论文中文题名: | 黄土地层洞桩法地铁车站沉降规律与力学行为研究 |
姓名: | |
学号: | 19204053006 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081405 |
学科名称: | 工学 - 土木工程 - 防灾减灾工程及防护工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2022 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 防灾减灾工程及防护工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2022-06-20 |
论文答辩日期: | 2022-05-30 |
论文外文题名: | Study on Settlement Law and Mechanical Behavior of Pile-beam-arch Method Subway Station in Loess Stratum |
论文中文关键词: | |
论文外文关键词: | Pile-beam-arch method ; Ground surface settlement ; Pilot tunnel ; Surrounding rock pressure ; Field monitoring |
论文中文摘要: |
地铁车站修建中面临着所处场地交通繁忙、周边管线密集、车站埋深较大以及施工区间地层地质条件差等问题。洞桩法因其地层适用性强、施工占地面积小以及施工对地层扰动小等特点逐渐成为复杂城市环境下地铁车站施工的首选工法。何家营站作为黄土地区埋深最大车站且首次采用洞桩法施工,车站承载结构的受力机理与施工引起的变形规律不明确,故本文以西安黄土地区地铁何家营站为背景,采用数值模拟、理论分析以及现场监测等手段对车站关键阶段施工引起的地层沉降、结构受力以及导洞围岩压力分布规律进行研究,主要工作及结论如下: (1)通过对车站施工全过程进行数值模拟,得到了各关键阶段施工下地层沉降以及支护结构受力规律:导洞施工引起的地层沉降比最大,其次是扣拱施工,车站主体施工完成后,由于站内土体开挖卸载,车站上方地层发生沉降减小的回弹现象。导洞衬砌内力受群洞先后开挖影响严重,后行导洞施工距离先行导洞越近、相邻导洞开挖面积越大,先行洞的结构内力增幅就越大,导洞结构内力最大位置始终在拱脚部位。 (2)针对导洞施工沉降过大问题,通过优化导洞施工顺序能有效减小导洞施工对地层的扰动,其中“先边后中、先上后下”的导洞顺序施工引起的地层沉降最小。针对某些对沉降控制要求较高的特殊工程,通过减少导洞数量以及导洞总开挖面积,优化车站导洞类型的方案能有效控制洞桩法施工引起的地层最大沉降,其中4导洞型洞桩法控制沉降效果最佳。未支护情况下,导洞土方开挖量与对应地表最大沉降呈线性关系。 (3)在既有理论基础上,总结了导洞阶段考虑导洞施工顺序下的导洞围岩压力计算公式,分析了导洞埋深、各导洞净距,土体强度以及导洞尺寸等参数变化对各洞围岩压力的影响。从现场监测数据以及围岩压力理论计算结果可以看出,先行洞的围岩压力远大于后行洞,各洞左侧与右侧围岩压力比值远大于1,各洞受偏压荷载显著。 (4)将本文理论得到的围岩压力值分别与现场实测值和既有理论的围岩压力值进行对比分析,本文理论计算的各洞垂直、侧向围岩压力与既有理论较接近且均大于现场实测值,但本文理论的压力值能更好的反应各洞测点围岩压力的偏压状态。 |
论文外文摘要: |
Subway station construction is faced with the problems of busy traffic, dense surrounding pipelines, large depth of station and poor geological conditions in the construction section. The pile-beam-arch method has gradually become the preferred method for subway station construction in complex urban environments because of its strong stratum applicability, small construction area and small disturbance to the stratum. Hejiaying station is the deepest station in the loess stratum and is first constructed by pile-beam-arch method. The stress mechanism of the bearing structure of the station and the deformation law caused by the construction are not clear. Therefore, this paper takes the subway Hejiaying station in the loess stratum of Xi’an as the background and uses numerical simulation, theoretical analysis and field monitoring to study the stratum settlement, structural stress and the distribution law of the surrounding rock pressure of the pilot tunnel caused by the construction in the key stage of the station. The main work and conclusions are as follows. (1) Through the numerical simulation of the whole construction process of the station, the ground settlement and the stress law of the supporting structure under the construction of each key stage are obtained: the ground settlement ratio caused by the guide tunnel construction is the largest, followed by the arch buckle construction. After the completion of the main construction of the station, due to the excavation and unloading of the soil in the station, the ground above the station has a rebound phenomenon of reduced settlement. The lining internal force of the guide tunnel is seriously affected by the excavation of the group tunnels. The closer the construction distance of the rear guide tunnel is to the first guide tunnel, and the larger the excavation area of the adjacent guide tunnel is, the greater the increase of the structural internal force of the first tunnel is, and the maximum position of the structural internal force of the guide tunnel is always at the arch foot. (2) In view of the excessive settlement of pilot tunnel construction, the disturbance of pilot tunnel construction on the stratum can be effectively reduced by optimizing the construction sequence of the pilot tunnel. Among them, the stratum settlement caused by the construction sequence of ‘first edge and then middle, first upper and then lower’ is the smallest. In view of some special projects with high requirements for settlement control, by reducing the number of guide holes and the total excavation area of guide holes, the scheme of optimizing the type of station guide holes can effectively control the maximum settlement of strata caused by the construction of pile-beam-arch method. Among them, the 4-type tunnel pile method has the best settlement control effect. In the case of no support, the excavation amount of the pilot tunnel has a linear relationship with the corresponding maximum ground settlement. (3) On the basis of the existing theory, the calculation formula of the surrounding rock pressure of the pilot tunnel considering the construction sequence of the pilot tunnel in the pilot tunnel stage is summarized. The influence of the parameters such as the depth of the pilot tunnel, the spacing of the pilot tunnel, the strength of the soil and the size of the pilot tunnel on the surrounding rock pressure of each tunnel is analyzed. From the field monitoring values and the theoretical calculation values of surrounding rock pressure, it can be seen that the surrounding rock pressure of the first tunnel is much larger than that of the second tunnel, and the ratio of the surrounding rock pressure on the left and right sides of each tunnel is much larger than 1, and each tunnel is obviously indigenous to the bias load. (4) The surrounding rock pressure values obtained by the theory in this paper are compared with the field measured values and the surrounding rock pressure values of the existing theory. The vertical and lateral surrounding rock pressures of each tunnel calculated by the theory in this paper are close to and greater than the field measured values, but the theoretical pressure values in this paper can better reflect the bias state of the surrounding rock pressure of each tunnel measuring point. |
参考文献: |
[1]赵勇.隧道设计理论与方法[M]. 北京:人民交通出版社,2019. [2]许学昭,李兆平,王凯等.基于大直径盾构隧道扩挖地铁车站的结构方案及其关键节点受力和变形[J].中国铁道科学,2021,42(02):66-76. [3]孙长军,张顶立,郑昊等.大盾构扩挖车站受力转换及施工关键技术研究[J].土木工程学报,2015,48(S1):293-296. [7]罗荣富,江玉华,郝志宏.地铁车站洞桩法设计与施工关键技术[M]. 北京:中国铁道出版社,2015. [8]陈建华,李明皓,李兆平等.暗挖地铁车站空间交叉部位施工对地层管线变形影响及控制措施研究[J].铁道标准设计,2020,64(11):104-109. [12]罗富荣,汪玉华.北京地区PBA法施工暗挖地铁车站地表变形分析[J].隧道建设,2016,36(01):20-26. [13]付春青,刘波.PBA法非对称不均匀变形引起地表沉降规律研究[J].地下空间与工程学报,2021,17(03):927-942. [14]贾蓬,高登,刘冬桥.开挖顺序对PBA地铁车站竖向土压力分布影响[J].东北大学学报(自然科学版),2021,42(06):857-863. [15]杨公标.洞桩法地铁车站施工引起的地层变形与结构受力特性分析[D].北京交通大学,2016. [16]杜荣波.北京地铁某车站洞桩法施工沉降规律研究[D].中国地质大学(北京),2019. [17]李兆平,史磊磊.北京地区暗挖地铁车站结构设计方法研究进展综述[J].隧道与地下工程灾害防治,2019,1(03):14-21. [18]吴精义,叶新丰,余鹏等.北京地铁粉细砂层PBA车站沉降规律研究[J].隧道建设(中英文),2020,40(10):1408-1416. [19]肖茜.北京地铁车站PBA工法施工对地表沉降影响的研究[D].中国地质大学(北京),2014. [20]王芳,贺少辉,汪挺等.PBA法扩挖大直径盾构隧道修建地铁车站地表沉降控制[J].北京交通大学学报,2013,37(01):34-39. [21]王招冰. PBA工法地铁车站地表沉降及对临近管线影响研究[D].中国地质大学(北京),2018. [22]张海明,姚爱军,王兆辉等.地铁车站PBA法导洞施工诱发地表沉降规律研究[J].地下空间与工程学报,2017,13(02):469-477. [23]王剑晨,张顶立,张成平等.北京地区浅埋暗挖法下穿施工既有隧道变形特点及预测[J].岩石力学与工程学报,2014,33(05):947-956. [24]刘加柱,孙礼超,张壮等.地铁车站PBA洞桩法施工力学效应研究[J].地下空间与工程学报,2018,14(S1):240-247+307. [25]李鹏飞,赵勇,张顶立等.基于现场实测数据统计的隧道围岩压力分布规律研究[J].岩石力学与工程学报,2013,32(07):1392-1399. [26]来弘鹏,郑甲佳,谢永利.黄土地区浅埋暗挖地铁隧道围岩压力特征研究[J].铁道学报,2012,34(03):99-104. [27]来弘鹏,谢永利,刘苗等.黄土地区浅埋暗挖地铁隧道衬砌受力分析[J].岩土工程学报,2011,33(08):1167-1172. [28]戴俊,田国宾,熊咸玉.基于围岩受力影响的小净距隧道开挖方法优化[J].科学技术与工程,2019,19(29):307-311. [29]赖金星,余德强,冯志华等.黄土连拱隧道支护结构力学特性现场试验[J].现代隧道技术,2017,54(05):180-191. [30]叶万军,吴云涛,陈明等.大断面古土壤隧道围岩压力分布规律及支护结构受力特征分——以银西高铁早胜3号隧道为例[J].隧道建设(中英文),2019,39(03):355-361. [32]卢钦武,邓涛,关振长.水平地震作用下浅埋隧道围岩压力的计算方法研究[J].岩土工程学报,2020,42(06):1093-1100. [33]孙振宇,张顶立,房倩等.浅埋小净距公路隧道围岩压力分布规律[J].中国公路学报,2018,31(09):84-94. [35]王康.超大断面小净距隧道施工围岩空间变形与荷载释放机制及工程应用[D].山东大学,2017. [36]龚建伍.扁平大断面小净距公路隧道施工力学研究[D].同济大学,2008. [37]高红杰,何平,陈峥.深埋非对称连拱隧道过程荷载计算方法研究[J].岩土工程学报,2020,42(06):1059-1066. [38]李鹏飞,王帆,聂雄等.深埋非对称连拱隧道围岩压力计算方法研究[J].岩土工程学报,2016,38(09):1625-1629. [41]王浩,杨新安,王斌等.3洞小净距隧道围岩压力计算方法[J].中国铁道科学,2020,41(03):68-75. [42]李然,张顶立,房倩等.深埋3孔小净距隧道围岩压力计算方法及其工程应用[J].中国铁道科学,2020,41(02):81-90. [43]王婷,赵继,魏盼.京张高铁八达岭长城站大跨深埋三连拱围岩压力计算方法研究[J].铁道标准设计,2020,64(01):57-62. [44]李然.深埋三孔小净距隧道施工力学行为及其控制[D].北京交通大学,2021. [45]付春青.地铁车站PBA法施工地层变形的时空演化机制及控制对策[D].中国矿业大学,2020. [48]李习伟,郑昊,王全贤.基于大直径盾构隧道扩挖地铁车站结构安全分析[J].土木工程学报,2016,49(09):96-102. [50]王明胜.复杂环境下洞桩法地铁车站设计关键技术研究[J].铁道工程学报,2017,34(03):87-91. [51]谢定义,邢义川.黄土土力学[M].北京:高等教育出版社,2016. [53]郑颖人,朱合华,方正昌等.地下工程围岩稳定分析与设计理论[M].北京:人民交通出版社,2019. [54]孙钧.隧道结构设计关键技术研究与应用[M].北京:人民交通出版社,2014. [55]谢家烋.浅埋隧道的地层压力[J].土木工程学报,1964,10(6):58-70. [57]马军秋. 平行三孔大断面小净距隧道施工技术与力学特性研究[D].中南大学,2010. |
中图分类号: | U231.3 |
开放日期: | 2022-06-21 |