- 无标题文档
查看论文信息

论文中文题名:

 基于ERT技术的矿山充填管道三维可视化检测研究    

姓名:

 付先勇    

学号:

 21206223056    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085400    

学科名称:

 工学 - 电子信息    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 控制工程    

研究方向:

 电阻层析成像技术    

第一导师姓名:

 王湃    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-19    

论文答辩日期:

 2024-06-06    

论文外文题名:

 Research on 3D Visualization Inspection of Mine Filling Pipelines Based on ERT    

论文中文关键词:

 电阻层析成像 ; 充填管道 ; 图像重建算法 ; 三维ERT ; 相关测速    

论文外文关键词:

 Electrical Resistance Tomography ; Filling Pipeline ; Image Reconstruction Algorithm ; 3D ERT ; Correlation-based Velocity MeasurementElectrical Resistance Tomography ; Filling Pipeline ; Image Reconstruction Algorithm ; 3D ERT ; Correlation-based Velocity Measurement    

论文中文摘要:

膏体充填开采法能够解决采矿带来的地表塌陷和土壤污染等问题,是实现绿色矿山的重要一环。然而,管道系统的堵塞问题却成为影响其高效运行的一大挑战,这会造成严重的环境污染与巨大经济损失。因此,充填管道的堵塞检测对于推动绿色矿山建设,提高采矿生产效率,减少经济损失,降低采矿安全风险具有重要的实际意义。本研究将电阻层析成像(Electrical Resistance Tomography,ERT)技术应用于矿山充填管道的堵塞检测和流速测量中,做了如下工作:

(1)针对传统三维图像重建算法实时性差、成像精度低等问题,提出了一种基于信赖域的BFGS三维图像重建算法。该算法在BFGS算法的基础上,采用限制内存的迭代方法减少数据存储空间,利用双循环算法确定搜索方向,通过融合线搜索和信赖域的方法确定迭代步长,充分发挥了线搜索的精确性与信赖域法的稳健性,有效提高了三维ERT图像重建的质量。仿真结果表明,与高斯-牛顿(G-N)法、共轭梯度(CG)法和L-BFGS三种图像重建算法相比,所提算法性能表现优越,其中平均耗时减小了26.62%,图像相关系数提高了8.12%,相对误差减小了7.28%。

(2)针对现有ERT数据采集装置只能用于二维数据采集的不足,自主研发了三维ERT数据采集节点。该节点由传感器单元和数据采集单元两部分组成。传感器单元采用三层48电极的设计,选用双极性脉冲电流作为激励源。数据采集单元采用ADG1404多路模拟开关控制采集层数,结合AD7606和STM32F103实现对48通道的数据采集。通过对敏感场信号采集测试,所设计的三维ERT数据采集节点展现出了优异的通道稳定性和一致性。静态图像重建实验结果显示,该数据采集节点能够准确地对敏感场介质进行成像,成像位置和大小与实际介质分布高度一致。

(3)为验证所提算法以及三维ERT数据采集装置对于充填管道堵塞成像的可行性,设计了一套矿山充填管道三维可视化系统。该系统基于重力自流式“L”型充填管道检测平台,利用组态王软件对充填管道进行三维可视化显示,并实时监测管道流速。平台搭载有三维ERT无线传感器节点和流速仪,模拟实际充填管道输送过程。提出了一种基于ERT的相关法测速新方法,利用系统实验平台,进行了堵塞检测实验以及相关法测速实验。实验结果表明,所研发的三维ERT系统能够有效检测矿山管道的堵塞情况,ERT相关速测法能够较为准确的反映管道流速变化,从而预警管道堵塞情况。

本研究针对矿山管道堵塞检测问题,提出了一种高性能的三维ERT图像重建算法,设计了有效的堵塞检测装置和三维可视化系统。通过实验证明了ERT技术在矿山管道检测中具有广阔的应用前景。

论文外文摘要:

Paste filling mining method can solve the problems of surface collapse and soil pollution caused by mining, which is an important part of realizing green mines. However, the clogging problem of the pipeline system has become a major challenge affecting its efficient operation, which can cause serious environmental pollution and huge economic losses. Therefore, clogging detection of filling pipelines is of great practical significance to promote the construction of green mines, improve mining productivity, reduce economic losses, and minimize mining safety risks. In this study, Electrical Resistance Tomography (ERT) technology is applied to the clogging detection and flow rate measurement of filling pipes in mines, and the following work is done:

(1) Aiming at the problems of poor real-time and low imaging accuracy of traditional 3D image reconstruction algorithms, a BFGS 3D image reconstruction algorithm based on the trust domain is proposed. Based on the BFGS algorithm, this algorithm adopts the iterative method of limiting memory to reduce the data storage space, utilizes the double-loop algorithm to determine the search direction, and determines the iteration step size by fusing the line search and the trust domain method, which gives full play to the accuracy of the line search and the robustness of the trust domain method, and effectively improves the quality of 3D ERT image reconstruction. The simulation results show that the proposed algorithm has superior performance compared with three image reconstruction algorithms, namely, Gauss-Newton (G-N) method, conjugate gradient (CG) method and L-BFGS, in which the average elapsed time is reduced by 26.62%, the image correlation coefficient is improved by 8.12%, and the relative error is reduced by 7.28%.

(2) Aiming at the inadequacy of the existing ERT data acquisition device which can only be used for two-dimensional data acquisition, a three-dimensional ERT data acquisition node is independently developed. The node consists of two parts: the sensor unit and the data acquisition unit. The sensor unit adopts a three-layer 48-electrode design and selects bipolar pulse current as the excitation source. The data acquisition unit adopts ADG1404 multiple analog switches to control the number of acquisition layers, and combines AD7606 and STM32F103 to realize the data acquisition of 48 channels. The designed 3DERT data acquisition node demonstrates excellent channel stability and consistency through the sensitive field signal acquisition test. The static image reconstruction experimental results show that the data acquisition node is able to accurately image the sensitive field medium, and the imaging position and size are highly consistent with the actual medium distribution.

(3) In order to verify the feasibility of the proposed algorithm and 3D ERT data acquisition device for the blockage imaging of the filling pipeline, a three-dimensional visualization system for mine filling pipeline was designed. The system is based on the gravity self-flow “L” type filling pipeline detection platform, using the configuration king software to visualize the filling pipeline in three dimensions, and real-time monitoring of the pipeline flow rate. The platform is equipped with 3D ERT wireless sensor nodes and flow rate meters to simulate the actual filling pipeline transportation process. A new ERT-based correlation method speed measurement method is proposed, and the blockage detection experiments and correlation method speed measurement experiments are carried out using the system experimental platform. The experimental results show that the developed three-dimensional ERT system can effectively detect the clogging situation of mine pipelines, and the ERT correlation velocimetry method can more accurately reflect the change of pipeline flow rate, so as to provide early warning of pipeline clogging.

In this study, a high-performance 3D ERT image reconstruction algorithm is proposed for the clogging detection problem of mine pipelines, and an effective clogging detection device and 3D visualization system are designed. The experiment proves that ERT technology has a broad application prospect in mine pipeline detection.

参考文献:

[1] 王忠鑫, 田会, 王东等. 露天采矿科学目标的演变与未来发展趋势[J/OL]. 煤炭学报, 1-26[2024-03-23].

[2] 陈路. 探讨膏体充填开采技术在煤矿采空区的应用[J]. 当代化工研究, 2022(21): 117-119.

[3] 李建申. 膏体充填控制技术优化及管道堵塞预测研究[D]. 河北工程大学, 2018.

[4] 姚法彬. 管道泄漏故障检测技术的发展现状及未来趋势[J]. 化工设计通讯, 2019, 45(04): 104+135.

[5] 王湃. 电阻层析成像(ERT)技术及其在两相流检测中的应用[J]. 西安电子科技大学, 2013.

[6] 万倪, 钱相臣, 闫勇. 多相流互相关测速算法综述[J]. 电子测量与仪器学报, 2022, 36(05): 1-11.

[7] 谭超, 董峰. 过程层析成像与多相流测量应用[J]. 仪器仪表用户, 2010, 17(01): 3-6.

[8] Brown B H, Seagar A D. The Sheffield data collection system[J]. Clinical physics and physiological measurement, 1987, 8(4A): 91.

[9] Wang M, Dickin F J, Williams R A. Electrical resistance tomography of metal walled vessels and pipelines[J]. Electronics Letters, 1994, 30(10): 771-773.

[10] Cilliers J J, Xie W, Neethling S J, et al. Electrical resistance tomography using a bi-directional current pulse technique[J]. Measurement Science and Technology, 2001, 12(8): 997.

[11] Hong S, Lee J, Bae J, et al. A 10.4 mW electrical impedance tomography SoC for portable real-time lung ventilation monitoring system[J]. IEEE Journal of Solid-State Circuits, 2015, 50(11): 2501-2512.

[12] Gupta S, Lin Y A, Lee H J, et al. In situ crack mapping of large-scale self-sensing concrete pavements using electrical resistance tomography[J]. Cement and Concrete Composites, 2021, 122: 104154.

[13] Cherepenin V A, Karpov A Y, Korjenevsky A V, et al. Three-dimensional EIT imaging of breast tissues: system design and clinical testing[J]. IEEE transactions on medical imaging, 2002, 21(6): 662-667.

[14] Doetsch J, Linde N, Pessognelli M, et al. Constraining 3-D electrical resistance tomography with GPR reflection data for improved aquifer characterization[J]. Journal of Applied Geophysics, 2012, 78: 68-76.

[15] Martorana R, Capizzi P, Pirrera C. Unconventional Arrays for 3D Electrical Resistivity and Induced Polarization Tomography to Detect Leachate Concentration in a Waste Landfill[J]. Applied Sciences, 2023, 13(12): 7203.

[16] 董峰, 徐立军, 刘小平等. 用电阻层析成像技术实现两相流流型识别[J]. 仪器仪表学报, 2001, (S1): 416-417+431.

[17] 郭康. 三维电阻层析成像(ERT)硬件系统设计[D]. 东北大学, 2014.

[18] 徐臻. 不同激励模式12电极非接触式电阻层析成像系统图像重建及应用研究[D]. 浙江大学, 2022.

[19] 王化祥, 汪婧, 胡理等. ERT/ECT双模态敏感阵列电极优化设计[J]. 天津大学学报, 2008, (08): 911-918.

[20] 康鹏飞. 三维电阻层析成像测量技术研究[D]. 中国石油大学(华东), 2013.

[21] 李凯. 伪三维电阻率成像技术在煤矿采空区勘探中的应用[J]. 工程地球物理学报, 2024, 21(02): 226-237.

[22] Chu J, Liu Y, Lv X, et al. Experimental investigation on blockage predictions in gas pipelines using the pressure pulse wave method[J]. Energy, 2021, 230: 120897.

[23] Duan W, Kirby R, Prisutova J, et al. On the use of power reflection ratio and phase change to determine the geometry of a blockage in a pipe[J]. Applied Acoustics, 2015, 87: 190-197.

[24] Riis N A B, Frøsig J, Dong Y, et al. Limited-data x-ray CT for underwater pipeline inspection[J]. Inverse Problems, 2018, 34(3): 034002.

[25] Ling K, Wu X, Shen Z. A new method to detect partial blockage in gas pipelines[J]. Oil and Gas Facilities, 2016, 5(05).

[26] Koyama M, Watamura T, Sugiyama K. Simultaneous photobleaching molecular tagging velocimetry for density-stratified flows of suspensions[J]. Experiments in Fluids, 2019, 60: 1-22.

[27] Fan L, McGrath D, Chong C T, et al. Laser-induced incandescence particle image velocimetry (LII-PIV) for two-phase flow velocity measurement[J]. Experiments in Fluids, 2018, 59: 1-14.

[28] Beck M S. Correlation in instruments: cross correlation flowmeters[J]. Journal of Physics E: Scientific Instruments, 1981, 14(1): 7.

[29] Arko A. Development of electrical capacitance tomography for solids mass flow measurement and control of pneumatic conveying systems[C]//Proc. 1st World Congr. on Industrial Process Tomography, Buxton, 1999. 1999.

[30] 徐群. 两相流相关流量测量方法研究[D]. 南京理工大学, 2004.

[31] 燕芳, 李文涛. 气/液两相流相关法测速系统的仿真研究[J]. 微计算机信息, 2010, 26(13): 42-44.

[32] Bai L, Jin N, Chen X, et al. A distributed conductance cross-correlation method for measuring low-velocity and high water-cut oil-water flows[J]. IEEE Sensors Journal, 2021, 21(21): 23860-23871.

[33] Cui Z, Wang Q, Xue Q, et al. A review on image reconstruction algorithms for electrical capacitance/resistance tomography[J]. Sensor Review, 2016, 36(4): 429-445.

[34] 冯慈璋, 电磁场理论, 第二版, 人民教育出版社, 1983.

[35] 刘智波, 颜华, 王伊凡. ERT传感器敏感空间的研究[J]. 电子世界, 2020, (12): 82-83.

[36] 仝卫国, 曾世超, 张立峰等. 基于深度残差神经网络的电阻层析成像及流型辨识方法[J]. 系统仿真学报, 2022, 34(09): 2028-2036.

[37] 李华锋, 盛伟, 韩斌等. Tikhonov正则化方法在航空γ测量数据处理中的应用[J]. 现代应用物理, 2024, 15(01): 61-67.

[38] 刘卓. 基于ERT与无线传感网络技术的矿山充填管道可视化检测研究[D]. 西安科技大学, 2021.

[39] 杨晚诚. 基于卷积神经网络和迁移学习的电阻层析成像重建算法[D]. 天津大学, 2022.

[40] Brown R M, Torres R H. Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in L p, p> 2 n[J]. Journal of Fourier Analysis and Applications, 2003, 9(6): 563-574.

[41] Murai T, Kagawa Y. Electrical impedance computed tomography based on a finite element model[J]. IEEE Transactions on Biomedical Engineering, 1985 (3): 177-184.

[42] Vauhkonen M, Vadász D, Karjalainen P A, et al. Tikhonov regularization and prior information in electrical impedance tomography[J]. IEEE transactions on medical imaging, 1998, 17(2): 285-293.

[43] Golub G H, Van Loan C F. Matrix Computations Johns Hopkins University Press[J]. Baltimore and London, 1996, 60.

[44] 胡海涛. 电阻层析成像图像重建算法的研究[D]. 哈尔滨理工大学, 2009.

[45] Tang H, Xu C, Han X. Electrical resistance tomography image reconstruction based on one-dimensional multi-branch convolutional neural network combined with attention mechanism[J]. Flow Measurement and Instrumentation, 2022, 84: 102140.

[46] 杨茜, 吴泽忠, 贺盛瑜. 一类改进的BFGS拟牛顿法及与其他几种拟牛顿法的比较研究[J]. 成都信息工程大学学报, 2023, 38(02): 227-235.

[47] Erway J B, Marcia R F. Limited-memory BFGS systems with diagonal updates[J]. Linear algebra and its applications, 2012, 437(1): 333-344.

[48] Yan X, He Q, Wang Y. Truncated trust region method for nonlinear inverse problems and application in full-waveform inversion[J]. Journal of Computational and Applied Mathematics, 2022, 404: 113896.

[49] 孙清滢, 刘丽敏, 王宣战. 修正Grippo非单调线搜索规则的新对角稀疏拟牛顿算法[J]. 高等学校计算数学学报, 2011, 33(03): 203-214.

[50] 李季, 张琦, 潘孟春等. 载体干扰磁场补偿方法[J]. 国防科技大学学报, 2013, 35(03): 7-11.

[51] Eelbode T, Bertels J, Berman M, et al. Optimization for medical image segmentation: theory and practice when evaluating with dice score or jaccard index[J]. IEEE transactions on medical imaging, 2020, 39(11): 3679-3690.

[52] Pan B. Recent progress in digital image correlation[J]. Experimental mechanics, 2011, 51: 1223-1235.

[53] 肖理庆, 王化祥, 聂文艳. 利用h细化优化电阻层析成像灵敏度矩阵[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(02): 150-158.

[54] 王建栋. 全尾砂膏体垂直管自流输送流动行为特征研究[D]. 北京科技大学, 2022.

[55] Bikson M, Datta A. Guidelines for precise and accurate computational models of tDCS[J]. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 2012, 5(3): 430-431.

[56] 李阳博. 基于ERT技术的矿山充填管道检测方法研究[D]. 西安科技大学, 2020.

[57] Li J H, Joppek C, Faust U. Fast EIT data acquisition system with active electrodes and its application to cardiac imaging[J]. Physiological measurement, 1996, 17(4A): A25.

[58] 康志强, 辛东夫, 邵陆航等. L型充填管道料浆输送压力损失及优化研究[J]. 金属矿山, 2020, (09): 33-40.

[59] 杨建, 王新民, 张钦礼等. 含硫高黏性三相流态充填浆体管道输送性能[J]. 中国有色金属学报, 2015, 25(04): 1049-1055.

[60] 董章淼. 气固两相流流速测量系统设计[D]. 东北大学, 2014.

[61] 李守晓. 电学成像算法及气固两相流研究[D]. 天津大学, 2012.

中图分类号:

 TP391.4    

开放日期:

 2024-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式