题名: | 陕北采煤沉陷区不同采动损害类型下土壤抗冲性的变化规律研究 |
作者: | |
学号: | 22209226108 |
保密级别: | 保密(1年后开放) |
语种: | chi |
学科代码: | 085700 |
学科: | 工学 - 资源与环境 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学位年度: | 2025 |
学校: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿山生态修复 |
导师姓名: | |
导师单位: | |
提交日期: | 2025-06-12 |
答辩日期: | 2025-05-30 |
外文题名: | Study on the variation law of soil anti-scourability under different mining damage types in coal mining subsidence area of northern Shaanxi |
关键词: | |
外文关键词: | mining damage ; undisturbed soil erosion ; soil anti-scourability ; soil erosion ; northern Shaanxi coal mine area |
摘要: |
陕北煤炭基地在我国西部煤炭生产区发挥着重要作用,而该区域生态环境脆弱,加上大规模的煤炭开采,导致区域内水土流失问题严重。采动地裂缝和沉陷坡面作为黄河中游陕北煤矿区显著且最具代表性的两种采动损害形式,引发的水土流失效应已经不容忽视。为研究陕北黄土沟壑采煤沉陷区不同采动损害类型对土壤抗冲性的影响,选取陕北柠条塔北翼采动损害区域的采动地裂缝、沉陷坡面作为研究对象,分别采集不同宽度(0~10、10~20、20~30cm)采动地裂缝周围80cm以内、沉陷坡面(坡顶、坡中、坡脚)的土壤,通过文献法选取并测定了土壤机械组成(砂粒、粉粒、黏粒)、孔隙度、>0.25mm非水稳性团聚体、>0.25mm水稳性团聚体、有机质等7个国内外学者普遍关注的土壤抗冲性重要影响因子及径流泥沙量、土壤抗冲系数2个土壤抗冲系数指标,揭示不同采动损害类型下土壤抗冲性重要影响因子及土壤抗冲系数指标的变化规律,通过相关性分析和逐步回归分析等两种方法筛选了土壤抗冲性关键影响因子,并构建了陕北黄土沟壑采煤沉陷区不同损害类型下表层土壤抗冲性综合指数模型。结果表明: (1)揭示了不同采动损害类型下土壤抗冲性重要影响因子的变化规律。第一,不同宽度的采动地裂缝周围(80m以内)的土壤砂粒质量分数、土壤孔隙度、土壤>0.25 mm非水稳性团聚体质量分数等3个影响因子呈现上升趋势,增幅分别为:26.3%、12.2%、9.1%;而土壤黏粒质量分数、土壤>0.25 mm水稳性团聚体质量分数及有机质质量分数等3个影响因子均呈现下降趋势,降幅分别为:28.3%、35.4%、27.2%;砂粒质量分数无显著性变化,并且两种这种效应均会随着距裂缝宽度的增大、水平距离的减小而增强。第二,沉陷坡面不同坡面位置(坡顶、坡中、坡脚)处的土壤砂粒质量分数、土壤孔隙度、土壤>0.25 mm非水稳性团聚体质量分数等3个影响因子均呈现上升趋势,增幅分别为:4.8%、2.5%、3.3%;土壤黏粒质量分数、土壤>0.25 mm水稳性团聚体质量分数及有机质质量分数均呈现下降趋势,降幅分别为:6.0%、14.6%、5.9%;砂粒质量分数无显著性变化,并且这种两种效应均表现出:坡顶>坡中>坡脚。第三,两种不同采动损害类型下的土壤土壤抗冲性重要影响因子的变化趋势基本一致。相较于沉陷坡面,采动地裂缝周边的土壤砂粒质量分数、土壤孔隙度、>0.25mm非水稳性团聚体质量分数的增幅分别提升了21.5%、9.7%、5.8%;土壤黏粒质量分数、>0.25mm非水稳性团聚体质量分数、有机质质量分数的降幅分别提升了22.3%、20.8%、21.3%。充分表明采动地裂缝的发育会严重加剧采煤活动对土壤结构的扰动作用。 (2)阐明了不同采动损害类型均产生显著降低周围土壤抗冲性的效应。第一,采动地裂缝周边的土壤经冲刷产生的泥沙流失量主要来自于5min以内。冲刷产生的径流泥沙量会随着采动地裂缝宽度的增大而增大,增幅呈现减小的趋势,增幅介于1.6%~58.7%;土壤抗冲系数均随着采动地裂缝宽度的增大而减小,降幅呈现减小的趋势,降幅介于0.4%~29.4%,这两种效应均会随着距裂缝水平距离的增大而减弱。第二,沉陷坡面不同部位(坡顶、坡中、坡脚)处的土壤经冲刷产生的泥沙流失量主要源于6min以内。冲刷产生的径流泥沙量均呈现增大的趋势,变化幅度介于1.6%~17.9%之间;土壤抗冲系数均呈现减小的变化趋势,变化幅度介于1.3%~19.1%之间。第三,两种不同采动损害类型下的土壤土壤抗冲性指标的变化趋势基本一致。相较于沉陷坡面,采动地裂缝周边的土壤经冲刷产生径流泥沙量的增幅平均提升了7.5%;土壤抗冲系数的降幅平均提升了6.4%。充分表明采动地裂缝的发育会加剧采煤活动诱发的土壤侵蚀效应。 (3)构建了不同采动损害类型下土壤抗冲性综合指数模型。第一,基于相关性分析、逐步线性回归分析,分别筛选了两种典型采动损害类型下土壤抗冲性关键影响因素:砂粒、土壤孔隙度、>0.25mm水稳性团聚体、有机质4个因素为采动地裂缝周边的土壤抗冲性关键影响因素;砂粒、土壤孔隙度、有机质3个因素为坡顶、坡中处土壤抗冲性关键影响因素;砂粒、土壤孔隙度、>0.25mm水稳性团聚体、有机质4个因素为坡脚处土壤抗冲性关键影响因素。第二,根据上述结果采用多元线性回归分别得出陕北煤矿区不同采动损害类型下的土壤抗冲性综合指数模型,并通过与土壤抗冲性试验得到的土壤抗冲系数进行对比。两者相对误差率为-6.48%~7.54%,平均绝对误差率为1.97%,且因子显著相关、方程拟合度高,结果可靠。揭示了陕北煤矿区采动地裂缝对土壤抗冲性的影响变化规律。 |
外文摘要: |
The coal base in northern Shaanxi plays an important role in the coal production area in western China, and the ecological environment in this area is fragile, coupled with large-scale coal mining, resulting in serious soil erosion in the region. The two typical damage types of mining-induced ground fissures and subsidence slopes are the two most representative forms of mining-induced damage in the coal mining area of northern Shaanxi in the middle reaches of the Yellow River, and the soil erosion effect caused by them cannot be ignored. In order to study the influence of two types of mining damage on soil anti-scourability, the mining ground fissures with widths of 0 ~ 10 cm, 10 ~ 20 cm and 20 ~ 30 cm in the mining ground fissure development area in the north wing of Ningtiaota in northern Shaanxi were selected as the research object, and the surface soil with horizontal distance of 0 ~ 80 cm was collected. Seven important influencing factors of soil anti-scourability, such as soil mechanical composition, porosity, >0.25 mm non-water-stable aggregates, >0.25 mm water-stable aggregates and organic matter, which were widely concerned by scholars at home and abroad, and two soil anti-scourability indexes, runoff sediment and soil anti-scourability coefficient, were selected and determined by literature method. The important influencing factors of soil anti-scourability and the change rule of soil anti-scourability coefficient index under different mining damage types were revealed. The key influencing factors of soil anti-scourability were screened by correlation analysis and stepwise regression analysis, and the comprehensive index model of surface soil anti-scourability under different damage types in coal mining subsidence area of northern Shaanxi was constructed. The results show that : (1) The soil mechanical composition, soil porosity, >0.25mm non-water-stable aggregates, >0.25mm water-stable aggregates and soil organic matter of the two types of mining damage will have a certain degree of change. Mining-induced ground fissures : With the increase of crack width, the three influencing factors of soil sand mass fraction, soil porosity, and soil >0.25 mm non-water-stable aggregate mass fraction all showed an upward trend. The soil clay mass fraction, soil >0.25 mm water-stable aggregate mass fraction and organic matter mass fraction all showed a downward trend, and the sand mass fraction did not change significantly, and this effect would decrease with the increase of horizontal distance from the crack. Subsidence slope : the three influencing factors of soil sand mass fraction, soil porosity and soil >0.25 mm non-water stable aggregate mass fraction at the top, middle and toe of the slope showed an upward trend, while the soil clay mass fraction, soil >0.25 mm water stable aggregate mass fraction and organic matter mass fraction showed a downward trend, and there was no significant change in sand mass fraction, and this effect showed top>middle>toe. Compared with the subsidence slope, the increase of soil sand mass fraction, soil porosity and >0.25 mm non-water stable aggregate mass fraction around the mining ground fissure increased by 21.5 %, 9.7 % and 5.8 %, respectively. The decrease of soil clay mass fraction, >0.25 mm non-water stable aggregate mass fraction and organic matter mass fraction increased by 22.3 %, 20.8 % and 21.3 %, respectively. The results show that the occurrence of mining-induced ground fissures will seriously aggravate the disturbance of coal mining activities to soil structure. (2) Under the two types of mining damage, the cumulative runoff and sediment volume in different scouring time showed a three-stage change rule of ' rapid increase, slow increase and stable ' under different scouring flow rates. The amount of sediment loss caused by soil erosion around mining ground fissures mainly comes from within 5 minutes, while the amount of sediment loss caused by soil erosion on subsidence slope mainly comes from within 6 minutes. The amount of runoff and sediment generated by the erosion of the soil around the mining ground fissure increases with the increase of the width of the mining ground fissure, and the increase shows a decreasing trend, with an increase of 1.6 % ~ 58.7 %. The soil anti-scourability coefficient decreases with the increase of the width of the mining ground fissure, and the decrease shows a decreasing trend, with a decrease of 0.4 % ~ 29.4 %. This effect will be weakened with the increase of the horizontal distance from the fissure. The amount of runoff and sediment produced by the surface soil at three different slope faces of the loess subsidence slope showed different trends during the scouring process. The amount of runoff and sediment produced by the soil at the top, middle and toe of the slope showed an increasing trend, and the variation range was between 1.6 % and 17.9 %. The soil anti-scourability coefficients at three different slope faces on the subsidence slope showed a decreasing trend, and the variation range was between 1.3 % and 19.1 %. (3) Based on correlation analysis and stepwise linear regression analysis, the key influencing factors of soil anti-scourability under two typical mining damage types were screened respectively. The results show that sand, soil porosity, > 0.25 mm water-stable aggregates and organic matter are the key influencing factors of soil anti-scourability around mining-induced ground fissures. The three factors of sand, soil porosity and organic matter were the key influencing factors of soil anti-scourability at the top and middle of the slope. The four factors of sand, soil porosity, > 0.25 mm water-stable aggregates and organic matter are the key influencing factors of soil anti-scourability at the foot of the slope. Based on the above results, the comprehensive index model of soil anti-scourability under two different forms of mining damage in northern Shaanxi coal mining area was obtained by multiple linear regression, and compared with the soil anti-scourability coefficient obtained by soil anti-scourability test. The relative error rate of the two is-6.48 % ~ 7.54 %, and the average absolute error rate is 1.97 %. The factor is significantly correlated, the equation fitting degree is high, and the result is reliable. The influence of mining-induced ground fissures on soil anti-scourability in northern Shaanxi coal mine area is revealed. |
参考文献: |
[1] 武强,涂坤,曾一凡,等.打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J].煤炭学报,2019,44(6):1625−1636. [2] 王国法,任世华,庞义辉,等.煤炭工业“十三五”发展成效与“双碳”目标实施路径[J].煤炭科学技术,2021,49(9):1−8. [3] 王国法,张铁岗,王成山,等.基于新一代信息技术的能源与矿业治理体系发展战略研究[J].中国工程科学,2022,24(01):176-189. [4] 中华人民共和国统计局.中国统计年鉴[M].北京:中国统计出版社,2024. [5] 武强,涂坤,曾一凡,等.打造我国主体能源(煤炭)升级版面临的主要问题与对策探讨[J]. 煤炭学报,2019,44(6):1625−1636. [6] 王双明,孙强,乔军伟,等.论煤炭绿色开采的地质保障[J]. 煤炭学报,2020,45(1):8-15. [7] 王双明,申艳军,宋世杰,等.“双碳”目标下煤炭能源地位变化与绿色低碳开发[J].煤炭学报,2023,48(07):2599-2612. [8] 宋世杰,王艺,彭芮思,等.陕北不同地貌类型区采煤沉陷对土壤微生物和酶活性的影响[J].煤炭科学技术,2023,51(12):110-124. [9] 武强.一条线 一盘棋 助推黄河流域高质量发展[J].中国科技产业,2023(04):1-2. [10] 魏慎洪,窦斌,白雪亮,等.黄河流域煤炭资源开发潜力与布局研究[J].煤炭经济研究,2023,43(02):57-61. [11] 彭苏萍,毕银丽.黄河流域煤矿区生态环境修复关键技术与战略思考[J].煤炭学报,2020,45(04):1211-1221. [12] 范立民.保水采煤的科学内涵[J].煤炭学报,2017,42(1):27-35. [19] 习近平.在黄河流域生态保护和高质量发展座谈会上的讲话[J].当代广西,2019 (20) : [20] 中共中央 国务院印发《黄河流域生态保护和高质量发展规划纲要》[J].中华人民共和国国务院公报,2021(30):15-35. [22] 范立民.保水开采是矿山地质环境保护的基础[J].水文地质工程地质,2015,42(01):3. [23] 卞正富,于昊辰,雷少刚,等.黄河流域煤炭资源开发战略研判与生态修复策略思考[J].煤炭学报,2021,46(05):1378-1391. [27] 李建明,王文龙,王贞,等.神府煤田废弃堆积体新增水土流失研究[J].自然灾害学报,2014,23(2):239-249. [28] 王双明,魏江波,宋世杰,等.黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J].煤田地质与勘探,2022,50(12):1-11. [29] 我国十年来水土保持工作的成就[J].土壤,1959,10:5-9. [30] 彭苏萍,张博,王佟.我国煤炭资源“井”字形分布特征与可持续发展战略[J].中国工程科学,2015,17(09):29-35. [31] 王国法,李世军,张金虎,等.筑牢煤炭产业安全 奠定能源安全基石[J].中国煤炭, 2022, 48(07):1-9. [32] 宋世杰,孙涛,郑贝贝,等.陕北黄土沟壑区采煤沉陷对黄土坡面形态的影响及土壤侵蚀效应[J].煤炭科学技术, 2023, 51(02): 422-435. [33] 宋世杰,张家杰,杨帅,等.黄河上中游采煤沉陷区水土流失效应的探索与思考[J].绿色矿山,2024,2(02):169-182. [36] 梁文辉,段义字.荒漠戈壁区某煤矿矿井建设工程新增水土流失预测及防治对策[J].水土保持研究,2006,13(06): 34-36. [37] 白中科,段永红,杨红云,等.采煤沉陷对土壤侵蚀与土地利用的影响预测[J].农业工程学报,2006,22(06):67-70. [38] 黄翌,汪云甲,王猛,等.黄土高原山地采煤沉陷对土壤侵蚀的影响[J].农业工程学报,2014,30(01):228-235. [39] 汪炜,汪云甲,张业,等.基于GIS和RS的矿区土壤侵蚀动态研究[J].煤炭工程,2011,(11):120-122. [40] 尘福艳,郭仲皓,张英海,等.基于遥感与GIS技术的陕北煤矿区生态环境质量评价——以杨伙盘矿区为例[J].中国煤炭, 2020, 46(06): 45-51. [44] 陈涛,陈守贵.基于RS和GIS的神府矿区水土流失分级研究[J]. 西北林学院学报,2011, 26(06):164-168. [45] 周伟,白中科,袁春,等.东露天煤矿区采矿对土地利用和土壤侵蚀的影响预测[J].农业工程学报,2007,23(03):55-60. [46] 李建明,王文龙,王贞等.神府煤田废弃堆积体新增水土流失研究[J].自然灾害学报,2014,(23)2:239-249. [47] 王文龙,李占斌,李鹏,等.神府东胜煤田开发建设弃土弃渣冲刷试验研究[J].水土保持学报,2004,(05):68-71. [48] 胡振华,王电龙,呼起跃.煤矸石松散堆置体坡面侵蚀规律研究[J].水土保持学报,2007,21(03):23-27. [49] 张合兵,聂小军,程静霞.137Cs示踪采煤沉陷坡土壤侵蚀及其对土壤养分的影响[J]. 农业工程学报,2015,31(04):137-143. [51] 张耀方,江东,史东梅,等.重庆市煤矿开采区土壤侵蚀特征及水土保持模式研究[J].水土保持研究,2011,18(6):94-99. [52] 赵菊,刘方,朱健,等.煤矸石-磷石膏-菌渣混合基质与黑麦草根系复合体抗剪性能的差异性[J].水土保持通报,2023,43(4):103-109. [53] 聂小军,高爽,陈永亮,等.西北风积沙区采煤扰动下土壤侵蚀与养分演变特征[J].农业工程学报,2018,34(02):127-134. [54] 陈孝杨,王芳,王长垒,等.砂姜黑土区采煤塌陷坡耕地水蚀输沙过程研究[J].水土保持学报,2015,29(1):32-35. [55] 王平,王金满,秦倩,等.黄土区采煤塌陷对土壤水力特性的影响[J].水土保持学报,2016,30(03):297-304. [56] 张发旺,侯新伟,韩占涛,等.采煤塌陷对土壤质量的影响效应及保护技术[J].地理与地理信息科学,2003,(03):67-70. [57] 臧荫桐,汪季,丁国栋,等.采煤沉陷后风沙土理化性质变化及其评价研究[J].土壤学报,2010,47(02):262-269. [58] 魏婷婷,胡振琪,曹远博,等.风沙区煤炭开采对土壤物理性质和结皮的影响[J].水土保持通报,2015,35(02):106-110. [59] 郄晨龙,卞正富,杨德军,等.鄂尔多斯煤田高强度井工煤矿开采对土壤物理性质的扰动[J].煤炭学报,2015,40(06):1448-1456. [60] 谢元贵,车家骧,孙文博,等.煤矿矿区不同采煤塌陷年限土壤物理性质对比研究[J].水土保持研究,2012,19(04):26-29. [61] 杨俊哲,雷少刚.工作面开采强度对RUSLE坡度坡长因子的影响规律[J].煤炭科学技术,2021,49(01):192-197. [62] 朱显谟.黄土地区植被因素对于水土流失的影响[J].土壤学报,1960,8(02):110-121. [63] 蒋定生,王宁,王煜.黄土高原水土流失与治理模式[M]. 北京:中国水利水电出版社,1997. [67] 吴普特,周佩华,郑世清.黄土丘陵沟壑区(Ⅲ)土壤抗冲性研究——以天水站为例[J].水土保持学报,1993,7(03):19-25. [68] 周佩华,武春龙.黄土高原土壤抗冲性的试验研究方法探讨[J].水土保持学报,1993,7(01):29-34. [69] 蒋定生,范兴科,李新华,等.黄土高原水土流失严重地区土壤抗冲性的水平和垂直变化规律研究[J]. 水土保持学报,1995,(02):1-8. [70] 张爱国,张平仓,杨勤科.区域水土流失土壤因子研究[M].北京:地质出版社,2003. [72] 刘国彬.黄土高原土壤抗冲性研究及有关问题[J]. 水土保持研究,1997,4(5):91-101. [74] 赵兴实,顾仁德,祁国贵.黑土侵蚀区土壤理化特性及抗冲抗蚀性能初探[J]. 水土保持,1981(06):27-32. [75] 李勇,吴钦孝,朱显谟,等.黄土高原植物根系提高土壤抗冲性能的研究——Ⅰ.油松人工林根系对土壤抗冲性的增强效应[J]. 水土保持学报, 1990(01):1-5. [76] 张科利.浅沟发育对土壤侵蚀作用的研究[J].中国水土保持,1991,(04):19-21+65. [77] 雷俊山,杨勤科.坡面薄层水流侵蚀试验研究及土壤抗冲性评价[J].泥沙研究,2004(06):22-26. [78] 赵洋毅,周运超,段旭.黔中石灰岩喀斯特表层土壤结构性与土壤抗蚀抗冲性[J].水土保持研究, 2008,15(02):18-21. [80] 石生新.土壤抗冲性的研究[J].山西水利科技,1998(03):91-94. [81] 张建军,张宝颖,毕华兴,等.黄土区不同植被条件下的土壤抗冲性[J].北京林业大学学报,2004,26(06):25-29. [82] 王佑民,刘秉正.黄土高原防护林生态特征[M].北京:中国林业出版社,1994. [83] 汪有科,吴钦孝,赵鸿雁,等.林地枯落物抗冲机理研究[J].水土保持学报,1993,7(01):75-80. [84] 吴钦孝,李勇.黄土高原植物根系提高土壤抗冲性能的研究——Ⅱ.草本植物根系提高表层土壤抗冲刷力的试验分析[J].水土保持学报,1990(01):11-16. [85] 李勇.沙棘林根系强化土壤抗冲性的研究[J].水土保持学报,1990,4(03):15-20. [86] 李勇,朱显谟,田积莹.黄土高原植物根系提高土壤抗冲性的有效性[J].科学通报,1991(12):935-938. [87] 查小春,贺秀斌.土壤物理力学性质与土壤侵蚀关系研究进展[J].水土保持研究,1999,6(02):99-105. [88] 朱显谟,田积莹.强化黄土高原土壤渗透性及抗冲性的研究[J].水土保持学报,1993,7(03):1-10. [89] 刘国彬.黄土高原草地土壤抗冲性及其机理研究[J].土壤侵蚀与水土保持学报,1998,4(01):94-97. [90] 程金花,沈子雅.重庆四面山不同林分土壤抗蚀抗冲特征[J].中国水土保持科学(中英文),2024,22(01):52-62. [91] 李勇.黄土高原植物根系与土壤抗冲性[M].北京:科学出版社,1995. [94] 杨志.陕北榆神矿区生态地质环境特征及煤炭开采影响机理研究[D].中国矿业大学, 2020. [95] 许传阳,马守臣,张合兵等.煤矿沉陷区沉陷裂缝对土壤特性和作物生长的影响[J].中国生态农业学报,2015,23(05):597-604. [96] 尤耀林.柠条塔煤矿采空区积水量预测研究[D].西安科技大学,2018. [97] 任永贤.陕北煤炭开采重点区地质灾害特征及防治[D].西安科技大学,2010. [98] 宋世杰,彭芮思,左靖,等.陕北煤矿区采动地裂缝对土壤抗蚀性的影响规律研究[J].煤炭科学技术,2024,52(02):378-393. [99] 杨磊.陕北煤矿沉陷区边坡土壤因子分析及质量评价[D].西安科技大学,2019. [100] 毕银丽,刘京,尚建选,等.陕北采煤沉陷区土壤水分入渗和蒸发特征研究[J].中国矿业大学学报,2022,51(5):839-849+862. [101] 柏兰峰,李占斌,马波,等.自然冻融条件下黄土丘陵区不同土地利用方式原状土的抗冲性[J].水土保持通报,2022,42(01):49-55+62. [102] 吴普特.黄土区土壤抗冲性研究进展及亟待解决的若干问题[J].水土保持研究,1997,4(5):59-66. [103] 郭明明,王文龙,史倩华,等.黄土高塬沟壑区退耕地土壤抗冲性及其与影响因素的关系[J].农业工程学报,2016,32(10):129-136. [104] 沙小燕,李魁,王文龙,等.黄土高塬沟壑区草地沟头立壁土壤抗冲性特征[J].应用生态学报,2022,33(01):133-140. [105] 伏耀龙,张兴昌.岷江干旱河谷区不同土地利用方式下土壤抗冲性试验[J].农业机械学报,2012,43(7):50-55. [106] 金晓,陈丽华.晋西黄土区不同植被类型土壤抗冲性及表层根系分布特征[J].水土保持学报,2019,33(6):120-126. [107] 韩美清,吴维洲,万炳宏,等.成兰铁路受损边坡土壤抗冲性及其影响因素[J].水土保持研究,2021,28(05):400-406. [108] 夏玉成,冀伟珍,孙学阳,等.渭北煤田井工开采对土壤理化性质的影响[J].西安科技大学学报,2010,30(06):677-681. [109] 栗丽,王曰鑫,王卫斌.采煤塌陷对黄土丘陵区坡耕地土壤理化性质的影响[J].土壤通报,2010,41(05):1237-1240. [110] 郑慧慧,秦佳星,桑之婷,等.基于区域特征的煤炭开采沉陷对土壤特性影响研究进展[J].土壤通报,2022,53(06):1481-1491. [111] 王双明,杜麟,宋世杰.黄河流域陕北煤矿区采动地裂缝对土壤可蚀性的影响[J].煤炭学报,2021,46(09):3027-3038. [112] 朱义族,李雅颖,韩继刚,等.水分条件变化对土壤微生物的影响及其响应机制研究进展[J].应用生态学报,2019,30(12):4323-4332. [113] 杜涛,毕银丽,邹慧,等.地表裂缝对沙柳根际微生物和酶活性的影响[J]. 煤炭学报,2013,38(12):2221-2226. [114] 王锐,马守臣,张合兵,等.干旱区高强度开采地表裂缝对土壤微生物学特性和植物群落的影响[J].环境科学研究,2016,29(09):1249-1255. [115] 李娜,韩晓增,尤孟阳,等.土壤团聚体与微生物相互作用研究[J].生态环境学报,2013,22(09):1625-1632. [118] 薛菁芳,高艳梅,汪景宽,等.土壤微生物量碳氮作为土壤肥力指标的探讨[J]. 土壤通报,2007,(02):247-250. [119] 赵红,袁培民,吕贻忠,等.施用有机肥对土壤团聚体稳定性的影响[J]. 土壤,2011,43(02):306-311. [120] 史沛丽,张玉秀,胡振琪,等.采煤塌陷对中国西部风沙区土壤质量的影响机制及修复措施[J]. 中国科学院大学学报,2017,34(03):318-328. [121] 王双明,杜华栋,王生全.神木北部采煤塌陷区土壤与植被损害过程及机理分析[J].煤炭学报,2017,42(01):17-26. [122] 王文龙,李占斌,张平仓.神府东胜煤田开发中诱发的环境灾害问题研究[J].生态学杂志,2004,(01):34-38. [123] 王库.植物根系对土壤抗侵蚀能力的影响[J]. 土壤与环境,2001,(03):250-252. [124] 刘均阳,周正朝,苏雪萌.植物根系对土壤团聚体形成作用机制研究回顾[J].水土保持学报,2020,34(03):267-273+298. [125] 彭新华,张斌,赵其国.土壤有机碳库与土壤结构稳定性关系的研究进展[J].土壤学报,2004,(04):618-623. [126] 宋世杰,阮豪,王双明,等.黄河中游陕北煤矿区不同宽度的采动地裂缝对土壤抗冲性的影响[J]. 煤炭科学技术, 2025,53(2): 377-390. |
中图分类号: | X144 |
开放日期: | 2026-06-12 |