- 无标题文档
查看论文信息

论文中文题名:

 RKSF-RUKF辅助误差抑制的煤矿井下人员定位研究    

姓名:

 张晓炜    

学号:

 18206045038    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081102    

学科名称:

 工学 - 控制科学与工程 - 检测技术与自动化装置    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 检测技术与自动化装置    

研究方向:

 安全监测与智能控制    

第一导师姓名:

 郭秀才    

第一导师单位:

  西安科技大学    

论文提交日期:

 2021-06-19    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Research on RKSF-RUKF Aided Error Suppression for Coal Mine Personnel Ranging and Positioning    

论文中文关键词:

 井下人员定位 ; 非视距误差 ; 高斯和滤波器 ; 无迹卡尔曼滤波器 ; Gazebo仿 真平台    

论文外文关键词:

 underground personnel positioning ; non-line-of-sight error ; Gaussian sum filter ; unscented Kalman filter ; Gazebo simulation platform    

论文中文摘要:

煤炭在我国一次能源生产和消费结构中占有主要地位。煤矿人员定位系统作为“安全避险六大系统”之一,在煤矿生产管理和事故应急救援中发挥了重要作用,但目前我国主流煤矿人员定位方法误差较大。因此深入研究煤矿井下人员定位误差的成因及抑制方法,对提高矿井人员定位准确性、保障煤矿安全生产具有重要意义。

本文以煤矿井下人员定位方法为研究对象,在分析对比目前主流无线定位方法后,以时间到达法(TOA)的测距方法为基础,首先对该方法下的测距误差进行深入分析,在采用双边双路通信方式下,得出非高斯分布的非视距误差(NLOS)是人员测距误差的主要来源;为抑制非视距误差对测距结果的影响,提出以高斯和滤波理论为基础的鲁棒卡尔曼和滤波(RKSF)测距优化方法。其次分析巷道特殊几何尺寸对传统人员定位方法的影响,在长宽比趋于无穷的巷道环境中,定位误差主要由巷道径向方向承担;为适应巷道定位误差的这种特点并增强定位算法对异常观测的鲁棒性,提出以假设检验为基础的鲁棒无迹卡尔曼滤波(RUKF)定位优化方法。最后构建基于RKSF-RUKF模型的煤矿井下人员定位方法。为验证所提方法的有效性,设计并实现基于机器人操作系统(ROS)和Gazebo平台的仿真实验,对煤矿井下定位中常见的三种场景进行对比分析。

经仿真实验,在视距环境下,本文方法与传统方法差距不大;在非视距环境下,本文方法具有较好的误差抑制能力,验证了本文方法的有效性,为提高矿井人员定位精度、保障煤矿安全高效生产、辅助矿井应急救援,提供了一定借鉴意义。

论文外文摘要:

Coal occupies a major position in Chinese primary energy production and consumption structure. As one of the "six safety avoidance systems", the coal mine personnel positioning system has played an important role in coal mine production management and accident emergency rescue. However, the current mainstream coal mine personnel positioning methods in my country have relatively large errors. Therefore, it is of great significance that in-depth research on the causes and suppression methods of personnel positioning errors in coal mines for improving the accuracy of mine personnel positioning and ensuring coal mine safety production.

The method of personnel positioning in coal mines is treated as the research object in this paper. After analyzing and comparing the current mainstream wireless positioning methods, based on the time-of-arrival (TOA) ranging method, firstly conducting an in-depth analysis of the ranging error under this method, it is concluded that the non-Gaussian distributed non-line-of-sight error (NLOS) is the main source of the personnel ranging error under the symmetric double-sided two way ranging communication mode. In order to suppress the influence of the non-line-of-sight error on the ranging result, it is proposed to base on the Gaussian sum filtering theory robust Kalman sum filtering (RKSF) ranging optimization method. Secondly, the influence of the special geometric dimensions of the roadway is analyzed on the traditional personnel positioning method. In the roadway environment where the aspect ratio tends to be infinite, the positioning error is mainly borne by the radial direction of the roadway. In order to adapt to this characteristic of roadway positioning error and enhance the robustness of the positioning algorithm to abnormal observations, a robust unscented Kalman filter (RUKF) positioning optimization method based on hypothesis testing is proposed. Finally, a method for locating people underground in coal mines based on the RKSF-RUKF model is constructed. For the purpose of verifying the effectiveness of the proposed method, a simulation experiment based on Robot Operating System (ROS) and Gazebo platform was designed and implemented, and the three most common positioning scenarios in underground coal mine positioning were compared and analyzed.

Through simulation experiments, in the line-of-sight environment, the method in this paper is not far from the traditional method; in the non-line-of-sight environment, the method in this paper has a good error suppression ability, which verifies the effectiveness of the method in this paper and improves the positioning accuracy of mine personnel, guaranteeing the safe and efficient production of coal mines, and assisting mine emergency rescue, provide a certain reference significance.

参考文献:

国家统计局.中华人民共和国2020年国民经济和社会发展统计公报[R]. 2021.

钱洪伟,于晴.煤矿瓦斯事故应急指挥能力影响因素分析评价[J].煤矿安全,2020,51(11): 295-298.

康红普,张镇,黄志增.我国煤矿顶板灾害的特点及防控技术[J].煤矿安全,2020,51(10): 24-33+38.

王佳奇,卢明银.基于数字孪生的煤矿瓦斯事故安全管理[J].煤矿安全,2020,51(08):251-255.

李加莲,池宏.基于煤矿透水事故应急响应时效性的水泵布局鲁棒优选问题研究[J/OL].中国管理科学:1-10[2021-04-25].https://doi.org/10.16381/j.cnki.issn1003-207x.2019.Y-02.

孙继平.煤矿监控新技术与新装备[J].工矿自动化,2015,41(1):1-5.

孙继平.煤矿信息化自动化新技术与发展[J].煤炭科学技术,2016,44(1):19-23.

孙继平.煤矿安全生产理念研究[J].煤炭学报,2011,36(2):313-316.

孙继平.煤矿安全生产与信息化[M].煤炭工业出版社,2011:1-32.

J.A. Pierce, A.A. McKenzie , R.H. Woodward. Loran: long range navigation[M]. New York: McGraw-Hill, 1948.

张申.帐篷定律与隧道无线数字通信信道建模[J].通信学报,2002,32(11):41-50.

李冰玉,张申.隧道内微波多径传播特性的仿真[J].微波学报, 2003,19(4):37-41.

孙继平,石庆冬.矩形隧道中的列车对电磁波截止频率的影响[J].电波科学学报,2001,16(1):100-102.

孙继平,张长森.圆形隧道中电磁波的传输特性[J].电波科学学报,2003,18(4):408-412.

孙继平,成凌飞.梯形巷道中电磁波传播的等效分析方法[J].煤炭科学技术,2006,34(1): 81-83.

孙继平,成凌飞,张长森.截面尺寸对矩形巷道中电磁波传播的影响[J].中国矿业大学学报,2005,34(5):596-599.

孙继平,张传雷.梯形隧道中横截面尺寸对电磁波传播特性的影响[J].电子与信息学报.2006,28(8):1504-1507.

O. Kubitz, M. O. Berger, M. Perlick, et al. Application of radio frequency identification devices to support navigation of autonomous mobile robots[C]. 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion, Phoenix, AZ, USA, 1997, 1: 126-130.

L. M. Ni, Y. Liu, Y. C. Lau, et al. LANDMARC: indoor location sensing using active RFID[C]. Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003, 407-415.

王璐,秦汝祥.基于RFID的井下人员跟踪定位系统研究[J].安全,2004(1):18-19.

梁松,付屹东,周春举.RFID技术在煤矿安全生产管理中的应用[J].煤炭企业管理,2005(8):66-67.

郑召文,王刚,孙继平.基于RFID技术的井下人员实时管理系统[J].煤矿安全,2006(6): 65-68.

C. Matteo, D. Gilles, Hakem, et al. Wi-Fi-based positioning in underground mine tunnels[C]. 2013 International Conference on Indoor Positioning and Indoor Navigation. Montbeliard-Belfort,2013:1-7

孙继平,王帅.基于信号强度的改进型井下测距算法的研究[J].煤炭学报,2013,38(11): 2072-2076.

湛浩旻,孙长嵩,吴珊,等.ZigBee技术在煤矿井下救援系统中的应用[J].计算机工程与应用,2006(24):181-183.

谢晓佳,程丽君,王勇.基于Zigbee网络平台的井下人员跟踪定位系统[J].煤炭学报,2007(8):884-888.

张治斌,徐小玲,阎连龙.基于Zigbee井下无线传感器网络的定位方法[J].煤炭学报,2009,34(1):125-128.

苟怡,郭海军.精确定位技术在煤矿井下的应用研究[J].中国煤炭,2010,36(8):73-75.

IEEE Standard for Information Technology-Telecommunications and Information Exchange Between Systems—Local and Metropolitan Area Networks—Specific Requirements Part 1 5.4:Wireless Medium Access Control(MAC)and Physical Layler (PHY)Specifications for Low-Rate Wireless Personal Area Networks(WPANs)[S].2006.

L. Joon-Yong, R. A. Scholtz. Ranging in a dense multipath environment using an UWB radio link[J].Selected Areas in Communications, IEEE Journal on, 2002, 20(9): 1677-1683.

S. Gezici, Z. Tian, G. B. Giannakis, et al. Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks[J].IEEE Signal Processing Magazine, 2005, 22(4): 70-84.

张宴龙.室内定位关键技术研究[D].合肥:中国科学技术大学,2014.

B.M.李德薇娜,R.W.布伦利,S.哈利哈兰.用于与访问控制系统通信和测距以实现自动功能的移动设备[P].美国加利福尼亚州:CN111066335A,2020-04-24.

刘旭峰.定位方法及装置、计算机存储介质[P].北京市:CN112040402A,2020-12-04.

刘旭峰.定位方法及装置、计算机存储介质[P].北京市:CN112040396A,2020-12-04.

D. Lymberopoulos, J. Liu. The microsoft indoor localization competition: experiences and lessons learned[J].IEEE Signal Processing Magazine, 2017, 34(5): 125-140.

张羽飞,马宏伟,毛清华,等.视觉与惯导融合的煤矿移动机器人定位方法[J].工矿自动化,2021,47(03):46-52.

李鹏杰,李晓青,王瑞雪,等.一种超宽带与惯导融合的LSTM室内定位算法[J].电讯技术,2021,61(02):172-178.

高扬,夏洪垚,许豪,等.基于GPS与地图匹配的移动机器人定位方法[J].机床与液压,2021,49(03):1-5.

王文博,黄璞,杨章静.基于超宽带、里程计、RGB-D融合的室内定位方法[J].计算机科学,2020,47(S2):334-338.

张元刚,刘坤,白猛,等.井下多传感器组合导航系统[J].工矿自动化,2019,45(7):10-16.

张帆,李亚杰,孙晓辉.无线感知与视觉融合的井下目标跟踪定位方法[J].矿业科学学报,2018,3(5):484-491.

李宗伟,王翀,王刚,等.煤矿井下人员融合定位方法[J].工矿自动化,2020,46(1):59-64.

孙继平.煤矿智能化与矿用5G[J].工矿自动化,2020,46(8):1-7.

彭友志,田野,张炜程,等.5G/GNSS融合系统定位精度仿真分析[J].厦门大学学报(自然科学版),2020,59(1):101-107.

欧阳俊,陈诗军,黄晓明,等.面向5G移动通信网的高精度定位技术分析[J].移动通信,2019,43(9):13-17.

胡青松,张赫男,王鹏,等.目标定位中的非视距传播研究综述[J].工矿自动化,2020,46(7): 16-27.

王勇.煤矿就在机器人井下可视导航技术研究[D].徐州:中国矿业大学,2018.

王福增.煤矿井下电磁环境评价[J].工矿自动化,2014,40(12):21-25.

陈辉. 煤矿综采工作面电磁骚扰的研究[D].北京:中国矿业大学,2012.

孙继平,王帅.改进型能量传递测距模型在矿井定位中的应用[J].中国矿业大学学报, 2014,43(1):94-98.

孙继平.矿井无线传输的特点[J].煤矿设计,1999(4):20-22.

王福增.煤矿井下电机车巷道环境电磁噪声的研究[J].中北大学学报(自然科学版), 2012,33(04):457-461.

孙继平,王帅.基于信号强度的改进型井下测距算法的研究[J].煤炭学报,2013,38(11): 2072-2076.

骆冰清,王佩佩,王正康,等.低功耗蓝牙5.0邻居发现协议延迟模型研究[J/OL].通信学报:1-13[2021-04-26].http://kns.cnki.net/kcms/detail/11.2102.TN.20210413.1554.002.html.

F. Mazhar, M. G. Khan, B. Sällberg. Precise indoor positioning using UWB: a review of methods, algorithms and implementations[J]. Wireless Personal Communications, 2017, 97(3): 4467-4491.

朱登科.基于RSSI的无线传感器网络测距和定位技术研究[D].长沙:国防科学技术大学, 2010.

孙继平,王帅.改进型能量传递测距模型在矿井定位中的应用[J].中国矿业大学学报, 2014,43(1):94-98.

杨铮,吴陈沭,刘云浩.位置计算:无线网络定位与可定位性[M].北京:清华大学出版社, 2014.

陈丽娜.WLAN位置指纹室内定位关键技术研究[D].上海:华东师范大学,2014.

刘剑.无线网络通信原理与应用[M].清华大学出版社:北京,2002:21.

杜钟祥,孙俊倡,朱媛,等.基于UWB的指纹定位算法研究[J].中国新通信,2020,22(4):90-93.

张齐林,李方伟,王明月.时间反演联合TOA测距的室内指纹定位技术[J/OL].信号处理:1-10[2021-02-19].http://kns.cnki.net/kcms/detail/11.2406.TN.20210120.0902.008.html.

徐友军.基于UWB脉冲信号的定位机制研究[D].北京:北京邮电大学,2006.

孙继平,李晨鑫.基于卡尔曼滤波和指纹定位的矿井TOA定位方法[J].中国矿业大学学报,2014,43(6):1127-1133.

L. J. Greenstein, V. Erceg and Y. S. Yeh, et al. A new path-gain/delay-spread propagation model for digital cellular channels[J]. IEEE Transactions on Vehicular Technology,1997, 46(2),477-485.

孙哲星.煤矿井下人员精确定位方法研究[D].北京:中国矿业大学,2018.

孙继平,李晨鑫.基于WiFi和计时误差抑制的TOA煤矿井下目标定位方法[J].煤炭学报,2014,39(1),192-197.

赵芳,常慧忠.阳煤集团建成全国首个5G煤矿专网[N].人民网,2020-05-31(地方新闻).

杨刚,朱士玲,李强,等.融合UWB/INS的消防员室内定位与NLOS检测算法[J/OL].计算机工程:1-10[2021-02-23].https://doi.org/10.19678/j.issn.1000-3428.0059311.

FOY.W H. Position-location solutions by Taylor-series estimation[J]. IEEE Trans Aerospace Electronic Systems, 1976, 12(3), 187-194.

G. Chang. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion[J]. Journal of Geodesy, 2014,88,391-401.

茹敬雨.基于隐马尔可夫模型的无线传感器网络非视距定位研究[D].沈阳:东北大学, 2014.

夏萍萍.基于UWB的煤矿井下人员定位系统研究[D].西安:西安科技大学,2019.

邓水发.LOS/NLOS传播环境识别与NLOS误差消除技术研究[D].成都:西南交通大学, 2016.

A. H. Jawinski. Stochastic processes and filtering Theory [M]. San Diego: Academic Press: 1970.

J. H. Kotecha, P. M. Djuric. Gaussian sum particle filtering[J]. IEEE Transactions on Signal Processing,2003, 51(10), 2602-2612.

张曼.基于高斯和的滤波算法研究[D].西安:西安工程大学,2015.

方安然,李旦,张建秋.异常值和未知观测噪声鲁棒的卡尔曼滤波器[J/OL].系统工程与电子技术:1-13[2021-02-18].http://kns.cnki.net/kcms/detail/11.2422.TN.20210112.1605.030.html.

S.J. Julier, J.K. Uhlmann. Unscented filtering and nonlinear estimation[J]. Proceedings of the IEEE,2004,92(3):401–422.

Chang G. Robust Kalman filtering based on Mahalanobis distance as outlier judging criterion[J]. Journal of Geodesy, 2014,88(4):391-401.

Chang G, Liu M. An adaptive fading Kalman filter based on Mahalanobis distance[J]. Proceeding of the Institution of Mechanical Engineers, Prat G: Journal of Aerospace Engineering, 2015,229(6):1114-1123.

V. Barral, C. J. Escudero, A. Jose. Garcia-Naya, et al. NLOS Identification and mitigation using low-cost UWB devices[J]. Sensors,2019,19(16),3464.

中图分类号:

 TN929.21/TD76    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式