- 无标题文档
查看论文信息

论文中文题名:

 基于砂箱试验的干碎屑流运动特征与堆积形态研究    

姓名:

 吴延斌    

学号:

 19209071021    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081803    

学科名称:

 工学 - 地质资源与地质工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质资源与地质工程    

研究方向:

 地质灾害防治    

第一导师姓名:

 段钊    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-19    

论文答辩日期:

 2022-05-29    

论文外文题名:

 The motion characteristics and deposit morphologies of dry debris flowslides based on sandbox experiments    

论文中文关键词:

 碎屑流 ; 运动特征 ; 堆积形貌 ; 坡度 ; 滑动面类型    

论文外文关键词:

 debris flowslides ; motion characteristics ; deposit morphology ; slope angle ; sliding surface type    

论文中文摘要:

碎屑流地质灾害常常会引起惨重的人员伤亡和巨大的经济损失,因此广被研究。但是以往研究对于坡度和基底滑动面类型对碎屑流的影响不够系统详尽。因此研究中设计了直剪试验以测定试验材料及其与界面间的力学性质,在此基础上开展了不同坡度和不同基底滑动面使得干碎屑流模型试验,以研究碎屑流的运动特征、堆积形貌、运动能力。研究中利用直剪试验为碎屑流模型试验的理论计算提供基础参数(摩擦系数),通过3D扫描仪和高速相机记录模型碎屑流的运动过程。试验中主要得到:

(1)较小坡度时,光滑滑动面上碎屑流的运动过程和动力参数与粗糙滑动面上的明显不同;但在较大坡度时,碎屑流运动过程受滑动面类型差异影响较小。粗糙滑动面的粗糙程度对碎屑流的运动过程和动力参数影响不显著。碎屑流运动时受力状态是极不稳定的,尤其是前缘颗粒,会受到后续颗粒的碰撞力作用,从而具有较大的加速度。在大坡度时,其加速度数值接近甚至超过了重力加速度。粗糙滑动面相比于光滑滑动面能够很大程度上约束碎屑流的影响范围,这种约束在较小坡度时更加显著。但粗糙滑动面的粗糙程度对碎屑流影响范围产生的影响较小。

(2)结合砂箱试验发现:横向脊是碎屑流颗粒在缓慢挤压堆叠中形成的;双峰形态是后期碎屑流体对前期已抵达底板的碎屑流体进行冲击造成的;共轭槽是碎屑流体在前阻后推侧约束的力学条件下沿平整光滑基底面整体向前运移的过程中形成的。横向脊和双峰形态的形成主要依赖于坡度条件,基底滑动面光滑与否会改变这些表面形态产生的坡度范围,并不是这些表面形态产生与否的先决条件。共轭槽的形成同时依赖于坡度条件和滑动面条件,只有当基底滑动面较为平整光滑,且在中等坡度下才会产生。实际中乱石包岩崩同时满足共轭槽形成时所需的这两种条件。

(3)随着坡度的增大,试验碎屑流的视摩擦系数呈指数形式增大,对于以往研究也是如此。试验碎屑流的运动距离随着坡度的增大呈线性减小的趋势,在平整光滑滑动面上时的减小速率更快,而在粗糙滑动面上时减小速率较慢。

(4)基于物体因与固定面发生碰撞而产生的能量损耗率与该物体运动方向和固定面法线方向间锐夹角呈指数关系的条件,研究中推导出的视摩擦系数随坡度的理论方程能非常好的与文中试验数据和先前学者的数据相吻合,并且能较好的反映实际岩崩碎屑流随坡度的发展趋势,因此能较好的用于试验和野外碎屑流视摩擦系数的预测。

论文外文摘要:

Debris flowslides are intensively studied due to their extreme effects to human life and economy. Nevertheless, it is not systematical and detailed to the research of debris flowslides under the influences of slope angles and the types of basal surface. Hence, we employed the direct shear tests to obtain the mechanical properties of experimental materials and the shear interfaces, which served for the theoretical deduction of experimental debris flowslides. In addition, we conducted sandbox experiments at different slope angles and different basal surfaces to probe the debris flowslides’ motion process, deposit morphology, and mobility. These experimental debris flowslides were monitored with an advanced 3D scanner and two High-speed cameras. The main conclusions are as follows:

(1) At relatively low slope angles, the motion process and the kinetical parameters of the experimental debris flowslides on the smooth basal surface are significantly different with those on coarse basal surfaces, which attributes to the basal friction that affects their motion behavior mainly. However, it is converse at relatively large slope angles because the gravity force during free falling of the particles affects their motion behavior mainly. Their motion processes and dynamical parameters are less depending on the coarse degree of the coarse basal surfaces. Their dynamic states are extremely unstable, especially to front particles. They will subject to the collision force from rear particles, and therefore gain a large acceleration that will be close to and even exceed the gravity acceleration. The coarse basal surfaces can constrain the influence area at a large extent compared with the smooth basal surface. The lower the slope angles are, the more obvious the constraining effect will be. However, the influence area of the debris flowslides is less influenced by the coarse degree of the coarse basal surfaces.

(2) From the sandbox experiments, we found that the transverse ridges were formed during the process of slow compression and stacking; the double upheaval was formed due to the impact effect of the later sliding mass to the sliding mass already reached to the horizontal plate; the conjugate troughs were formed in the process that the debris flowslides moved forward along the smooth basal surface under a condition of resisting at front, pushing at back, and confining at flanks. The slope angles determine whether there are transverse ridges and double upheaval, while the basal surfaces are not a basic condition for the formation of these two surface structures. However, what the basal surfaces are smooth or not will change the slope range for the formation of these two surface structures. The conjugate troughs rely on both slope angles and basal surfaces. They could form only at a smooth basal surface and moderate slope angles. In fact, these two conditions are confronted for the Luanshibao rock avalanche.

(3) The apparent friction coefficient increased exponentially with the slope angles, and the same is true of others studies. The runout of the experimental debris flowslides decreased linearly with the increase of slope angles. The decreasing rate of runout is fast at smooth basal surface, but slow at coarse basal surfaces.

(4) A theoretical function between the apparent friction coefficient and the slope angles is proposed, based on a hypothesis the ratio of energy dissipation occurring when an object collides with a plane is exponentially related to the sharp angle between the object’s direction and the plane’s normal direction. The theoretical function can reflect well the field data and the data of the experiments and of others studies. Therefore, it can be used to predict the runout of experimental and field data if we know their slope angles.

参考文献:

[1] Hungr, O, Leroueil, S, Picarelli, L. The Varnes classification of landslide types, an update [J]. Landslides, 2014, 11(2): 167-194.

[2] Dufresne, A, Geertsema, M. Rock slide–debris avalanches: flow transformation and hummock formation, examples from British Columbia [J]. Landslides, 2020, 17(1): 15-32.

[3] Hutchinson, J N, Evans, S G, Degraff, J V. Chalk flows from the coastal cliffs of northwest Europe [M]. Catastrophic Landslides. Geological Society of America. 2002: 0.

[4] Pedrazzini, A, Froese, C R, Jaboyedoff, M, et al. Combining digital elevation model analysis and run-out modeling to characterize hazard posed by a potentially unstable rock slope at Turtle Mountain, Alberta, Canada [J]. Engineering Geology, 2012, 128(1): 76-94.

[5] Glicken, H. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington [M]. 1996.

[6] Dufresne, A. Rock Avalanche Sedimentology—Recent Progress; proceedings of the Advancing Culture of Living with Landslides [C] // Cham, F. Advancing Culture of Living with Landslides. Springer International Publishing, 2017: 117-122.

[7] Bowman, E T, Take, W A, Rait, K L, et al. Physical models of rock avalanche spreading behaviour with dynamic fragmentation [J]. Canadian Geotechnical Journal, 2012, 49(4): 460-476.

[8] Bowman, E T, Take, W A. TXT-tool 3.044-1.1: The Runout of Chalk Cliff Collapses—Case Studies and Physical Model Experiments [M]. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools. 2018: 297-314.

[9] Bowman, E T, Take, W A. The runout of chalk cliff collapses in England and France—case studies and physical model experiments [J]. Landslides, 2015, 12(2): 225-239.

[10] Zhang, M, Wu, L, Zhang, J, et al. The 2009 Jiweishan rock avalanche, Wulong, China: deposit characteristics and implications for its fragmentation [J]. Landslides, 2019, 16(5): 893-906.

[11] Duan, Z, Wu, Y B, Tang, H, et al. An Analysis of Factors Affecting Flowslide Deposit Morphology Using Taguchi Method [J]. Advances in Civil Engineering, 2020, 2020(1): 1-14.

[12] Daerr, A, Douady, S. Two types of avalanche behaviour in granular media [J]. Nature, 1999, 399(6733): 241-243.

[13] Chedeville, C, Roche, O. Autofluidization of pyroclastic flows propagating on rough substrates as shown by laboratory experiments [J]. Journal of Geophysical Research: Solid Earth, 2014, 119(3): 1764-1776.

[14] Goujon, C, Thomas, N, Dalloz-Dubrujeaud, B. Monodisperse dry granular flows oninclined planes: Role of roughness [J]. The European Physical Journal E, 2003, 11(2): 147-157.

[15] Dai, Z, Wang, F, Cheng, Q, et al. A giant historical landslide on the eastern margin of the Tibetan Plateau [J]. Bulletin of Engineering Geology and the Environment, 2019, 78(3): 2055-2068.

[16] 丑亚玲, 黄守洋, 孙丽源, 等. 基于冻融作用的氯盐渍土-钢块界面力学模型 [J]. 岩土力学, 2019, 40(S1): 41-52.

[17] 王天亮, 王海航, 王鸥, 等. 粉土与凹槽结构面抗剪强度特性试验研究 [J]. 北京交通大学学报, 2019, 43(03): 115-121.

[18] Martinez, A, Frost, J D. The influence of surface roughness form on the strength of sand–structure interfaces [J]. Géotechnique Letters, 2017, 7(1): 104-111.

[19] Hsieh, C, Hsieh, M-W. Load plate rigidity and scale effects on the frictional behavior of sand/geomembrane interfaces [J]. Geotextiles and Geomembranes, 2003, 21(1): 25-47.

[20] Wang, H-L, Zhou, W-H, Yin, Z-Y, et al. Effect of Grain Size Distribution of Sandy Soil on Shearing Behaviors at Soil–Structure Interface [J]. Journal of Materials in Civil Engineering, 2019, 31(10): 04019238.

[21] Su, L-J, Zhou, W-H, Chen, W-B, et al. Effects of relative roughness and mean particle size on the shear strength of sand-steel interface [J]. Measurement, 2018, 122(1): 339-346.

[22] 雷先顺, 朱大勇, 刘诚, 等. 考虑滑道坡度和宽度的滑坡模型试验研究 [J]. 岩土力学, 2017, 38(05): 1281-1288.

[23] 李天话, 樊晓一, 姜元俊. 不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究 [J]. 山地学报, 2018, 36(05): 740-749.

[24] Manzella, I, Labiouse, V. Empirical and analytical analyses of laboratory granular flows to investigate rock avalanche propagation [J]. Landslides, 2013, 10(1): 23-26.

[25] Farin, M, Mangeney, A, Roche, O. Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: Insights from laboratory experiments [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(3): 504-532.

[26] Crosta, G B, Blasio, F V D, Caro, M D, et al. Modes of propagation and deposition of granular flows onto an erodible substrate: experimental, analytical, and numerical study [J]. Landslides, 2017, 14(1): 47–68.

[27] Okura, Y, Kitahara, H, Sammori, T, et al. The effects of rockfall volume on runout distance [J]. Engineering Geology, 2000, 58(2): 109-124.

[28] Gray, J M N T, Wieland, M, Hutter, K. Gravity-driven free surface flow of granular avalanches over complex basal topography [J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1985): 1841-1874.

[29] Mangeney, A, Roche, O, Hungr, O, et al. Erosion and mobility in granular collapse over sloping beds [J]. Journal of Geophysical Research, 2010, 115(F3): F03040.

[30] 胡晓波, 樊晓一, 姜元俊. 运动场地地形条件对碎屑流动力特征的影响研究 [J]. 岩石力学与工程学报, 2020, 39(S1): 2940-2953.

[31] Han, Z, Li, Y, Huang, J, et al. Numerical simulation for run-out extent of debris flows using an improved cellular automaton model [J]. Bulletin of Engineering Geology and the Environment, 2017, 76(3): 961-974.

[32] Delannay, R, Valance, A, Mangeney, A, et al. Granular and particle-laden flows: from laboratory experiments to field observations [J]. Journal of Physics D Applied Physics, 2017, 50(1): 053001.

[33] Manzella, I, Labiouse, V. Qualitative Analysis of Rock Avalanches Propagation by Means of Physical Modelling of Non-Constrained Gravel Flows [J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 133-151.

[34] Ge, Y, Zhou, T, Tang, H, et al. Influence of the impact angle on the motion and deposition of granular flows [J]. Engineering Geology, 2020, 275(1): 105746.

[35] Duan, Z, Cheng, W-C, Peng, J-B, et al. Interactions of landslide deposit with terrace sediments: Perspectives from velocity of deposit movement and apparent friction angle [J]. Engineering Geology, 2021, 280(1): 105913.

[36] Li, H, Duan, Z, Wu, Y, et al. The Motion and Range of Landslides According to Their Height [J]. Frontiers in Earth Science, 2021, 9(1): 736280.

[37] Ge, Y F, Zhou, T, Huo, S L, et al. Energy Transfer Mechanism during Movement and Accumulation of Rockslide Avalanche [J]. Earth Science (in Chinese), 2019, 44(11): 3939-3949.

[38] Zhao, L, Huang, Y. Insights into the dynamic and thermal characteristics of rockslide motion: a model experiment [J]. Acta Geotechnica, 2021, 17(1): 221–230.

[39] 王畯才, 卢坤林, 朱大勇. 基于室内模型试验的滑坡碎屑流堆积分布规律研究 [J]. 工程地质学报, 2017, 25(06): 1509-1517.

[40] Dufresne, A, Davies, T R. Longitudinal ridges in mass movement deposits [J]. Geomorphology, 2009, 105(3): 171-181.

[41] Kesseler, M, Heller, V, Turnbull, B. A laboratory-numerical approach for modelling scale effects in dry granular slides [J]. Landslides, 2018, 15(11): 2145-2159.

[42] Edwards, A N, Gray, J M N T. Erosion–deposition waves in shallow granular free-surface flows [J]. Journal of Fluid Mechanics, 2015, 762(1): 35-67.

[43] Edwards, A N, Viroulet, S, Johnson, C G, et al. Erosion-deposition dynamics and long distance propagation of granular avalanches [J]. Journal of Fluid Mechanics, 2021, 915(1): A9.

[44] Baker, J, Gray, N, Kokelaar, P. Particle Size-Segregation and Spontaneous Levee Formation in Geophysical Granular Flows [J]. International Journal of Erosion Control Engineering, 2016, 9(4): 174-178.

[45] Edwards, A N, Viroulet, S, Kokelaar, B P, et al. Formation of levees, troughs and elevated channels by avalanches on erodible slopes [J]. Journal of Fluid Mechanics, 2017, 823(1): 278-315.

[46] Legros, F. The mobility of long-runout landslides [J]. Engineering Geology, 2002, 63(3): 301-331.

[47] Quantin, C, Allemand, P, Delacourt, C. Morphology and geometry of Valles Marineris landslides [J]. Planetary and Space Science, 2004, 52(11): 1011-1022.

[48] Hunter, G, Fell, R. Travel distance angle for "rapid" landslides in constructed and natural soil slopes [J]. Canadian Geotechnical Journal, 2003, 40(6): 1123-1141.

[49] Whittall, J, Eberhardt, E, McDougall, S. Runout analysis and mobility observations for large open pit slope failures [J]. Canadian Geotechnical Journal, 2016, 54(3): 373-391.

[50] Deganutti, A M. The Hypermobility of Rock Avalanches [D]; Università degli Studi di Padova, 2008.

[51] Lube, G, Breard, E C P, Jones, J, et al. Generation of air lubrication within pyroclastic density currents [J]. Nature Geoscience, 2019, 12(5): 381-386.

[52] Lucas, A, Mangeney, A, Ampuero, J P. Frictional velocity-weakening in landslides on earth and on other planetary bodies [J]. Nature Communications, 2014, 5(1): 1-9.

[53] Pirulli, M, Bristeau, M-O, Mangeney, A, et al. The effect of the earth pressure coefficients on the runout of granular material [J]. Environmental Modelling & Software, 2007, 22(10): 1437-1454.

[54] Mangeney, A, Tsimring, L S, Volfson, D, et al. Avalanche mobility induced by the presence of an erodible bed and associated entrainment [J]. Geophysical Research Letters, 2007, 34(22): L22401.

[55] Lusso, C, Bouchut, F, Ern, A, et al. A free interface model for static/flowing dynamics in thin-layer flows of granular materials with yield: simple shear simulations and comparison with experiments [J]. Applied Sciences, 2017, 7(4): 386.

[56] Pudasaini, S P, Miller, S A. The hypermobility of huge landslides and avalanches [J]. Engineering Geology, 2013, 157(1): 124-132.

[57] Pudasaini, S P, Mergili, M. A Multi-Phase Mass Flow Model [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(12): 2920-2942.

[58] Shugar, D H, Jacquemart, M, Shean, D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya [J]. Science, 2021, 373(6552): 300-306.

[59] Crosta, G B, Blasio, F V D, Locatelli, M, et al. Landslides falling onto a shallow erodible substrate or water layer: an experimental and numerical approach [M]. IOP Conference Series: Earth and Environmental Science. 2015: 012004.

[60] Zhang, G, Tang, H, Xiang, X, et al. Theoretical study of rockfall impacts based on logistic curves [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 78(1): 133-143.

[61] Wang, Y, Jiang, W, Cheng, S, et al. Effects of the impact angle on the coefficient of restitution in rockfall analysis based on a medium-scale laboratory test [J]. Natural Hazards Earth System Science, 2018, 18(11): 3045-3061.

[62] Ji, Z-M, Chen, Z-J, Niu, Q-H, et al. Laboratory study on the influencing factors and their control for the coefficient of restitution during rockfall impacts [J]. Landslides, 2019, 16(10): 1939-1963.

[63] Roche, O, Attali, M, Mangeney, A, et al. On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments [J]. Earth Planetary Science Letters, 2011, 311(3-4): 375-385.

[64] Pouliquen, O, Vallance, J W. Segregation induced instabilities of granular fronts [J]. Chaos, 1999, 9 3(1): 621-630.

[65] Woodhouse, M J, Thornton, A R, Johnson, C G, et al. Segregation-induced fingering instabilities in granular free-surface flows [J]. Journal of Fluid Mechanics, 2012, 709(1): 543-580.

[66] Pouliquen, O, Delour, J, Savage, S B. Fingering in granular flows [J]. Nature, 1997, 386(6627): 816-817.

[67] Wang, Y F, Cheng, Q G, Lin, Q W, et al. Insights into the kinematics and dynamics of the Luanshibao rock avalanche (Tibetan Plateau, China) based on its complex surface landforms [J]. Geomorphology, 2018, 317(1): 170-183.

[68] Zhao, B, Zhao, X, Zeng, L, et al. The mechanisms of complex morphological features of a prehistorical landslide on the eastern margin of the Qinghai-Tibetan Plateau [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(4): 3423-3437.

[69] Mangeney, A, Bouchut, F, Thomas, N, et al. Numerical modeling of self-channeling granular flows and of their levee-channel deposits [J]. Journal of Geophysical Research, 2007, 112(1): F02017.

[70] Paguican, E M R, van Wyk de Vries, B, Lagmay, A M F. Hummocks: how they form and how they evolve in rockslide-debris avalanches [J]. Landslides, 2014, 11(1): 67-80.

[71] Roche, O, Attali, M, Mangeney, A, et al. On the run-out distance of geophysical gravitational flows: Insight from fluidized granular collapse experiments [J]. Earth and Planetary Science Letters, 2011, 311(1): 375-385.

[72] Lajeunesse, E, Monnier, J B, Homsy, G M. Granular slumping on a horizontal surface [J]. Physics of Fluids, 2005, 17(10): 103302.

[73] Lajeunesse, E, Quantin, C, Allemand, P, et al. New insights on the runout of large landslides in the Valles-Marineris canyons, Mars [J]. Geophysical Research Letters, 2006, 33(4): L04403.

[74] Lajeunesse, E, Mangeney-Castelnau, A, Vilotte, J. Spreading of a granular mass on a horizontal plane [J]. Physics of Fluids, 2004, 16(1): 2371-2381.

[75] Hutchinson, J N. Chalk flows from the coastal cliffs of northwest Europe [M]//EVANS S G, DEGRAFF J V. Catastrophic Landslides. Geological Society of America. 2002: 0.

[76] Mangeney, A, Roche, O, Hungr, O, et al. Erosion and mobility in granular collapse over sloping beds [J]. Journal of Geophysical Research, 2010, 115(F3): F03040.

[77] Iverson, R M. The physics of debris flows [J]. Reviews of Geophysics, 1997, 35(3): 245-296.

[78] Lube, G, Breard, E C P, Esposti-Ongaro, T, et al. Multiphase flow behaviour and hazard prediction of pyroclastic density currents [J]. Nature Reviews Earth & Environment, 2020, 1(7): 348-365.

[79] Roche, O, Buesch, D C, Valentine, G A. Slow-moving and far-travelled dense pyroclastic flows during the Peach Spring super-eruption [J]. Nature Communications, 2016, 7(1): 10890.

[80] Roche, O, Montserrat, S, Niño, Y, et al. Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows [J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9): B09206.

[81] Scheevel, C R. Predicting landslide stability, runout, and failure velocity at Cook Lake landslide, Wyoming [D]. Colorado School of Mines; Colorado School of Mines, 2017.

[82] McDougall, S. 2014 Canadian Geotechnical Colloquium: Landslide runout analysis — current practice and challenges [J]. Canadian Geotechnical Journal, 2016, 54(5): 605-620.

[83] Dufresne, A, Siebert, L, Bernard, B. Distribution and Geometric Parameters of Volcanic Debris Avalanche Deposits [M]//Roerato M, Dufresne A, Procter J. Volcanic Debris Avalanches: From Collapse to Hazard. Cham; Springer International Publishing. 2021: 75-90.

[84] Devoli, G, De Blasio, F V, Elverhøi, A, et al. Statistical Analysis of Landslide Events in Central America and their Run-out Distance [J]. Geotechnical and Geological Engineering, 2009, 27(1): 23-42.

[85] Okura, Y, Kitahara, H, Kawanami, A, et al. Topography and volume effects on travel distance of surface failure [J]. Engineering Geology, 2003, 67(1): 243–254.

[86] Asteriou, P, Saroglou, H, Tsiambaos, G. Geotechnical and kinematic parameters affecting the coefficients of restitution for rock fall analysis [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 54(1): 103-113.

[87] Li, L P, Sun, S Q, Li, S C, et al. Coefficient of restitution and kinetic energy loss of rockfall impacts [J]. KSCE Journal of Civil Engineering, 2015, 20(6): 2297-2307.

[88] Kim, D, Ha, S. Effects of Particle Size on the Shear Behavior of Coarse Grained Soils Reinforced with Geogrid [J]. Materials (Basel, Switzerland), 2014, 7(2): 963-979.

[89] Mangeney-Castelnau, A, Bouchut, F, Vilotte, J P, et al. On the use of Saint Venant equations to simulate the spreading of a granular mass [J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B9): B09103.

[90] Hungr, O. Rock avalanche occurrence, process and modelling; proceedings of the Landslides from Massive Rock Slope Failure, Dordrecht, F 2006//, 2006 [C]. Springer Netherlands.

[91] Okura, Y, Kitahara, H, Sammori, T. Fluidization in dry landslides [J]. Engineering Geology, 2000, 56(3): 347-360.

[92] Fan, X y, Tian, S j, Zhang, Y y. Mass-front velocity of dry granular flows influenced by the angle of the slope to the runout plane and particle size gradation [J]. Journal of Mountain Science, 2016, 13(2): 234-245.

中图分类号:

 P642.22    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式