- 无标题文档
查看论文信息

论文中文题名:

 基于 ResUNet 的肝和 肿 瘤分割    

姓名:

 Muhammad Waheed Sabir    

学号:

 18508088002    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083500    

学科名称:

 工学 - 软件工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 计算机科学与技术学院    

专业:

 软件工程    

研究方向:

 媒体计算及可视化    

第一导师姓名:

 马天    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-21    

论文答辩日期:

 2021-06-04    

论文外文题名:

 Liver and Tumor Segmentation Based on ResUNet    

论文中文关键词:

 肝脏分割 ; 肿瘤分割 ; ResUNet ; 深度学习 ; CNN    

论文外文关键词:

 Liver Segmentation ; Tumor Segmentation ; ResUNet ; Deep Learning ; CNN    

论文中文摘要:

生物医学图像处理是人工智能和计算机视觉的一个交叉研究领域,提供了复杂和自动化的技术,以解决问题并提升性能。这对于医生利用先进的技术和方法进行疾病的自动诊断并取得准确的诊断结果具有重要意义。医学图像分割用于在早期诊断各种疾病,同时不同种类医学图像的分割是医学图像分析的主要部分,例如分割肝器官或其他人体器官。如今,随着肝癌患者的增加,肝器官分割已经逐渐成为是一个亟待解决的问题。虽然目前许多肝脏的自动分割技术有所发展,但由于肝脏与其他器官位置上模糊背景上复杂,肝脏边界的复杂和肝脏外观的多样性,使得肝脏的分割仍然是一项艰巨的任务。因此,开发一种从 CT 扫描中自动分割肝脏和肿瘤的方法对肝癌诊断分析具有重要意义。因此,在本课题的研究中,我们专注于开发基于 CNN 的训练模型,以基于 ResUNet 分割肝脏和肝脏肿。

首先,我们描述了肝癌疾病和医学模式,以突出肿瘤对人体的影响, 然后描 述了与这些模式相关的各种问题。肝癌是全球最主要的致死癌症之一。从 3D生物医学图像或CT 扫描中自动分割肝脏对于许多临床应用是一项非常重要并且极具挑战性的任务,如手术规划、肝脏疾病、术后分析等,它可以帮助医生更快、更准确地分割肝脏肿瘤。此外,由于肝肿瘤与其他器官在强度值上的重叠和位置上的变异性,进一步增加了从肝脏分割肿瘤的难度。

其次,介绍了一些用于肝脏分割和肿瘤分割的 CNN模型,如 U-Net, ResNet-50 和 VGGNet-19。但我们发现,这些 CNN 训练模型结构复杂,分割边界模糊,仍然不能提供足够的信息来分割肝脏和肿瘤。

使用 CNN 解决了肝脏和肿瘤分割遇到的问题,在IRCAD的3D-IRCADb01数据集上使用ResUNet模型,该数据集包含患者的CT切片以及肝脏、肿瘤和其他身体器官的遮罩。 ResUNet 是 U-Net 和 ResNet  的混合组合,其中使用残差块而不是传统的卷积块。

    在我们的技术中,采用了不同的策略,如3-slice 法;使用VGGNet-19和RestNet-50作为基础网络和ResUNet方法。我们通过检查肝脏和肿瘤的最终结果,对比不同策略组合的效果。数据集包含 10 名女性和 10 名男性,其中 75%的病例中患有肝肿瘤。我们使用两种级联 CNN 方法,一种用于分割肝脏并提取 ROI,第二种用于从第一个 CNN 中提取 ROI 并分割肿瘤。 获得了高达 95%的骰子系数和 99%的真值准确度,结果表明,我们的方法给予最好的 DICE 分数。

最后,重申了研究特点和创新,明确提出的方法提供了更好的效果,更有效的损失函数的基础,交叉数据集的交叉应用,这可以改善从任何数据集分割腹部器官的模式。如利用ResUNet的优点,从DICOM图像中分割心脏和血管,从MRI中分割肝脏等。

论文外文摘要:

Biomedical image processing is a wide area in field of artificial intelligence & computer vision that provide complex and automated technology to get sophisticated performance and solution for problems statements. This is great significance for doctors to diagnosis diseases automatically using the advanced technologies and methods with accurate results. Segmentation of different medical images is the important part of medical images analysis, because medical image segmentation is used to diagnosis different diseases at its earlier stage for example segmentation of liver, and other human organs. Liver segmentation is an important problem because of increasing of liver cancer patient. Although there are many automated techniques have been developed for liver and tumor segmentation, however, segmentation of liver is still a difficult task due to the fuzzy & complex background of the liver position with other organs, complicated boundary and various appearance of liver. Therefore, developing a significance automatic liver and tumor segmentation from CT scans is very important for the analysis of liver cancer diagnoses. That’s why in this research topic we focused to developed trained a CNNs based model to segment the liver and liver’s tumor based on ResUNet.

Firstly, we described about liver cancer disease, medical modalities to highlight the presence of tumor present in human body, and we described about different problems related to these modalities. Liver cancer is one of the most leading cause of cancer death in worldwide. Automatic liver segmentation from 3D biomedical images or CT scan is an essential challenging task for many clinical applications, such as surgical planning, hepatic diseases, postoperative analysis, and it can help doctors, radiologists to segment the liver tumor faster, and accurate analyses. Moreover, segmenting tumor from liver increases further dimensionality of difficulty because of overlap in intensity values and variability in position with other organs.

Secondly, we highlight some of trained CNNs models, which are using for the liver segmentation and tumor segmentation like U-Net, ResNet-50 and VGGNet-19. But we checked that these CNNs trained models are still not providing enough information to segment liver and tumor because of its fuzzy boundaries and complicated structure. 

Thirdly, we used CNNs to overcome all the obstacles for segmentation of liver and tumor, we used ResUNet model on the 3D-IRCADb01 dataset by IRCAD which contains CT slices for patients along with masks for liver, tumors and other body organs. ResUNet is hybrid combination between the U-Net & ResNet, where it is uses Residual blocks rather than the traditional convolution blocks.

In our techniques, we apply different strategies like 3-slice input; we used VGGNet-19, and RestNet-50 as base network and ResUNet method. We compare the combination of different strategies to check the final results of the liver and tumors separately. Our dataset contains 10 women and 10 men having hepatic tumors in 75% of cases ResUNet model consists of stacked layers of modified residual building blocks. We used the 2 cascaded CNNs approach one for segmenting the liver and extracting the ROI & the second one we use for extracted ROI from the first CNN and segment the tumors. We achieved dice coefficient of up to 95% and True value Accuracy of up to 99% and our comparison results show our method gives the best DICE score. 

Lastly, we high light research characteristics and innovations that explicit the proposed approaches provide better improvement, basis towards more effective loss functions, and Cross application for cross-datasets, which can be improved for segmentation of abdominal organs from any dataset’s modalities. Such as segmentation of heart and blood vessels from DICOM images, segmentation of liver from MRI, etc. by taking the advantages from ResUNet.

参考文献:

[1] “P. Chakravorty, ‘What Is a Signal? [Lecture Notes],’ IEEE Signal Process. Mag., vol. 35, no. 5, pp. 175–177, Sep. 2018.”

[2] “M. Greberman, ‘Image Processing: An overview,’ Vine, vol. 22, no. 4, pp. 2–4, 1992.”

[3] “C. S. Pereira, R. Morais, and M. J. C. S. Reis, ‘Recent advances in image processing techniques for automated harvesting purposes: A review,’ in 2017 Intelligent Systems Conference (IntelliSys), 2017, pp. 566–575.”

[4] “‘Digital Image Processing - Medical Applications | Space Foundation.’ [Online]. Available: https://www.spacefoundation.org/what-we-do/space-technology-hall-fame/inducted-technologies/digital-image-processing-medical. [Accessed: 20-Mar-2019].”

[5] “C. E. Kahn, J. A. Carrino, M. J. Flynn, D. J. Peck, and S. C. Horii, ‘DICOM and Radiology: Past, Present, and Future,’ J. Am. Coll. Radiol., vol. 4, no. 9, pp. 652–657, Sep. 2007.”

[6] “‘Brain MRI Scans May Predict Behavior | Imaging Technology News.’ [Online]. Available: https://www.itnonline.com/content/brain-mri-scans-may-predict-behavior. [Accessed: 20-Mar-2019].”

[7] “J. D. E. Gabrieli, S. S. Ghosh, and S. Whitfield-Gabrieli, ‘Prediction as a Humanitarian and Pragmatic Contribution from Human Cognitive Neuroscience,’ Neuron, vol. 85, no. 1, pp. 11–26, Jan. 2015.”

[8] “C. A. Roobottom, G. Mitchell, and G. Morgan-Hughes, ‘Radiation-reduction strategies in cardiac computed tomographic angiography.,’ Clin. Radiol., vol. 65, no. 11, pp. 859–867, Nov. 2010.”

[9] “C. A. Beam, E. A. Krupinski, H. L. Kundel, E. A. Sickles, and R. F. Wagner, ‘The Place of Medical Image Perception in 21st-Century Health Care,’ J. Am. Coll. Radiol., vol. 3, no. 6, pp. 409–412, Jun. 2006.”

[10] “E. Lin and A. Alessio, ‘What are the basic concepts of temporal, contrast, and spatial resolution in cardiac CT?,’ J. Cardiovasc. Comput. Tomogr., vol. 3, no. 6, pp. 403–408, 2009.”

[11] “P. Nordbeck, G. Ertl, and O. Ritter, ‘Magnetic resonance imaging safety in pacemaker and implantable cardioverter defibrillator patients: how far have we come?,’ Eur. Heart J., vol. 36, no. 24, pp. 1505–15011, Jun. 2015.”

[12] “J. G. Fujimoto, C. Pitris, S. A. Boppart, and M. E. Brezinski, ‘Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy.,’ Neoplasia, vol. 2, no. 1–2, pp. 9–25, 2000.”

[13] “S. R. Z. Abdel-Misih and M. Bloomston, ‘Liver Anatomy,’ Surg. Clin. North Am., vol. 90, no. 4, pp. 643–653, Aug. 2010.”

[14] “D. Zakim and T. D. Boyer, Hepatology : a textbook of liver disease, 4th ed. Saunders, 2003.”

[15] “C. Couinaud, The Liver. Anatomical and surgical investigations. Paris: Masson, 1957.”

[16] “S. K. Asrani, H. Devarbhavi, J. Eaton, and P. S. Kamath, ‘Burden of liver diseases in the world,’ J. Hepatol., vol. 70, no. 1, pp. 151–171, Jan. 2019.”

[17] “P. Rawla, T. Sunkara, P. Muralidharan, and J. P. Raj, ‘Update in global trends and aetiology of hepatocellular carcinoma.,’ Contemp. Oncol. (Poznan, Poland), vol. 22, no. 3, pp. 141–150, 2018.”

[18] “F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, ‘Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries,’ CA. Cancer J. Clin., vol. 68, no. 6, pp. 394–424, Nov.”

[19] “‘Cancer Tomorrow.’ [Online]. Available: https://gco.iarc.fr/tomorrow/home. [Accessed: 04-Apr-2019].”

[20] “A. Maier, C. Syben, T. Lasser, and C. Riess, ‘A gentle introduction to deep learning in medical image processing,’ Z. Med. Phys., Jan. 2019.”

[21] “G. Litjens et al., ‘A survey on deep learning in medical image analysis,’ Med. Image Anal., vol. 42, pp. 60–88, Dec. 2017.”

[22] “L. Hermoye et al., ‘Liver Segmentation in Living Liver Transplant Donors: Comparison of Semiautomatic and Manual Methods,’ Radiology, vol. 234, no. 1, pp. 171–178, Jan. 2005.”

[23] “J.-Y. Choi, J.-M. Lee, and C. B. Sirlin, ‘CT and MR Imaging Diagnosis and Staging of Hepatocellular Carcinoma: Part I. Development, Growth, and Spread: Key Pathologic and Imaging Aspects,’ Radiology, vol. 272, no. 3, pp. 635–654, Sep. 2014.”

[24] “A. M. Mharib, A. R. Ramli, S. Mashohor, and R. B. Mahmood, ‘Survey on liver CT image segmentation methods,’ Artif. Intell. Rev., vol. 37, no. 2, pp. 83–95, Feb. 2012.”

[25] “S. Luo, X. Li, J. Li, S. Luo, X. Li, and J. Li, ‘Review on the Methods of Automatic Liver Segmentation from Abdominal Images,’ J. Comput. Commun., vol. 02, no. 02, pp. 1–7, Jan. 2014.”

[26] “Ming Jiang, Ge Wang, M. W. Skinner, J. T. Rubinstein, and M. W. Vannier, ‘Blind deblurring of spiral CT images,’ IEEE Trans. Med. Imaging, vol. 22, no. 7, pp. 837–845, Jul. 2003.”

[27] “H. Takeda, A. Takai, T. Inuzuka, and H. Marusawa, ‘Genetic basis of hepatitis virus-associated hepatocellular carcinoma: linkage between infection, inflammation, and tumorigenesis.,’ J. Gastroenterol., vol. 52, no. 1, pp. 26–38, Jan. 2017.”

[28] “M. R. Oliva and S. Saini, ‘Liver cancer imaging: role of CT, MRI, US and PET.,’ Cancer Imaging, Apr. 2004.”

[29] “K. L.-C. Hsieh, R.-J. Tsai, Y.-C. Teng, and C.-M. Lo, “Effect of a computer-aided diagnosis system on radiologists’ performance in grading gliomas with MRI,” PLoS One, vol. 12, no. 2, Feb. 2017.”

[30] “N. Petrick et al., ‘Evaluation of computer-aided detection and diagnosis systems,’ Med. Phys., vol. 40, no. 8, Aug. 2013.”

[31] “H. J. Park et al., ‘A computer-aided diagnosis system using artificial intelligence for the diagnosis and characterization of breast masses on ultrasound,’ Medicine (Baltimore)., vol. 98, no. 3, Jan. 2019.”

[32] “K. Y. Win, S. Choomchuay, K. Hamamoto, M. Raveesunthornkiat, L. Rangsirattanakul, and S. Pongsawat, ‘Computer Aided Diagnosis System for Detection of Cancer Cells on Cytological Pleural Effusion Images,’ Biomed Res. Int., pp. 1–21, Nov. 2018.”

[33] “G. U. Reddy, ‘Curvelets and Wavelets With Gaussian Filter,’ Int. J. Image Process., vol. 5, no. 4, pp. 456–468, 2011.”

[34] “S. Bama and D. Selvathi, ‘Despeckling of medical ultrasound kidney images in the curvelet domain using diffusion filtering and MAP estimation,’ Signal Processing, vol. 103, pp. 230–241, Oct. 2014.”

[35] “Rajesh Mohan R, S. Mridula, and P. Mohanan, ‘Speckle noise reduction in images using Wiener filtering and adaptive Wavelet thresholding,’ in 2016 IEEE Region 10 Conference (TENCON), 2016, pp. 2860–2863.”

[36] “M. Mastriani, ‘New wavelet-based superresolution algorithm for speckle reduction in {SAR} images,’ CoRR, 2016.”

[37] “H. Hwang and R. A. Haddad, ‘Adaptive median filters: new algorithms and results,’ IEEE Trans. Image Process., vol. 4, no. 4, pp. 499–502, Apr. 1995.”

[38] “I. Pitas and A. N. Venetsanopoulos, ‘Order statistics in digital image processing,’ Proc. IEEE, vol. 80, no. 12, pp. 1893–1921, 1992.”

[39] “A. Goshtasby and M. Satter, ‘An adaptive window mechanism for image smoothing,’ Comput. Vis. Image Underst., vol. 111, no. 2, pp. 155–169, Aug. 2008.”

[40] “C. Rekeczky, C. Rekeczky, T. Roska, and A. Ushida, ‘CNN-Based Difference-Controlled Adaptive Nonlinear Image Filters,’ Int. J. CIRCUIT THEORY Appl., vol. 26, pp. 375-423, 1998.”

[41] “M. Rahman, S. Rana, A. Islam, M. Rahman, and M. H. Talukder, ‘A New Filtering Technique for denoising Speckle Noise from Medical Images Based on Adaptive and Anisotropic Diffusion Filter,’ Int. J. Res. Comput. andCommunication Technol., vol. 2, no. 9, pp.”

[42] “M. Hilts and A. Jirasek, ‘Adaptive mean filtering for noise reduction in CT polymer gel dosimetry,’ Med. Phys., vol. 35, no. 1, pp. 344–355, Dec. 2007.”

[43] “S. Godsill, A. Doucet, and M. West, ‘Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters,’ Ann. Inst. Stat. Math., vol. 53, no. 1, pp. 82–96, 2001.”

[44] “I. Despotović, B. Goossens, and W. Philips, ‘MRI Segmentation of the Human Brain: Challenges, Methods, and Applications,’ Comput. Math. Methods Med., pp. 1–23, Mar. 2015.”

[45] “R. Adams and L. Bischof, ‘Seeded region growing,’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 16, no. 6, pp. 641–647, Jun. 1994.”

[46] “C. Xu, D. Pham, and J. Prince, ‘Image Segmentation Using Deformable Models,’ in Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis, 1000 20th Street, Bellingham, WA 98227-0010 USA: SPIE, 2000, pp. 129–174.”

[47] “D. L. Pham, C. Xu, and J. L. Prince, ‘Current Methods in Medical Image Segmentation,’ Annu. Rev. Biomed. Eng., vol. 2, no. 1, pp. 315–337, Aug. 2000.”

[48] “A. E. Hassanien, M. F. Tolba, and A. Taher Azar, Eds., Advanced Machine Learning Technologies and Applications, vol. 488. Cham: Springer International Publishing, 2014.”

[49] “S. R. Safavian and D. Landgrebe, “A survey of decision.”

[50] “P. F. Christ et al., ‘Automatic Liver and Lesion Segmentation in CT Using Cascaded Fully Convolutional Neural Networks and 3D Conditional Random Fields,’ MICCAI 2016, Oct. 2016.”

[51] “G. Li, X. Chen, F. Shi, W. Zhu, J. Tian, and D. Xiang, ‘Automatic Liver Segmentation Based on Shape Constraints and Deformable Graph Cut in CT Images,’ IEEE Trans. Image Process., vol. 24, no. 12, pp. 5315–5329, Dec. 2015.”

[52] “P. F. Christ et al., ‘Automatic Liver and Tumor Segmentation of CT and MRI Volumes Using Cascaded Fully Convolutional Neural Networks,’ Med. Image Comput. Comput. Interv. – MICCAI 2017, Oct. 2017.”

[53] “X. Han, ‘Automatic Liver Lesion Segmentation Using A Deep Convolutional Neural Network Method,’ arXiv Prepr. arXiv 1704.07239, Apr. 2017.”

[54] “W. Wu, S. Wu, Z. Zhou, R. Zhang, and Y. Zhang, ‘3D Liver Tumor Segmentation in CT Images Using Improved Fuzzy C -Means and Graph Cuts,’ Biomed Res. Int., vol. 2017, pp. 1–11, Sep. 2017.”

[55] “C. Sun et al., ‘Automatic segmentation of liver tumors from multiphase contrast-enhanced CT images based on FCNs,’ Artif. Intell. Med., vol. 83, pp. 58–66, Nov. 2017.”

中图分类号:

 TP391.41    

开放日期:

 2021-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式