- 无标题文档
查看论文信息

论文中文题名:

 液氮低温预处理下富油煤热解产物分布与特性研究    

姓名:

 郑修仁    

学号:

 21203226078    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 资源与环境    

研究方向:

 富油煤热解    

第一导师姓名:

 许涛    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-23    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on the distribution and characteristics of pyrolysis products of Tar-rich coal under cryogenic pretreatment by liquid nitrogen    

论文中文关键词:

 富油煤 ; 焦油产率 ; 热解特性 ; 液氮冷冻 ; 产物分布    

论文外文关键词:

 Tar-rich coal ; tar yield ; pyrolysis properties ; liquid nitrogen freezing ; product distribution    

论文中文摘要:

我国油气资源对外进口严重,在保障能源安全方面面临挑战。利用储量丰富的煤炭资源发展清洁高效的热解制油气技术成为目前国家能源的重点研究领域。本文针对常规热解产物收率低、品质差、系统装置易堵塞等问题,以及目前预处理技术存在成本较高、污染环境、效果不够理想等诸多缺点,以西部富油煤为实验对象,利用液氮对富油煤进行低温冷冻预处理,开展快速热解实验,结合BET、SEM、元素分析仪、GC、GCMS等多种检测分析方法,研究热解温度和低温预处理温度对富油煤快速热解产物分布和特性的影响,探索不同原料热解的低温预处理作用,揭示富油煤高低温瞬变下产物生成规律,主要研究结论如下:

在350~900℃的温度区间内,随着热解温度的升高,四种富油煤热解固体半焦产物产率升高,气体产物产率下降,液体产物产率先升高后降低,在500℃时产率达到最大值,产率可达5.3~12.5%。随着热解温度升高,固体半焦中C元素含量上升,半焦热值增高;气体产物中H2含量上升,CH4含量先升高后降低,气体热值先升高后降低;富油煤液体产物中,脂肪烃占比随着温度升高趋近于0,多环芳烃占比不断增加,酚类占比降低。富油煤热解碳转化率随着温度升高而不断增大,提高了12.4~37.6%。

在液氮低温预处理下,四种富油煤的焦油产率得到明显提高,且预处理温度与焦油产率呈正相关,升幅可达3.3~51%。热解固体半焦表面结构孔隙增大,C、H元素占比提高,O元素含量占比出现下降,半焦发热量升幅可达1.9~10.6%;对热解气体中CH4和H2的释放有促进作用,而对CO2和CO的释放有抑制作用,气体产物发热量升幅可达0.7~46.9%;富油煤液体产物组分受液氮低温预处理影响明显,禾草沟、小保当和永焦油成分中苯类占比下降,凉水井的苯类含量大幅上升。酚类物质占比出现了降低,降幅可达55.7~59.68%。永顺的多环芳烃增幅达14.22%,而其他三种富油煤多环芳烃降幅达30.91~33.64%。富油煤热解碳转化率经液氮低温预处理增幅可达3.2~38.9%。

在液氮低温预处理下,对比不同原料(富油煤和生物质)的热解产物分布和特性,研究发现富油煤与生物质的液体产率最大增幅分别可达51%和23.73%,富油煤的液体产率低于生物质,减少了9.4~14%;低温预处理有效提高富油煤和生物质的固气产物热值,最大增幅分别可达10.6%和53.3%,富油煤的固气产物热值高于生物质,分别增加了9.39~11.13MJ/kg和8.91~16.65MJ/Nm3;液氮低温预处理后,生物质液体产物中的苯类物质普遍高于富油煤,酚类、多环芳烃类和脂肪烃类都明显少于富油煤,尤其是多环芳烃类和脂肪烃类在生物质液体中的占比趋近于0。

本研究发现,液氮低温预处理有效提高了富油煤热解焦油产率与产物品质,且在不同原料下都存在普遍适用性,为富油煤高效转化利用探索出新途径,对实现我国能源安全战略具有重要理论意义和应用价值。

论文外文摘要:

China faces challenges in ensuring energy security due to its heavy dependence on imported oil and gas resources. The development of clean and efficient technologies for coal pyrolysis to produce oil and gas, utilizing the country’s abundant coal reserves, has become a key research area in national energy development. This paper addresses issues such as low yield and poor quality of conventional pyrolysis products, system clogging, and the drawbacks of current pretreatment technologies, including high cost, environmental pollution, and suboptimal results. Experiments were conducted using tar-rich coal from the western regions, with liquid nitrogen used for cryogenic pretreatment, followed by rapid pyrolysis experiments. Various analytical methods, including BET, SEM, elemental analyzers, GC, and GCMS, were employed to study the effects of pyrolysis and cryogenic pretreatment temperatures on the distribution and characteristics of the products of rapid pyrolysis of tar-rich coal. The study also explored the role of low-temperature pretreatment in different raw material pyrolysis processes, revealing the product formation patterns under high and low-temperature transitions in tar-rich coal. The main conclusions are as follows:

Within the temperature range of 350-900°C, as the pyrolysis temperature increased, the yield of semi-coke solid products from four types of tar-rich coal increased, while the yield of gas products decreased, and the yield of liquid products initially increased and then decreased, reaching a maximum at 500°C with a yield of 5.3-12.5%. As the pyrolysis temperature increased, the carbon content in the semi-coke rose, enhancing its calorific value; the H2 content in the gas products increased, and the CH4 content initially rose then declined, with the calorific value of the gas products following a similar pattern; in the liquid products of the tar-rich coal, the proportion of aliphatic hydrocarbons approached zero with rising temperature, the proportion of polycyclic aromatic hydrocarbons continually increased, and the proportion of phenolics decreased. The carbon conversion rate of tar-rich coal pyrolysis increased with rising temperatures, improving by 12.4-37.6%.

Under liquid nitrogen cryogenic pretreatment, the tar yield from four types of tar-rich coal was significantly enhanced, with a positive correlation between pretreatment temperature and tar yield, increasing by 3.3-51%. The surface structure of the pyrolysis semi-coke showed increased porosity, and the proportions of carbon and hydrogen rose while the proportion of oxygen decreased, boosting the calorific value of the semi-coke by 1.9-10.6%; it facilitated the release of CH4 and H2 in the pyrolysis gas, but suppressed the release of CO2 and CO, with the calorific value of the gas products increasing by 0.7-46.9%; the composition of the liquid products from tar-rich coal was significantly affected by liquid nitrogen cryogenic pretreatment, with a decrease in the proportion of benzene in Hechao Gou, Xiaobao Dang, and Yong Jiao oil components, while it significantly increased in Liangshuijing. The proportion of phenolic substances decreased across the board, with a reduction of 55.7-59.68%. The increase in polycyclic aromatic hydrocarbons in Yongshun reached 14.22%, while the other three types of tar-rich coal saw reductions of 30.91-33.64%. The carbon conversion rate of tar-rich coal pyrolysis was increased by 3.2-38.9% through liquid nitrogen cryogenic pretreatment.

Under the preconditioning of cryogenic treatment with liquid nitrogen, a comparison of the distribution and characteristics of pyrolysis products from different feedstocks (tar-rich coal and biomass) revealed that the maximum increase in liquid yield for tar-rich coal and biomass could reach 51% and 23.73%, respectively. The liquid yield from tar-rich coal was found to be 9.4~14% lower than that from biomass. The pretreatment effectively improved the calorific value of the solid and gas products from both tar-rich coal and biomass, with the maximum increases being 10.6% and 53.3%, respectively, and the calorific value of tar-rich coal’s solid and gas products being higher than that of biomass, increasing by 9.39-11.13MJ/kg and 8.91-16.65MJ/Nm3, respectively; after liquid nitrogen cryogenic pretreatment, the proportion of benzene in the biomass liquid products was generally higher than in tar-rich coal, and phenolics, polycyclic aromatic hydrocarbons, and aliphatic hydrocarbons were significantly less in biomass, especially with polycyclic aromatic hydrocarbons and aliphatic hydrocarbons approaching zero.

This study found that liquid nitrogen cryogenic pretreatment effectively enhances the yield and quality of tar from tar-rich coal pyrolysis and is broadly applicable across different raw materials, offering a new pathway for the efficient conversion and utilization of tar-rich coal, with significant theoretical and practical value for achieving China’s energy security strategy.

参考文献:

[1]徐吉,朱家龙,胡浩权,等.在线热解-质谱联用技术在煤转化中的应用[J].洁净煤技术,2021,27(04):1-10.

[2]李宏.碳中和背景下我国煤炭行业的发展与转型研究[J].低碳世界,2021,11(08):23-24.

[3]王双明,师庆民,王生全,等.富油煤的油气资源属性与绿色低碳开发[J].煤炭学报,2021,46(05):1365-1377.

[4]王双明,王虹,任世华,等.西部地区富油煤开发利用潜力分析和技术体系构想[J].中国工程科学,2022,24(03):49-57.

[5]李挺,王倩,申岩峰,等.过滤介质对低阶煤热解焦油气反应行为的影响研究[J].燃料化学学报,2021,49(03):257-264.

[6]Zhang C Y, Fang Y L, Zhu Y M, et al. Differences of the pyrolytic behaviors and pyrolysis products of coal pitch from different sources[J]. Asia-Pacific Journal of Chemical Engineering, 2022, 17(5): 2821.

[7]Li X H, Li B F, Fu D Q, et al. The interaction between the char solid heat carrier and the volatiles during low-rank coal pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2018, 136: 160-168.

[8]苗青,郑化安,张生军,等.低温煤热解焦油产率和品质影响因素研究[J].洁净煤技术,2014,20(04):77-82+86.

[9]Yang X G, Tong C, Chen G Q, et al. An investigation of pore structure of blended coal coke produced by pyrolysis of three kinds of coal[J]. International Journal of Coal Preparation and Utilization, 2023, 43(5): 922-950.

[10]Myltykbayeva Z K, Yeshova Z T, Smaiyl M B, et al.Thermal methods of solid fuel processing: review[J]. Oil Shale, 2022, 39(2): 217-240.

[11]樊花,刘振虎,牛鸿权,等.煤热解技术及其运行影响因素分析[J].煤化工,2022,50(06):151-154.

[12]何选明.煤化学[M].北京:冶金工业出版社,2012.

[13]张壮壮,刘楠,安重鑫,等.多级孔ZSM-5分子筛对低阶煤流化床快速热解产物分布的影响[J].燃料化学学报,2021,49(04):407-414.

[14]Miura K. Mild conversion of coal for producing valuable chemicals[J]. Fuel Processing Technology, 2000, 62(2): 119-135.

[15]苗青,郑化安,张生军,等.低温煤热解焦油产率和品质影响因素研究[J].洁净煤技术,2014,20(04):77-82+86.

[16]Han J, Zhang L, Kim H J, et al. Fast pyrolysis and combustion characteristic of three different brown coals[J]. Fuel Processing Technology, 2018, 176: 15-20.

[17]王鹏,文芳,步学朋,等.煤热解特性研究[J].煤炭转化,2005,(01):8-13.

[18]刘钦甫,徐占杰,崔晓南,等.不同煤化程度煤的热解及氮的释放行为[J].煤炭学报,2015,40(02):450-455.

[19]刘振宇.煤快速热解制油技术问题的化学反应工程根源:逆向传热与传质[J].化工学报,2016,67(1):1-5.

[20]Sun S Y, Xu D H, Wei Y, et al. Influence laws of operating parameters on coal pyrolysis characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105684.

[21]Duan W J, Yu Q B, Xie, H Q, et al. Pyrolysis of coal by solid heat carrier-experimental study and kinetic modeling[J]. Energy, 2017, 135: 317-326.

[22]商铁成.热解温度对低阶煤热解性能影响研究[J].洁净煤技术,2014,20(06):28-31.

[23]Gao M Q, Wang Y L, Dong J, et al. Release behavior and formation mechanism of polycyclic aromatic hydrocarbons during coal pyrolysis[J]. Chemosphere, 2016, 158: 1-8.

[24]刘源,贺新福,杨伏生,等.热解温度及气氛变化对神府煤热解产物分布的影响[J].煤炭学报,2015,40(S2):497-504.

[25]Sun S Y, Xu D H, Wei Y, et al. Influence laws of operating parameters on coal pyrolysis characteristics[J]. Journal of Analytical and Applied Pyrolysis, 2022, 167: 105684.

[26]任磊,杨凤玲,贾阳杰,等.低阶煤热解条件对气相产物分布和半焦结构的影响[J].煤炭转化,2019,42(06):17-27.

[27]刘涛,苏胜,何立模,等.煤热解半焦结构及其对制备型煤成型特性的影响[J].煤炭转化,2021,44(02):1-8.

[28]Yang H, Li Y Y, Xie Z W, et al. Increasing condensation polymerization at a higher heating rate during coal pyrolysis and its mechanism[J]. Journal of Analytical and Applied Pyrolysis, 2024, 177: 106361.

[29]张蕾,韩智坤,舒浩,等.陕北富油煤低温热解提油基础特性[J].煤炭工程,2022,54(09):124-128.

[30]吴诗勇,顾菁,李莉等.高温下快速和慢速热解神府煤焦的理化性质[J].煤炭学报,2006(04):492-496.

[31]于彦旭,孔娇,王美君,等.热解压力和升温速率对焦结构和氧化反应性的影响(英文)[J].燃料化学学报,2018,46(09):1025-1035.

[32]Wang Z G, Xu M, Fu X J, et al. Study on Pyrolysis Characteristics and Kinetics of Bituminous Coal by Thermogravimetric Method[J]. Combustion Science and Technology, 2022, 194(3): 558-573.

[33]解强,梁鼎成,田萌,等.升温速率对神木煤热解半焦结构性能的影响[J].燃料化学学报,2015,43(07):798-805.

[34]Okumura Y. Effect of heating rate and coal type on the yield of functional tar components[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2075-2082.

[35]Hu D H, Huang J J, Zhao J T, et al. Reaction characteristics of Shenmu coal pyrolysis volatiles with an iron-based oxygen carrier in a two-stage fixed-bed reactor[J]. Fuel Processing Technology, 2022, 235: 107371.

[36]于文浩,雷智平,潘春秀,等.预处理对褐煤热解行为的影响研究进展[J].燃料与化工,2018,49(02):1-3+11.

[37]霍威,钟思青.不同粒径褐煤的热解特性及煤焦结构[J].煤炭转化,2017,40(01):8-12.

[38]董鹏伟,岳君容,高士秋,等.热预处理影响褐煤热解行为研究[J].燃料化学学报,2012,40(08):897-905.

[39]Liu S C, Zhao H Y, Liu X Y, et al. Effect of hydrothermal upgrading on the pyrolysis and gasification characteristics of baiyinhua lignite and a mechanistic analysis[J]. Fuel, 2020, 276: 118081.

[40]马越儿,张召,常慧,等.不同溶剂预处理对神府低变质煤热解特性影响的研究[J].应用化工,2023,52(11):3027-3031.

[41]Li X H, Li H J, Wang R Q, et al. Acid pretreatment effect on oxygen migration during lignite pyrolysis[J]. Fuel, 2020, 262: 116650.

[42]彭志威,强路遥,白柏杨,等.溶剂溶胀对鄂尔多斯褐煤结构及热解产物分布的影响[J].燃料化学学报,2021,49(04):444-454.

[43]刘永峰,鱼喆喆,申倩,等.冻融对牛奶酸度、色泽与营养成分的变化研究[J].陕西师范大学学报(自然科学版),2021,49(03):51-59.

[44]Nelson I, Naleway S E. Intrinsic and extrinsic control of freeze casting[J]. Journal of Materials Research and Technology, 2019, 8(2): 2372-2385.

[45]Deville S, Saiz E, Nalla R K, et al. Freezing as a path to build complex composites[J]. Science, 2006, 311: 5760.

[46]王芳,张春会,郭晓康,等.液氮半溶浸煤裂隙扩展试验研究[J].煤炭工程,2017,49(03):107-110.

[47]严红,田李鹏,冯锐敏,等.液氮冷冲击作用下煤层气储层的裂隙演化(英文)[J].Journal of Central South University,2020,27(06):1846-1860.

[48]丛钰洲,翟成,丁熊,等.煤层钻孔内注入液氮过程中的传热传质规律及煤损伤分析[J].煤炭学报,2023,48(08):3128-3137.

[49]孙连胜,陈宝义.近距离煤层工作面上覆采空区注液氮防灭火效果研究[J].煤矿安全,2019,50(04):154-157.

[50]许岩岩,王磊.厚煤层上分层综放工作面煤自燃隐患防控技术与应用[J].煤炭技术,2023,42(12):160-164.

[51]韩江则,侯娟敏,薛志伟,等.半焦催化裂解煤热解焦油模型化合物的研究[J].应用化工,2021,50(02):395-399.

[52]Jiang B Y, Yu C F, Yuan L, et al. Investigation on oxidative pyrolysis characteristics of bituminous coal through thermal analysis and density functional theory[J]. Applied Energy, 2023, 349: 121680.

[53]Kraft Y V, Aduev B P, Volkov V D, et al. Mass Spectrometric Study of Composition of Gaseous Products of Laser Pyrolysis of Coal[J]. Combustion Explosion And Shock Waves, 2023, 59(3): 334-343.

[54]邓立华,孙绍增,张文达,等.压力对煤热解过程及热解焦炭理化结构的影响[J].燃烧科学与技术,2021,27(06):644-652.

[55]彭扬凡,陈姗姗,孙粉锦,等.基于热重法的大颗粒煤热解反应动力学[J].洁净煤技术,2021,27(06):128-133.

[56]张蕾,韩智坤,舒浩,等.陕北富油煤低温热解提油基础特性[J].煤炭工程,2022,54(09):124-128.

[57]Xu M, Xin L, Liu W T, et al. Study on the physical properties of coal pyrolysis in underground coal gasification channel[J]. Powder Technology, 2020, 376: 573-592.

[58]范涛,初茉,畅志兵.蒙东褐煤热解技术工业应用进展[J].化工进展,2021,40(03):1362-1370.

[59]戴重阳,田宜水,胡二峰,等.生物质与低阶煤共热解特性研究及其技术进展[J].太阳能学报,2021,42(12):326-333.

[60]Gouws S M, Carrier M, Bunt J R, et al. Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry,kinetics and implementation[J]. Renewable & Sustainable Energy Reviews, 2021, 135: 110189.

[61]黄勇,刘巧霞,刘丹,等.生物质与低变质烟煤的流化床共热解及除尘技术研究[J].洁净煤技术,2021,27(03):248-253.

[62]Chen X Y, Liu L, Zhang L Y, et al. Pyrolysis Characteristics and Kinetics of Coal-Biomass Blends during Co-Pyrolysis[J]. Energy & Fuels, 2019, 33(2): 1267-1278.

[63]张玉洁,王焦飞,白永辉,等.共热解过程中煤与生物质相互作用的研究进展[J].化工进展,2021,40(07):3693-3702.

中图分类号:

 TD849    

开放日期:

 2024-06-28    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式