperature is 400 ℃, the hydrothermal [Zn2+]/[(CH2) 6N4] concentration ratio is 1:3, and the hydrothermal Zn2+concentration is 0.04 mol/L. The optical properties of the optimized ZnO nanorod array are relatively good.

(2) On the basis of using optimized processes to prepare ZnO nanorod arrays, ZnO/ZnSe composite nanorod arrays were prepared by aqueous solution chemistry method, and their morphology, structure, and optoelectronic properties were studied. The results showed that the dark current of the ZnO nanorod array photodetector device was 1.79  mA, the photocurrent was 333  mA, and the photoelectric response was 186. And the current of the ZnO nanorod array photodetector device did not sharply decrease, and the photoelectric response and recovery process were relatively slow, resulting in the phenomenon of photoconductivity relaxation. The dark current of the ZnO/ZnSe composite nanorod array photodetector device is 0.0361 mA, the photocurrent is 43.9 mA, and the photoelectric response is 1216. This is due to the presence of heterojunction structures, where ZnO nanorods/ZnSe nanoparticles can effectively separate photo generated charge carriers, prolong the time required for electron and hole recombination, and thus improve the photocurrent of ZnO/ZnSe composite nanorod array photodetectors.

(3) By changing the reaction temperature and Se concentration as two single factors, ZnO/ZnSe composite nanorod arrays were prepared, and the effects of these two single factors on the structure and morphology of ZnO/ZnSe composite nanorod arrays were studied. Subsequently, photoelectric performance tests were conducted. As the reaction temperature increases, Se exists in the ZnO/ZnSe composite nanorod array, which affects the optoelectronic performance of the device. The optimized process parameters are: Se concentration=0.010 mol/L, reaction time 30 min, reaction temperature=55 ℃. The dark current of the ZnO/ZnSe composite nanorod array photodetector device prepared by optimizing parameters is 1.7 × 10-7 A, the photocurrent is 1.002 × 10-3 A, and the photoelectric response is 5894.2.

参考文献:

[1]Sun Q, Liu J, Peng Y, et al. Effective heat dissipation of high-power LEDs through creation of three-dimensional ceramic substrate with kaolin/graphene suspension[J]. Journal Of Alloys And Compounds, 2020, 817(10): 152779.

[2]Liu K, Liu B, Zhao J, et al. Application of back bias to interdigital electrode structured diamond UV detector showing enhanced responsivity[J]. Sensors and Actuators A: Physical, 2019, 290(16): 222-227.

[3]Hu J, Chen J, Ma T, et al. Research advances in ZnO nanomaterials based UV photodetectors: a review[J]. Nanotechnology, 2023, 34(23): 232002.

[4]Buddha D B. Zinc oxide ultraviolet photodetectors: rapid progress from conventional to self-powered photodetectors[J]. Nanoscale Adv., 2019, 1(06), 2059-2085.

[5]Tianchao G, Cuicui L, Xiaofang L, et al. A ZIF-8@H:ZnO core-shell nanorod arrays/Si heterojunction self-powered photodetector with ultrahigh performance[J]. J. Mater. Chem. C, 2019, 7(17), 5172-5183.

[6]Shankari N, Sergej R, Stefan W, et al. About defect phenomena in ZnO nanocrystals[J]. Nanoscale, 2021, 13(20), 9160-9171.

[7]杜锐. ZnO薄膜制备与ZnO/ZnSe/c-Si太阳电池模拟研究[D]. 大庆: 东北石油大学, 2021.

[8]周瑞恒. Ga2O3基紫外光电探测器的研究[D]. 长春: 吉林大学, 2023.

[9]张莹秋. β-Ga2O3微米线MSM结构日盲紫外探测器的制备及其性能研究[D]. 长春: 东北师范大学, 2022.

[10]Ganguli A K, Mehta S K. High performance ZnSe sensitized ZnO heterostructures for photo-detection applications[J]. Journal of Alloys and Compounds, 2022, 894(06): 162263.

[11]Tinedert I E, Pezzimenti F, Megherbi M L, et al. Design and simulation of a high efficiency CdS/CdTe solar cell[J]. Optik, 2020, 208(10): 164112.

[12]Xu Z, Wang Y, Li Y, et al. C60 and Derivatives Boost Electrocatalysis and Photocatalysis: Electron Buffers to Heterojunctions[J]. Advanced Energy Materials, 2023, 13(46): 2302438.

[13]Nguyen V K, Pham D K, Tran N Q, et al. Comparative studies of blue-emitting zinc selenide nanocrystals doped with Ag, Cu, and Mg towards medical applications[J]. Crystals, 2022, 12(05): 625.

[14]Hou Q, Sha S. Effect of biaxial strain on the p-type of conductive properties of (S, Se, Te) and 2N Co-doped ZnO[J]. Materials Today Communications, 2020, 24(25): 101063.

[15]Ji B, Koley S, Slobodkin I, et al. ZnSe/ZnS core/shell quantum dots with superior optical properties through thermodynamic shell growth[J]. Nano letters, 2020, 20(04): 2387-2395.

[16]Tung R T, Kronik L. Fermi level pinning for zinc-blende semiconductors explained with interface bonds[J]. Physical Review B, 2021, 103(08): 085301.

[17]Li B, Yang G, Huang L, et al. Effects of BN layer on photoelectric properties and stability of flexible Al/Cu/ZnO multilayer thin film[J]. Ceramics International, 2020, 46(10): 14686-14696.

[18]Wang J, Yang H, Yang P. Photoelectric properties of 2D ZnO, graphene, silicene materials and their heterostructures[J]. Composites Part B: Engineering, 2022, 233(06): 109645.

[19]Jiang F X, Zheng H Y, Wang L F, et al. Enhanced photoelectric performance in a CdO-/ZnO/Ag heterostructure thin film photoanode[J]. Vacuum, 2021, 185(20): 109951.

[20]Liu Y, Gorla C R. Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD[J]. Journal of Electronic Materials, 2000, 29(01): 69-74.

[21]Singh S. Simulation, fabrication, and characterization of Al-doped ZnO-based ultraviolet photodetectors[J]. Journal of Electronic Materials, 2016, 45(01): 535-540.

[22]Xu Z Q, Deng H. Ultraviolet photoconductive detector based on Al doped ZnO films prepared by sol-gel method[J]. Applied Surface Science, 2006, 253(02): 476-479.

[23]Ji L W, Peng S M. Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays[J]. Applied Physics Letters, 2009, 94(20): 2230.

[24]Rana V S, Rajput J K, Pathak T K, et al. Influence of N2 flow rate on UV photodetection properties of sputtered p-ZnO/n–Si heterojuctions[J]. Colloids and Surfaces A: Physi-cochemical and Engineering Aspects, 2020, 586(10): 12- 4103.

[25]Maqsood S, Ali Z, Ali K, et al. Assessment of different optimized anti-reflection coatings for ZnO/Si heterojunction solar cells[J]. Ceramics International, 2023, 49(23): 37118-37126.

[26]Das D, Karmakar L. Optimization of Si doping in ZnO thin films and fabrication of n-ZnO: Si/p-Si heterojunction solar cells[J]. Journal of Alloys and Compounds, 2020, 824(08): 153902.

[27]Ünal D, Varol S F, Brault J, et al. Improved performance of near UV-blue n-ZnO/p-GaN heterostructure LED with an AlN electron blocking layer[J]. Microelectronic Engineering, 2022, 262(21): 111830.

[28]Lee D J, Ryu S R, Kumar G M, et al. Piezo-phototronic effect triggered flexible UV photo-detectors based on ZnO nanosheets/GaN nanorods arrays[J]. Applied Surface Science, 2021, 558(11): 149896.

[29]Huang Y, Zhang L, Wang J, et al. Enhanced photoresponse of n-ZnO/p-GaN heterojunction ultraviolet photodetector with high-quality CsPbBr3 films grown by pulse laser deposition[J]. Journal of Alloys and Compounds, 2019, 802(23): 70-75.

[30]Huang B R, Kathiravan D, Saravanan A, et al. Modified interfaces of twisted root-like 2D configured ZnO hierarchical nanostructures through surface lattice coating of NiO/graphene and their enhanced UV photodetection properties[J]. Journal of Alloys and Compounds, 2021, 868(10): 159240.

[31]Huang J, Li B, Hu Y, et al. Transparent p-NiO/n-ZnO heterojunction ultraviolet phot-odetectors prepared on flexible substrates[J]. Surface and Coatings Technology, 2019, 362(17): 57-61.

[32]Xie Y, Wan P, Jiang M, et al. Performance enhancement of a self-biased n-ZnO microwire/p-GaN heterojunction ultraviolet photodetector incorporating Ag nanowires[J]. CrystEng-Comm, 2022, 24(44): 7727-7738.

[33]Zhou C, Liu K, Zhu Y, et al. Self-powered solar-blind ultraviolet photodetector based on Au/ZnMgO/ZnO:Al with combshaped Schottky electrode[J]. Sensors and Actuators A: Physical, 2019, 295(17): 623-628.

[34]Zhou X, Jiang D, Zhao M, et al. Polarization-induced two-dimensional electron gas in ZnO/ZnMgO heterointerface for highperformance enhanced UV photodetector[J]. Journal of alloys and compounds, 2020, 820(10): 153416.

[35]Zhou C, Liu K, Zhu Y, et al. Self-powered solar-blind ultraviolet photodetector based on Au/Zn MgO/ZnO: Al with combshaped schottky electrode[J]. Sensors and Actuators A: Physical, 2019, 295(16): 623-628.

[36]Bu D, Batmunkh M, Zhang Y, et al. Rechargeable sunlight-promoted Znair battery const-ructed by bifunctional oxygen photoelectrodes: Energy-band switching between ZnO/Cu2O and ZnO/CuO in charge-discharge cycles[J]. Chemical Engineering Journal, 2022, 433(20): 133559.

[37]Thirumoorthi M, Dhavud S S, Ganesh V, et al. High responsivity n-ZnO/p-CuO heter-ojunction thin film synthesised by lowcost SILAR method for photodiode applications[J]. Optical Materials, 2022, 128(06): 112410.

[38]Mubeen K, Irshad A, Safeen A, et al. Band structure tuning of ZnO/CuO composites for enhanced photocatalytic activity[J]. Journal of Saudi Chemical Society, 2023, 27(03): 101639.

[39]Lee Y T, Jeon P J, Han J H, et al. Mixed‐Dimensional 1D ZnO-2D WSe2 van der Waals Heterojunction Device for Photosensors [J]. Advanced Functional Materials, 2017, 27(47): 1703822.

[40]Huang J, Li B, Hu Y, et al. Transparent p-NiO/n-ZnO heterojunction ultraviolet photode-tectors prepared on flexible substrates[J]. Surface and Coatings Technology, 2019, 362(10): 57-61.

[41]Abass N A, Qahtan T F, Gondal M A, et al. Laser-assisted synthesis of ZnO/ZnSe hybrid nanostructured films for enhanced solar-light induced water splitting and water decon-tamination[J]. International Journal of Hydrogen Energy, 2020, 45(21): 22938-22949.

[42]Lin M, Wang W. Passivation of ZnSe nanoparticles in sandwiched CdSe/-ZnSe/ZnO nanotube array photoanode to substantially enhance solar photoelectrochemical water splitting for hydrogen evolution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 614(08):126206.

[43]穆泽明. 一维ZnSSe-ZnSe轴向异质结的合成及其在光电探测器中的应用[D]. 长沙: 湖南大学, 2019.

[44]Qiao F, Liang Q, Hou X, et al. Two-step preparation of ZnO/ZnSe heterostructure with remarkable photocatalytic activity by ultrasonic and hydrothermal approach[J]. Journal of Electronic Materials, 2019, 48(08): 4418-4423.

[45]Mohan L, Sisupalan N, Ponnusamy K, et al. One step synthesis and characterization of ZnO-ZnSe heterostructures by chemical precipitation and its solar photocatalytic activity[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30(07): 2626-2632.

[46]Weldegebrieal G K. Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: A review[J]. Inorganic Chemistry Communications, 2020, 120(25): 108140.

[47]Guo M, Jiang W, Ding J, et al. Highly active and recyclable CuO/ZnO as photocatalyst for transesterification of waste cooking oil to biodiesel and the kinetics[J]. Fuel, 2022, 315(08): 123254.

[48]Li H, Ding J, Cai S, et al. Plasmon-enhanced photocatalytic properties of Au/ZnO nanow-ires[J]. Applied Surface Science, 2022, 583(10): 152539.

[49]Kabir F, Murtaza A, Saeed A, et al. Structural, optical and magnetic behavior of (Pr, Fe) co-doped ZnO based dilute magnetic semiconducting nanocrystals[J]. Ceramics International, 2022, 48(14): 19606-19617.

[50]王威. 氧化锌纳米棒阵列水热法合成、退火及其紫外光探测器研究[D]. 南昌: 东华理工大学, 2022.

[51]Hunge Y M, Yadav A, Kang S W, et al. Visible light activated MoS2/ZnO composites for photocatalytic degradation of ciprofloxacin antibiotic and hydrogen production[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2023, 434(20): 114250.

[52]Chang T H, Chang Y C, Lee C I, et al. Optimization Temperature Programming of Microwave-Assisted Synthesis ZnO Nanoneedle Arrays for Optical and Surface-Enhanced Raman Scattering Applications[J]. Nanomaterials, 2022, 12-(22): 3989.

[53]Galdámez-Martinez A, Santana G, Güell F, et al. Photoluminescence of ZnO nanowires: a review[J]. Nanomaterials, 2020, 10(05): 857.

[54]Trung D Q, Quang N V, Tran M T, et al. Single-composition Al3+singly doped ZnO pho-sphors for UV-pumped warm white lightemitting diode applicationns[J]. Dalton Trans-actions, 2021, 50(26): 9037-9050

[55]Hou Z, Ling C, Xue X, et al. Surface lattice reconstruction enhanced the photoresponse performance of a self-powered ZnO nanorod arrays/Si heterojunction photodetector[J]. Jou-rnal of Materials Chemistry C, 2020, 8(48): 1744- 0-17449.

[56]Wei C, Xu J, Shi S, et al. Self-powered visible-blind UV photodetectors based on p-NiO nanoflakes/n-ZnO nanorod arrays with an MgO interfacial layer[J]. Journal of Materials Chemistry C, 2019, 7(30): 9369-9379.

[57]Zheng Y, Xu X, Li F, et al. Transparent photodetectors based on polyoxometalate modified electrospun ZnO homojunction nanowire intersection arrays[J]. Materials Chemistry Frontiers, 2022, 6(01): 15-23.

[58]Xu B, Shen H, Xu Y, et al. ZnO/Al2O3/p-Si/Al2O3/CuO heterojunction NIR photodetector with invertedpyramid light-trap structure[J]. Journal of Alloys and Compounds, 2021, 874(32): 159864.

[59]Li H, Ma W, Zeng X, et al. ZnO/CuO Piezoelectric Nanocatalysts for the Degradation of Organic Pollutants[J]. ACS Applied Nano Materials, 2023, 6(22): 21113-21122.

[60]Mohan H, Ha G H, Oh H S, et al. Zinc iron selenide nanoflowers anchored g-C3N4 as advanced catalyst for photocatalytic water splitting and dye degradation[J]. Chemosphere, 2022, 307(31): 135937.

[61]Zhang W, Hong D, Su Z, et al. Tailored ZnO-ZnS heterostructure enables a rational bala-ncing of strong adsorption and high catalytic activity of polysulfides for Li-S batteries[J]. Energy Storage Materials, 2022, 53(08): 404-414.

[62]Usman M, Ahmed A, Ji Z, et al. Environmentally friendly fabrication of new β-Cyclo-dextrin/ZrO2 nanocomposite for simultaneous removal of Pb (II) and BPA from water[J]. Science of the Total Environment, 2021, 784(06): 147207.

[63]Gao R, Zhang T, Zhang X, et al. One-step controlled synthesis of ZnO-ZnSe hollow nanospheres with surface defects for selective detection of NO2[J]. Applied Surface Science, 2023, 635(13): 157628.

[64]Kwon I S, Kwak I H, Debela T T, et al. Se-rich MoSe2 nanosheets and their superior electrocatalytic performance for hydrogen evolution reaction[J]. ACS nano, 2020, 14(05): 6295-6304.

[65]Liu L, Yu L, Hu L, et al. Building core–shell FeSe2@ C anode electrode for delivering superior potassium-ion batteries[J]. Nanotechnology, 2022, 33(24): 245403.

中图分类号:

 TN304    

开放日期:

 2024-12-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式