- 无标题文档
查看论文信息

论文中文题名:

 基于CT扫描的不同饱和度砂岩冻融损伤机理试验研究    

姓名:

 杨慧敏    

学号:

 18204209067    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 建筑与土木工程    

研究方向:

 细观岩石力学    

第一导师姓名:

 宋勇军    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-05-29    

论文外文题名:

 Experimental study on the mechanism of freeze-thaw damage in sandstone with different saturation based on CT scan    

论文中文关键词:

  ; 白砂岩 ; 冻融循环 ; 不同饱和度 ; CT三维重构 ; 细观结构 ; 力学特性 ; 损伤机理    

论文外文关键词:

 red and white sandstone ; freeze-thaw cycles ; different saturation ; CT three dimensional reconstruction ; meso-structure ; mechanical properties ; damage mechanism    

论文中文摘要:

为探究寒区不同含水状态下的岩土工程在冻融与荷载作用下的变形稳定问题,取陕西某地的红、白砂岩作为研究对象,开展了研究工作,旨在为科学评价寒区冻融环境下岩体工程的长期稳定性提供理论依据。对自然含水(20%)、不完全饱水(70%)和完全饱水(100%)的两种砂岩进行冻融循环试验、电镜扫描试验、冻融过程中的CT扫描试验、冻融后的单轴压缩试验。探究冻融环境对两种砂岩的细观结构、宏观物理特征和宏观力学指标的作用,定义冻融损伤变量并建立损伤演化曲线,建立宏观力学强度与细观结构参数的联系,对比分析冻融次数、饱和度对两种砂岩冻融损伤劣化机制的影响,主要研究内容和创新成果如下:

(1)揭示了不同饱和度两种砂岩的冻融损伤特性。对于不同饱和度的两种砂岩,分别进行0、7、14、30、60、90、120及150次的冻融循环试验,在冻融循环试验的基础上,完成了岩石的电镜扫描试验,探究了整个冻融过程中岩石的冻融破坏模式、质量、波速及冻融损伤变量的变化特点。结果表明:冻融作用下饱和度大小决定了岩样冻融损伤的程度,完全饱水砂岩损伤劣化最为剧烈,自然含水状态损伤程度最低,白砂岩冻融损伤较红砂岩严重,尤其完全饱水白砂岩依次出现端部掉落、横向断裂;饱和度越大,岩样质量、波速的降低速率与冻融损伤变量的增长速率越快,变化幅度与饱和度大小成正相关;白砂岩物理量和冻融损伤变量的变化普遍大于红砂岩,除完全饱水白砂岩的冻融损伤变量呈指数型变化之外,其它饱和度岩样均为直线型变化;并总结了岩石内部细观结构的差异加剧了其冻融损伤程度。

(2)探究了三种饱和度冻融岩石的细观结构损伤演化特征。基于不同饱和度两种砂岩的冻融循环试验,完成了相应饱和度、冻融次数下的高精度CT扫描试验,结合三维可视化技术、等效球体法及分形理论,对冻融过程中自然含水、不完全饱水和完全饱水的两种砂岩中心立方体区域的孔隙率、渗透率、孔隙参数、喉道参数、分形维数及细观损伤增量等细观结构参数进行了定量分析。结果表明:冻融作用促进了岩石内部细观结构的演化,岩样细观结构参数的增长速率与其饱和度大小成正比;白砂岩的细观参数均快于红砂岩,相较于其它饱和度岩样呈直线增加,完全饱水白砂岩增长最快为呈指数型,相比于红砂岩,白砂岩细观结构参数变化明显,孔隙通过喉道相互连通的空间占有能力强,具有明显的渗透能力;岩石冻融损伤主要为原孔隙尺寸增大再破裂为小孔隙和原喉道长度增加;红砂岩分形维数介于2.18 ~ 2.25之间,白砂岩分形分形维数介于2.46 ~ 2.54之间,分形可定量表述岩体内部结构损伤演化发展的动态过程及规律;岩体组成成分和骨架结构密实程度造成细观结构冻融损伤差异。

(3)研究不同饱和度冻融岩样的力学特性,并建立宏观力学强度与细观结构参数的联系。同样基于不同饱和度的两种砂岩的冻融循环试验,完成了相应饱和度、冻融次数下的单轴压缩试验,揭示了冻融与荷载双重作用下,不同饱和度两种岩石的损伤破坏模式、宏观力学特性及宏细观之间的联系。试验结果表明:冻融与荷载双重作用下,红砂岩冻融荷载损伤破坏模式主要为脆性破坏,白砂岩主要为剪切破坏并表现出良好的塑性和延展性;两种砂岩强度、弹性模量随冻融次数增加均呈直线型降低,150次冻融后,完全饱水红砂岩强度下降了16.84%,分别是自然含水、不完全饱水状态的4.36和2.38倍,完全饱水白砂岩强度下降了98.53%,分别是自然含水、不完全饱水的1.68和1.26倍;不同饱和度两种砂岩单轴抗压强度与孔隙率、分形维数均成负相关,与其宏观物理量、宏观力学指标随冻融次数的变化规律基本一致;岩石细观结构变化诱发其宏观力学性能劣化,细观结构是影响其宏观力学特性的关键。

论文外文摘要:

In order to investigate the deformation stability of geotechnical engineering under freeze-thaw and load in different water-bearing states in cold regions, red and white sandstones from a place in Shaanxi Province were taken as the research objects, and research work was carried out with the aim of providing a theoretical basis for scientific evaluation of the long-term stability of rock engineering under freeze-thaw environment in cold regions. Freeze-thaw cycling tests, electron microscope scanning tests, CT scanning tests during freeze-thaw, and uniaxial compression tests after freeze-thaw were conducted on two sandstones with natural water content (20%), incomplete water saturation (70%) and complete water saturation (100%). To investigate the role of freeze-thaw environment on the fine structure, macroscopic physical characteristics and macroscopic mechanical indices of the two sandstones, to define freeze-thaw damage variables and establish damage evolution curves, to establish the link between macroscopic mechanical strength and fine structural parameters, and to compare and analyze the effects of freeze-thaw times and saturation on the deterioration mechanism of freeze-thaw damage of the two sandstones, the main research contents and innovative results are as follows.

(1) The freeze-thaw damage characteristics of two sandstones with different saturations were revealed. Based on the freeze-thaw cycling tests, electron microscope scanning tests were completed to investigate the freeze-thaw damage pattern, mass, wave velocity and variables of freeze-thaw damage during the whole freeze-thaw process. The results show that: the degree of saturation under the freeze-thaw action determines the degree of freeze-thaw damage of rock samples, and the deterioration of damage is the most intense in fully saturated sandstone, and the degree of damage is the lowest in the natural water-bearing state, and the freeze-thaw damage of white sandstone is more serious than that of red sandstone, especially the fully saturated white sandstone has end drop and lateral fracture in order. The greater the degree of saturation, the faster the rate of reduction of rock sample mass and wave velocity and the growth rate of freeze-thaw damage variables, and the magnitude of change is positively correlated with the size of saturation. The changes of physical quantity and freeze-thaw damage variables of white sandstone are generally larger than those of red sandstone, except for the exponential changes of freeze-thaw damage variables of fully saturated white sandstone, all other saturated rock samples have linear changes. It is also concluded that the differences in the internal fine structure of the rocks exacerbate the degree of freeze-thaw damage.

(2) The fine structure damage evolution characteristics of freeze-thaw rocks with three saturations were investigated. Based on the freeze-thaw cycles of two sandstones with different saturations, high-precision CT scan tests were completed with corresponding saturations and freeze-thaw times, and the fine structural parameters such as porosity, permeability, pore parameters, throat parameters, fractal dimension and fine damage increment of the central cubic region of two sandstones with natural water content, incomplete water saturation and complete water saturation during freeze-thaw were quantitatively analyzed by combining 3D visualization techniques, equivalent sphere method and fractal theory. The results show that: the freeze-thaw action promotes the evolution of the fine structure inside the rock, and the growth rate of the fine structure parameters of the rock samples is proportional to their saturation magnitude. The fine structure parameters of white sandstone are faster than those of red sandstone, and increase linearly compared with other saturated rock samples, and the growth of fully saturated white sandstone is exponentially the fastest, compared with red sandstone, the fine structure parameters of white sandstone change significantly, and the pores are interconnected through the throat with strong space occupancy and obvious permeability. The freeze-thaw damage is mainly due to the increase of the original pore size and then rupture into small pores and the increase of the original throat length. The fractal dimension of red sandstone ranges from 2.18 to 2.25, and the fractal dimension of white sandstone ranges from 2.46 to 2.54. The fractal can quantify the dynamic process and law of the evolution of structural damage inside the rock body. The composition of the rock mass and the denseness of the skeletal structure cause differences in the fine structure freeze-thaw damage.

(3) To study the mechanical properties of freeze-thaw rock samples with different saturations and to establish the link between macro-mechanical strength and fine structural parameters. Based on the freeze-thaw cycling tests of two sandstones with different saturations, the uniaxial compression tests with corresponding saturations and freeze-thaw times were completed to reveal the damage damage modes, macro-mechanical properties and macro-fine connections between the two rocks with different saturations under the dual action of freeze-thaw and load. The test results show that the freeze-thaw damage damage mode of red sandstone is mainly brittle damage, while that of white sandstone is mainly shear damage and shows good plasticity and ductility under both freeze-thaw and load. The strength and modulus of elasticity of both sandstones decreased linearly with the increase of freeze-thawing times, and after 150 freeze-thaws, the strength of fully saturated red sandstone decreased by 16.84%, which was 4.36 and 2.38 times of that of natural water and incomplete water, respectively, and the strength of fully saturated white sandstone decreased by 98.53%, which was 1.68 and 1.26 times of that of natural water and incomplete water, respectively. The uniaxial compressive strengths of the two sandstones with different saturations were negatively correlated with porosity and fractal dimension, which were basically consistent with their macroscopic physical quantities and macroscopic mechanical indices with the number of freeze-thaws. The changes of the fine structure of the rocks induced the deterioration of their macroscopic mechanical properties, and the fine structure was the key to influence their macroscopic mechanical properties.

参考文献:

[1]陈卫忠, 谭贤君, 于洪丹, 等. 低温及冻融循环下岩体热、水、力特性研究进展与思考[J]. 岩石力学与工程学报. 2011, 0(7): 318-1336.

[2]Gruber S, Haeberli W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change.Journal of Geophysical Research: Earth Surface (2003-2012), 2007; 112(F2): 1-10.

[3]Shang H, Song Y, Ou J. Behavior of air-entrained concrete after freeze-thaw cycles.Acta Mechanica Solida Sinica, 2009; 22 (3): 261-266.

[4]Roy D G, Singh T N, Kodikara J, et al. Effect of water saturation on the fracture and mechanical properties of sedimentary rocks[J]. Rock Mechanics and Rock Engineering, 2017, 50(10): 2585-2600.

[5]Angélique Prick. Critical Degree of Saturation as a Threshold Moisture Level in Frost Weathering of Limestones[J]. Permafrost and Periglacial Processes, 1997, 8(1): 91-99.

[6]Bayram F., 2012. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Reg. Sci. Technol. 83-84, 98-102.

[7]Martínez-Martínez J., Benavente D., Gomez-Heras M., et al. 2013. Non-linear decay of building stones during freeze-thaw weathering processes. Constr. Build. Mater. 38, 443-454.

[8]Ghobadi M.H., Babazadeh R., 2015b. Experimental studies on the effects of cyclic freezing–thawing, salt crystallization, and thermal shock on the physical and me-chanical characteristics of selected sandstones. Rock Mech. Rock. Eng. 48 (3), 1001-1016.

[9]Mu J.Q., Pei X.J., Huang R.Q., et al. 2017. Degradation characteristics of shear strength of joints in three rock types due to cyclic freezing and thawing. Cold Reg. Sci. Technol. 138, 91-97.

[10]Fang W., Jiang N., Luo X.D., 2019. Establishment of damage statistical constitutive model of loaded rock and method for determining its parameters under freeze-thaw condition. Cold Reg. Sci. Technol. 160, 31-38.

[11]Bayram F., 2012. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions. Cold Reg. Sci. Technol. 83-84, 98-102.

[12]Liu Q.S., Huang S.B., Kang Y.S., et al. 2015. A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze-thaw. Cold Reg. Sci.Technol. 120, 96-107.

[13]Ma Q., Ma D., Yao Z., 2018. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen. Cold Reg. Sci. Technol. 153, 10-17.

[14]Niu Y., Zhou X.P., Zhang J.Z., et al. 2019. Experimental study on crack coales-cence behavior of double unparallel fissure-contained sandstone specimens subjected to freeze-thaw cycles under uniaxial compression. Cold Reg. Sci. Technol. 158,166-181.

[15]Zhang J., Deng H.W., Taheri, A., et al. 2018. Degradation of physical and mechanical properties of sandstone subjected to freeze-thaw cycles and chemical erosion. Cold Reg. Sci. Technol. 155, 37-46.

[16]Zhang J., Deng H.W., Taheri A., et al. 2019. Deterioration and strain energy development of sandstones under quasi-static and dynamic loading after freeze-thaw cycles. Cold Reg. Sci. Technol. 160, 252-264.

[17]Yavuz H, Altindag R, Sarac S, et al. Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering[J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(5): 767-775.

[18]Bayram F. Predicting mechanical strength loss of natural stones after freeze-thaw in cold regions[J]. Cold Regions Science and Technology, 2012, 83(12): 98-102.

[19]Walbert C, Eslami J, Beaucour A L, et al. Evolution of the mechanical behaviour of limestone subjected to freeze-thaw cycles[J]. Environmental Earth Sciences, 2015, 74(7): 6 339-6 351.

[20]Gholamreza K, Reza Z S, Yasin A. The effect of freeze-thaw cycles on physical and mechanical properties of upper red formation sandstones, central part of Iran[J]. Arabian Journal of Geosciences,2015, 8(8): 5 991-6 001.

[21]Jihwan Park, Chang-Uk Hyun, Hyeong-Dong Park. Changes in microstructure and physical properties of rocks caused by artificial freeze-thawction[J]. Bulletin of Engineering Geology and the Environment,2015, 74(2): 555-565.

[22]Khanlari Gholamreza, Sahamieh Reza Zarei, Abdilor Yasin. The effect of freeze thaw cycles on physical and mechanical properties of Upper Red For mations and stones,central part of Iran[J].Arabian Journal of Geo sciences, 2015, 8(8): 5 991-9 001.

[23]张慧梅, 杨更社. 冻融与荷载耦合作用下岩石损伤模型的研究[J]. 岩石力学与工程学报. 2010, 29(3): 471-476.

[24]张慧梅, 杨更社. 岩石冻融力学实验及损伤扩展特性[J]. 中国矿业大学学报. 2011, 40(1): 140-151.

[25]李新平, 路亚妮, 王仰君. 冻融荷载耦合作用下单裂隙岩体损伤模型研究[J]. 岩石力学与工程学报. 2013, 32(11): 2 308-2 315.

[26]母剑桥, 裴向军, 黄勇, 等. 冻融岩石力学特性实验研究[J]. 工程地质学报, 2013, 21(1): 103-108.

[27]吴安杰, 邓建华, 顾乡,等. 冻融循环作用下泥质白云岩力学特性及损伤演化规律研究[J]. 岩土力学. 2014, 35(11): 3 065-3 072.

[28]阎锡东, 刘红岩, 邢闯锋, 等. 冻融循环条件下岩石弹性模量变化规律研究[J]. 岩土力学. 2015,36(8):2 315-2 322.

[29]韩铁林, 师俊平, 陈蕴生. 砂岩在化学腐蚀和冻融循环共同作用下力学特征劣化的试验研究[J]. 水利学报, 2016, 47(5): 644-655.

[30]裴向军, 蒙明辉, 袁进科, 等. 干燥及饱水状态下裂隙岩石冻融特征研究[J]. 岩土力学, 2017, 38(7): 1 999-2 006.

[31]贾海梁, 项伟, 申艳军, 等. 冻融循环作用下岩石疲劳损伤计算中关键问题的谈论[J]. 岩石力学与工程学报. 2017, 36(2): 335-346.

[32]李杰林, 刘汉文, 周科平, 等. 冻融作用下岩石细观结构损伤的低场核磁共振研究[J]. 西安科技大学学报, 2018, 38(02): 266-272.

[33]高峰, 熊信, 周科平, 等. 冻融循环作用下饱水砂岩的强度劣化模型[J]. 岩土力学, 2019, 40(03): 926-932.

[34]俞缙, 张欣, 蔡燕燕, 等. 水化学与冻融循环共同作用下砂岩细观损伤与力学性能劣化试验研究[J]. 岩土力学, 2019, 40(2): 455-464.

[35]申艳军, 杨更社, 王婷,等. 岩石内孔隙/裂隙冻胀力模型及其适用性评价[J]. 冰川冻土, 2019, 41(01): 117-128.

[36]Xu X.T., Wang Y.B., Bai R.Q., et al. 2016a. Comparative studies on mechanical behavior of frozen natural saline silty sand and frozen desalted silty sand. Cold Reg. Sci. Technol. 132, 81-88.

[37]Xu X.T., Wang, Y.B., Yin, Z.H., et al. 2017. Effect of temperature and strain rate on mechanical characteristics and constitutive model of frozen Helin loess. Cold Reg. Sci. Technol. 136, 44-51.

[38]Ma, Q., Ma, D., Yao, Z., 2018. Influence of freeze-thaw cycles on dynamic compressive strength and energy distribution of soft rock specimen. Cold Reg. Sci. Technol. 153, 10-17.

[39]王俐. 不同初始含水率红砂岩冻融损伤的试验研究及其机理分析[D]. 中国科学院研究生院(武汉岩土力学研究所), 2006.

[40]Al-Omari A, Beck K, Brunetaud X, et al. Critical degree of saturation: a control factor of freeze–thaw damage of porous limestones at Castle of Chambord, France [J]. Engineering Geology, 2015, 185: 71-80.

[41]刘海康, 张思渊, 张鑫鑫. 不同初始含水率下砂岩冻融劣化特性试验研究[J]. 科学技术与工程,2017, 17(26): 322-327.

[42]Yamabe T, Neaupane K M. Determination of some thereto mechanical properties of Sirahama sandstone under Subzero temperature condition[J]. International Journal of Rock Mechanics and Mining Sciences. 2001, 38(7): 109-1 034.

[43]Chen T C,Yeung M R,Mori N. Effect of water saturation on deterioration of welded tuff due to freeze-thaw action[J]. Cold Regions Science and Technology, 2004, 38(2/3): 127-136.

[44]KODAMA J, GOTO T, FUJII Y, et al. The effects of water content, temperature and loading rate on strength and failure process of frozen rocks[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 1-13.

[45]张慧梅, 杨更社. 冻融循环条件下受荷岩石的损伤本构模型[J]. 武汉理工大学学报, 2013, 35(7): 79-82.

[46]邓华锋, 原先凡, 李建林, 等. 饱水度对砂岩纵波波速及强度影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(08); 1 625-1 631.

[47]姜自华, 姚兆明, 陈军浩. 冻融循环和含水率对砂岩单轴抗压强度的影响[J]. 矿业研究与开发, 2017, 37(01): 85-88.

[48]李楠, 张新, 王达轩, 等. 煤样吸水全过程纵波波速变化规律及波形特征实验研究[J]. 岩石力学与工程学报, 2017, 36(08): 1921-1929.

[49]黄裕萌, 熊健, 黄开桦, 等. 含水饱和度对致密砂岩声波特性的影响研究[J]. 石油化工应用, 2020, 39(01): 90-96.

[50]方杰, 姚强岭, 王伟男, 等. 含水率对泥质粉砂岩强度损伤及声发射特征影响的研究[J]. 煤炭学报, 2018, 43(S2): 412−419.

[51]王鹏, 许金余, 方新宇, 等. 红砂岩吸水软化及冻融循环力学特性劣化[J]. 岩土力学, 2018, 39(6): 2 065−2 072.

[52]訾凡, 杨更社, 贾海梁. 饱和度对泥质粉砂岩冻结力学性质的影响[J]. 冰川冻土, 2018, 40(4): 748−755.

[53]Maxim Deprez, Tim De Kock, Geert De Schutter, et al. Maxim Deprez et al. A review on freeze-thaw action and weathering of rocks[J]. Earth-Science Reviews, 2020, 203.

[54]Li J, Zhu L, Zhou K, et al. Experimental investigation on the effects of ambient freeze–thaw cycling on creep mechanical properties of sandstone under step loading[J]. IEEE Access, 2019, 7: 108 513-108 520.

[55]陈国庆, 简大华, 陈宇航, 等. 不同含水率冻融后红砂岩剪切蠕变特性[J/OL]. 岩土工程学报: 1-9[2021-03-01]. http:// kns.cnki.net/ kcms/detail/ 32.1124. tu. 20201201.1546.004. html.

[56]Yang X., Jiang A., Li M., 2019. Experimental investigation of the time-dependent be-havior of quartz sandstone and quartzite under the combined effects of chemical erosion and freeze–thaw cycles. Cold Reg. Sci. Technol. 161, 51–62.

[57]Seyed Zanyar Seyed Mousavi, Hossein Tavakoli, Parviz Moarefvand, et al. Micro-structural, petro-graphical and mechanical studies of schist rocks under the freezing-thawing cycles[J]. Cold Regions Science and Technology, 2020, 174.

[58]S.J. Bauer, J. Handin, Thermal expansion and cracking of three confined, water-saturated igneous rocks to 800 °C, Rock Mech. Rock Eng. 16 (1983) 181–198.

[59]陶明, 汪军, 李占文, 等. 冲击荷载下花岗岩层裂断口细–微观试验研究[J].岩石力学与工程学报, 2019, 38(11): 2172-2181.

[60]ZHANG Lei, ZHANG Shuai, ZHANG Cun, et al. The characterization of bituminous coal microstructure and permeability by liquid nitrogen fracturing based on μCT technology[J]. Fuel, 2020, 262.

[61]SUN Yong, ZHAI Cheng, XU Jizhao, et al. Characterisation and evolution of the full size range of pores and fractures in rocks under freeze-thaw conditions using nuclear magnetic resonance and three-dimensional X-ray microscopy. [J]. Engineering Geology, 2020, 271.

[62]WANG Y, FENG W. K., Wang H. J., et al. Rock bridge fracturing characteristics in granite induced by freeze-thaw and uniaxial deformation revealed by AE monitoring and post-test CT scanning[J]. Cold Regions Science and Technology, 2020, 177.

[63]LIU Hui, YANG Gengshe, YUN Yehui, et al. Investigation of Sandstone Mesostructure Damage Caused by Freeze-Thaw Cycles via CT Image Enhancement Technology[J]. Advances in Civil Engineering, 2020, 2020.

[64]杨更社, 刘慧. 基于CT图像处理技术的岩石损伤特性研究[J]. 煤炭学报, 2007(05): 463-468.

[65]任建喜, 惠兴田. 裂隙岩石单轴压缩损伤扩展细观机理CT分析初探[J]. 岩土力学, 2005(S1): 48-52.

[66]宋勇军, 杨慧敏, 张磊涛, 等. 冻结红砂岩单轴损伤破坏CT实时试验研究[J]. 岩土力学, 2019, 40(S1): 152-160.

[67]张文政, 邱磊. 基于CT三维重构的煤孔隙结构表征及分析[J]. 煤炭技术, 2018, 37(12): 327-329.

[68]付裕, 陈新, 冯中亮. 基于CT扫描的煤岩裂隙特征及其对不同围压下破坏形态的影响[J/OL]. 煤炭学报: 1-10[2020-03-06]. https://doi.org/10.13225/j.cnki.jccs. 2019, 480.

[69]张慧梅, 王焕, 张嘉凡, 等. CT尺度下冻融岩石细观损伤特性分析[J]. 辽宁工程技术大学学报(自然科学版), 2020, 39(01): 51-56.

[70]Yongting Duan, Xiao Li, Bo Zheng, et al. Cracking Evolution and Failure Characteristics of Longmaxi Shale Under Uniaxial Compression Using Real-Time Computed Tomography Scanning[J]. Rock Mechanics and Rock Engineering, 2019, Vol.52(9), pp. 3 003-3 015.

[71]王俐, 杨春和. 不同初始饱水状态红砂岩冻融损伤差异性研究[J]. 岩土力学, 2006(10): 1 772-1 776.

[72]Maxim Deprez, Tim De Kock, Maxim Deprez, et al. The role of ink-bottle pores in freeze-thaw damage of oolithic limestone[J]. Construction and Building Materials, 2020, 246.

[73]Freire-Lista, D.M., Fort, R., Varas-Muriel, M.J., 2015. Freeze-thaw fracturing in building granites. Cold Reg. Sci. Technol. 113, 40-51.

[74]Kachanov L M. On the time to failure under creep condition [J]. Izv. Akad. Nauk. USSR. Otd.Tekhn. Nauk. 1958, 8(1): 26-31.

[75]RABOTNOV Y N. On the equation of state of creep [C]// Proceedings of the Institution of Mechanical Engineers. [S.l.]: [s.n.], 1963, 178(1): 2 117-2 122.

[76]Zalewska J, Dohnalik M. Comparison of rock pore space based on X-ray computed microtomography (micro-CT) and nuclear magnetic resonance (NMR) data. Part III[J]. Nafta-Gaz, 2011, 67(10): 702-713.

[77]Kawakat H, Cho A, Yanagidani T. The Observations of Faulting in Westerly Graniteunder Trial Compression by X-ray CT Scan [J]. International Journal of Rock Mechanic sand Mining, 1997, 34(3/4): 151-162.

[78]Yang S Q, Ranjith P G, Huang Y H, et al. Experimental investigation on mechanical damage characteristics of sandstone under triaxial cyclic loading[J]. Geophysical Journal International, 2015, 201(2): 662-682.

[79]刘慧, 杨更社, 叶万军, 等. 基于CT图像的冻结岩石冰含量及损伤特性分析[J]. 地下空间与工程学报, 2016, 12(01): 912-919.

[80]李晓宁, 向铭铭, 朱宝龙. CT技术在岩土工程研究中的应用[J]. 实验技术与管理, 2016, 33(11): 80-83.

[81]王冬欣. 基于Micro-CT图像的数字岩心孔隙网络建模研究[D]. 吉林大学, 2015.

[82]王珂, 盛金昌, 郜会彩, 等. 应力–渗流侵蚀耦合作用下粗糙裂隙渗流特性研究[J]. 岩土力学,2020, 41(增1): 1–11.

[83]Usmani A, Kannan G, Nanda A, et al. Jain Seepage behavior and grouting effects for large rock caverns[J]. International Journal of Geomechanics, 2015, 15(3): 1-7.

[84]WANG Gang, SHEN Junnan, LIU Shimin, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory. [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123.

[85]YIN Tubing,LI Qiang,LI Xibing. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments[J]. Engineering Fracture Mechanics, 2019, 222.

[86]吴志军, 卢槐, 翁磊, 等. 基于核磁共振实时成像技术的裂隙砂岩渗流特性研究[J/OL]. 岩石力学与工程学报: 1-13[2021-01-16]. https:// doi.org/ 10.13722/ j.cnki.jrme. 2020. 716.

[87]LIU Peng, JU Yang, GAO Feng, et al. CT Identification and Fractal Characterization of 3‐D Propagation and Distribution of Hydrofracturing Cracks in Low‐Permeability Heterogeneous Rocks. [J]. Journal of Geophysical Research Solid Earth, 2018, 123(3): 2 156-2 173.

[88]Tubing Yin, Qiang Li, Xibing Li. Experimental investigation on mode I fracture characteristics of granite after cyclic heating and cooling treatments[J]. Engineering Fracture Mechanics, 2019, 222.

[89]Shiwen Feng, Yu Zhou, Yu Wang. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading[J]. International Journal of Impact Engineering 140 (2020) 10 355.

[90]李果, 张茹, 徐晓炼, 等. 三轴压缩煤岩三维裂隙CT图像重构及体分形维研究[J]. 岩土力学,2015, 36(06): 1 633-1 642.

[91]FENG Shiwen, ZHOU Yu, WANG Yu. Experimental research on the dynamic mechanical properties and damage characteristics of lightweight foamed concrete under impact loading [J]. International Journal of Impact Engineering, 140 (2020) 10 355.

[92]王巍, 刘京红, 史攀飞. 基于CT处理技术的岩石细观破裂过程的分形分析[J]. 河北农业大学学报, 2015, 38(03): 124-127.

[93]丁自伟, 李小菲, 唐青豹, 等. 砂岩颗粒孔隙分布分形特征与强度相关性研究[J].岩石力学与工程学报, 2020, 39(09): 1 787-1 796.

[94]Gang Wang, Junnan Shen, Shimin Liu, et al. Three-dimensional modeling and analysis of macro-pore structure of coal using combined X-ray CT imaging and fractal theory[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 123.

[95]L.F. Fan, J.W. Gao, Z.J. Wu, et al. An investigation of thermal effects on micro-properties of granite by X-ray CT technique[J]. Applied Thermal Engineering, 2018, 140.

周翠英, 梁宁, 刘镇. 红层软岩遇水作用的孔隙结构多重分形特征[J]. 工程地质学报, 2020, 28(01): 1-9.

中图分类号:

 TU458    

开放日期:

 2021-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式