- 无标题文档
查看论文信息

论文中文题名:

 自密实混凝土早期水化监测及渗透性能预测研究    

姓名:

 穆艺凡    

学号:

 20204228081    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085213    

学科名称:

 工学 - 工程 - 建筑与土木工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 桥梁与隧道工程    

研究方向:

 桥梁与隧道理论与技术    

第一导师姓名:

 刘群峰    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-11    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Study on early hydration monitoring and permeability prediction of self-compacting concrete    

论文中文关键词:

 SCC ; GFRSCC ; 机电阻抗法 ; 早期水化特征 ; 主成分分析 ; 机器学习 ; 密实度    

论文外文关键词:

 SCC ; GFRSCC ; Electromechanical impedance ; Early hydration characteristics ; Principal component analysis ; Machine learning ; Density    

论文中文摘要:

玻璃纤维自密实混凝土(GFRSCC)是以玻璃纤维为增强材料,自密实混凝土浆体为基体的复合材料。玻璃纤维增强混凝土(GFRC)作为一种新型复合材料,在各个领域得到了广泛的应用。自密实混凝土(SCC)基体中掺入玻璃纤维,目标是为了利用自密实混凝土的高工作性能和高流动性,以及玻璃纤维混凝土的高韧性优点。

因此,本文首先对自密实混凝土水化过程及其不同阶段的工作性能开展了试验研究,发现自密实混凝土在不同粉煤灰掺量下的水化特征,验证了一种能够准确监测自密实混凝土水化过程并预测其强度发展的新指标。在此基础上,本文对玻璃纤维增强自密实混凝土的水化过程及强度发展进行了实验监测研究,分析了不同玻璃纤维含量对GFRSCC水化过程和渗透性能的影响。主要包括以下内容:

(1)基于机电阻抗法的自密实混凝土早期水化特性研究和抗压强度预测研究。基于不同粉煤灰掺量的SCC电导频谱图进行主成分分析,根据第一主成分可以简单地反映出不同粉煤灰掺量SCC早期水化的凝结过程,反映SCC的早期水化过程对智能骨料约束变化与第一主成分的关系;同时,基于主成分分析结果发现频谱特性受PZT封装层显著的影响,发现混凝土基体变化对智能骨料的环境约束有着显著的影响。根据混凝土抗压强度进行机器学习的训练以达到优化混凝土配合比的目的,利用收集公开发表的文献混凝土组成成分与抗压强度的数据集,建立多种机器学习回归模型进行训练及预测并对比分析,挑选出优化度高的机器学习模型以便于后续玻璃纤维混凝土的研究。

(2)基于机电阻抗法的玻璃纤维混凝土早期水化特性研究和渗透性能研究。基于不同玻璃纤维掺量GFRSCC的电导频谱图进行主成分分析,根据第一主成分得到早期水化时对GFRSCC中的纤维量的定量分析,观察不同纤维掺量的GFRSCC的基体变化对智能骨料的约束影响;建立基体环境对智能骨料的约束与渗透性能之间的关系,改进GFRSCC的孔隙率。通过机器学习模型得到影响玻璃纤维混凝土渗透性能的主要因素依序是养护龄期、玻璃纤维掺量、玻璃纤维长度,提出关于玻璃纤维混凝土配合比以达到降低渗透性能降低孔隙率的设计建议。

论文外文摘要:

Glass fiber self-compacting concrete (GFRSCC) is a composite material with glass fiber as reinforcement material and self-compacting concrete slurry as matrix. Glass fiber reinforced concrete (GFRC), as a new composite material, has been widely used in various fields. Glass fiber is incorporated into the matrix of self-compacting concrete (SCC). The goal is to take advantage of the high working performance and fluidity of self-compacting concrete, as well as the high toughness advantages of glass fiber concrete.

Therefore, this paper first carried out an experimental study on the hydration process of self-compacting concrete and its working performance at different stages, found the hydration characteristics of self-compacting concrete under different fly ash content, and verified a new index that can accurately monitor the hydration process of self-compacting concrete and predict its strength development. On this basis, the hydration process and strength development of glass fiber reinforced self-compacting concrete were monitored, and the effects of different glass fiber contents on the hydration process and permeability of GFRSCC were analyzed. It mainly includes the following contents:

(1) Study on early hydration characteristics and compressive strength prediction of self-compacting concrete based on electromechanical impedance method. Principal component analysis was carried out based on SCC conductance spectra with different fly ash contents. According to the first principal component, the condensation process of early hydration of SCC with different fly ash contents could be simply reflected, and the relationship between the constraint change of the early hydration process of SCC and the first principal component could be reflected. Meanwhile, based on the results of principal component analysis, it is found that the spectrum characteristics are significantly affected by the PZT encapsulation layer, and it is found that the change of concrete matrix has a significant impact on the environmental constraints of smart aggregate. Machine learning training was conducted according to the concrete compressive strength to achieve the purpose of optimizing the concrete mix ratio. A variety of machine learning regression models were established for training, prediction and comparative analysis by collecting the data sets of concrete composition and compressive strength in the published literature, so as to select the machine learning models with high optimization degree to facilitate the subsequent research on glass fiber concrete.

(2) Study on early hydration characteristics and permeability of glass fiber reinforced concrete based on electromechanical impedance method. Principal component analysis was carried out based on the conductance spectra of GFRSCC with different glass fiber content. The quantitative analysis of the fiber content in GFRSCC during early hydration was obtained according to the first principal component, and the constraint effect of the matrix change of GFRSCC with different fiber content on smart aggregate was observed. To improve the porosity of GFRSCC, the relationship between the matrix environment constraint and the permeability of smart aggregate was established. Through the machine learning model, the main factors affecting the permeability of glass fiber reinforced concrete are obtained in order of curing age, glass fiber content, glass fiber length, and put forward some suggestions on the design of glass fiber reinforced concrete mix ratio to achieve the reduction of permeability and porosity.

参考文献:

[1] 徐至钧. 纤维混凝土技术及应用[M]. 纤维混凝土技术及应用, 2003.

[2] State-of-the-Art Report on Fiber Reinforced Concrete[J]. ACI Journal Proceedings, 1973, 70(11).

[3] 丁一宁, 任县伟, 李冬. 结构型钢纤维对混凝土单裂缝渗透特性的影响[J]. 水利学报, 2017(13-20).

[4] Sato Y, Mier J, Walraven J. Mechanical characteristics of multi-modal fiber reinforced cement based composites[C]. 2000.

[5] 胡铁明, 陈小锋, 梁振宇. 钢纤维自应力混凝土加固简支变连续梁疲劳试验[J]. 大连理工大学学报, 2011(90-95).

[6] Mangat P S, Motamedi Azari M. A theory for the creep of steel fibre reinforced cement matrices under compression[J]. Journal of Materials Science, 1985, 20(3): 1119-1133.

[7] 孙伟, 陈惠苏. 纤维混杂及其与膨胀剂复合对混凝土的物理性能的影响[J]. 硅酸盐学报, 2000(95-99+104).

[8] 周履. 高性能混凝土与自密实混凝土在日本的发展与应用[J]. 国外桥梁, 1998(69-70).

[9] Hassan A A A, Hossain K M A, Lachemi M. Behavior of full-scale self-consolidating concrete beams in shear[J]. Cement and Concrete Composites, 2008, 30(7): 588-596.

[10] Hassan A A A, Hossain K M A, Lachemi M. Strength, cracking and deflection performance of large-scale self-consolidating concrete beams subjected to shear failure[J]. Engineering Structures, 2010, 32(5): 1262-1271.

[11] 刘岳鑫, 丁一宁, 刘思国. 钢纤维对钢筋自密实混凝土梁抗剪性能的影响[J]. 混凝土, 2009(83-87).

[12] 丁一宁, 宁喜亮, 钢筋钢纤维自密实混凝土梁裂缝宽度试验研究[J]. 工程力学, 2017(116-124).

[13] 何飞, 袁勇. PVA纤维混凝土梁的抗弯性能试验[J]. 建筑科学与工程学报, 2005.

[14] Shah D, Modhera C K. Evaluation of shear strength of self compacting concrete deep beam[J]. International Journal of Advanced Engineering Technology, 2010, 1: 292-305.

[15] 尤志国, 陈相宇, 董学超. 自密实混凝土受弯和受剪梁用纤维的对比[J]. 建筑结构, 017(78-84).

[16] Litherland K L, Oakley D R, Proctor B A. The use of accelerated ageing procedures to predict the long term strength of GRC composites[J]. Cement and Concrete Research, 1981, 11(3): 455-466.

[17] 楼宗汉, 韩韧, 胡国君, 等.关于玻纤水泥碱度问题的研究[J]. 硅酸盐学报, 1996(06):3-9.

[18] Stucke M S, Majumdar A J. Microstructure of glass fibre-reinforced cement composites[J]. Journal of Materials Science, 1976, 11(6): 1019-1030.

[19] Mills R H. Preferential precipitation of calcium hydroxide on alkali-resistant glass fibres[J]. Cement and Concrete Research, 1981, 11(5): 689-697.

[20] Glass Fiber Reinforced Concrete (GFRC) - Properties and Applications[EB].

[21] Madhkhan M, Katirai R. Effect of pozzolanic materials on mechanical properties and aging of glass fiber reinforced concrete[J]. Construction and Building Materials, 2019, 225: 146-158.

[22] Beigi M H, Berenjian J, Lotfi Omran O, et al. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete[J]. Materials & Design, 2013, 50: 1019-1029.

[23] Chen H, Wang P, Pan J, et al. Effect of alkali-resistant glass fiber and silica fume on mechanical and shrinkage properties of cement-based mortars[J]. Construction and Building Materials, 2021, 307: 125054.

[24] Purnell P, Short N R, Page C L, et al. Microstructural observations in new matrix glass fibre reinforced cement[J]. Cement and Concrete Research, 2000, 30(11): 1747-1753.

[25] Enfedaque A, Cendón D, Gálvez F, et al. Analysis of glass fiber reinforced cement (GRC) fracture surfaces[J]. Construction and Building Materials, 2010, 24(7): 1302-1308.

[26] Arabi N, Molez L, Rangeard D. Durability of Alkali-Resistant Glass Fibers Reinforced Cement Composite: Microstructural Observations of Degradation[J]. Periodica Polytechnic a Civil Engineering, 2018.

[27] C09 Committee. Test Method for Density, Absorption, and Voids in Hardened Concrete[R]. ASTM International.

[28] Ali B, Qureshi L A. Influence of glass fibers on mechanical and durability performance of concrete with recycled aggregates[J]. Construction and Building Materials, 2019, 228: 116783.

[29] Eiras J N, Kundu T, Bonilla M, et al. Nondestructive Monitoring of Ageing of Alkali Resistant Glass Fiber Reinforced Cement (GRC)[J]. Journal of Nondestructive Evaluation, 2013, 32(3): 300-314.

[30] Ruben N, Venkatesh C, Durga C S S, et al. Comprehensive study on performance of glass fibers-based concrete[J]. Innovative Infrastructure Solutions, 2021, 6(2): 112.

[31] Małek M, Jackowski M, Łasica W, et al. Mechanical and Material Properties of Mortar Reinforced with Glass Fiber: An Experimental Study[J]. Materials, 2021, 14(3): 698.

[32] Dehghan A, Peterson K, Shvarzman A. Recycled glass fiber reinforced polymer additions to Portland cement concrete[J]. Construction and Building Materials, 2017, 146: 238-250.

[33] Abdi Moghadam M, Izadifard R A. Effects of steel and glass fibers on mechanical and durability properties of concrete exposed to high temperatures[J]. Fire Safety Journal, 2020, 113: 102978.

[34] Liang C, Sun F P, Rogers C A. Coupled Electro-Mechanical Analysis of Adaptive Material Systems — Determination of the Actuator Power Consumption and System Energy Transfer[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(1): 12-20.

[35] De Weerdt K, Haha M B, Le Saout G, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash[J]. Cement and Concrete Research, 2011, 41(3): 279-291.

[36] Ylmén R, Jäglid U, Steenari B M, et al. Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques[J]. Cement and Concrete Research, 2009, 39(5): 433-439.

[37] Park G, Cudney H H, Inman D J. An Integrated Health Monitoring Technique Using Structural Impedance Sensors[J]. Journal of Intelligent Material Systems and Structures, 2000, 11(6): 448-455.

[38] Zhang S, Zhang Y, Li Z. Ultrasonic monitoring of setting and hardening of slag blended cement under different curing temperatures by using embedded piezoelectric transducers[J]. Construction and Building Materials, 2018, 159: 553-560.

[39] Zheng Y, Chen D, Zhou L, et al. Evaluation of the Effect of Fly Ash on Hydration Characterization in Self-Compacting Concrete (SCC) at Very Early Ages Using Piezoceramic Transducers[J]. Sensors, 2018, 18(8): 2489.

[40] Tang Z S, Lim Y Y, Smith S T, et al. Monitoring the curing process of in-situ concrete with piezoelectric-based techniques – A practical application[J]. Structural Health Monitoring, 2023, 22(1): 518-539.

[41] Kong Q, Hou S, Ji Q, et al. Very early age concrete hydration characterization monitoring using piezoceramic based smart aggregates[J]. Smart Materials and Structures, 2013, 22(8): 085025.

[42] Ding J, Kang J, Zhu J, et al. Damage Detection of Epoxied Joint Model in Precast Concrete Segmental Bridges Using PZT Technology[J]. Journal of Aerospace Engineering, 2020, 33(3): 04020012.

[43] Gu H, Song G, Dhonde H, et al. Concrete early-age strength monitoring using embedded piezoelectric transducers[J]. Smart Materials and Structures, 2006, 15(6): 1837-1845.

[44] Soh C K, Bhalla S. Calibration of piezo-impedance transducers for strength prediction and damage assessment of concrete[J]. Smart Materials and Structures, 2005, 14(4): 671-684.

[45] Shin S W, Qureshi A R, Lee J Y, et al. Piezoelectric sensor based nondestructive active monitoring of strength gain in concrete[J]. Smart Materials and Structures, 2008, 17(5): 055002.

[46] Narayanan A, Subramaniam K V L. Early age monitoring of cement mortar using embedded piezoelectric sensors[J]. KUNDU T. SPIE Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. Las Vegas, Nevada, United States, 2016: 98052W.

[47] Tawie R, Lee H K. Monitoring the strength development in concrete by EMI sensing technique[J]. Construction and Building Materials, 2010, 24(9): 1746-1753.

[48] Lu X, Lim Y Y, Soh C K. A novel electromechanical impedance–based model for strength development monitoring of cementitious materials[J]. Structural Health Monitoring, 2018, 17(4): 902-918.

[49] Wang Z, Chen D, Zheng L, et al. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete[J]. Sensors, 2018, 18(6): 1782.

[50] Ghafari E, Yuan Y, Wu C, et al. Evaluation the compressive strength of the cement paste blended with supplementary cementitious materials using a piezoelectric-based sensor[J]. Construction and Building Materials, 2018, 171: 504-510.

[51] Su Y F, Han G, Amran A, et al. Instantaneous monitoring the early age properties of cementitious materials using PZT-based electromechanical impedance (EMI) technique[J]. Construction and Building Materials, 2019, 225: 340-347.

[52] Min J, Park S, Yun C B, et al. Impedance-based structural health monitoring incorporating neural network technique for identification of damage type and severity[J]. Engineering Structures, 2012, 39: 210-220.

[53] Bansal T, Talakokula V, Mathiyazhagan K. Equivalent structural parameters based non-destructive prediction of sustainable concrete strength using machine learning models via piezo sensor[J]. Measurement, 2022, 187: 110202.

[54] Ai D, Mo F, Han Y, et al. Automated identification of compressive stress and damage in concrete specimen using convolutional neural network learned electromechanical admittance[J]. Engineering Structures, 2022, 259: 114176.

[55] Park S, Lee J J, Yun C B, et al. Electro-Mechanical Impedance-Based Wireless Structural Health Monitoring Using PCA-Data Compression and k -means Clustering Algorithms[J]. Journal of Intelligent Material Systems and Structures, 2008, 19(4): 509-520.

[56] Ai D, Mo F, Yang F, et al. Electromechanical impedance-based concrete structural damage detection using principal component analysis incorporated with neural network[J]. Journal of Intelligent Material Systems and Structures, 2022, 33(17): 2241-2256.

[57] Omran B A, Chen Q, Jin R. Comparison of Data Mining Techniques for Predicting Compressive Strength of Environmentally Friendly Concrete[J]. Journal of Computing in Civil Engineering, 2016, 30(6): 04016029.

[58] Behnood A, Golafshani E M. Machine learning study of the mechanical properties of concretes containing waste foundry sand[J]. Construction and Building Materials, 2020, 243: 118152.

[59] Golafshani E M, Behnood A, Arashpour M. Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer[J]. Construction and Building Materials, 2020, 232: 117266.

[60] Tanyildizi H. Prediction of the Strength Properties of Carbon Fiber-Reinforced Lightweight Concrete Exposed to the High Temperature Using Artificial Neural Network and Support Vector Machine[J]. Advances in Civil Engineering, 2018: 1-10.

[61] 梁宁慧, 游秀菲, 曹郭俊, 等. 基于机器学习的高温后聚丙烯纤维混凝土强度预测[J].硅酸盐学报, 卷 40.2021:455-464.

[62] Lever J, Krzywinski M, Altman N. Principal component analysis[J]. Nature Methods, 2017, 14(7): 641-642.

[63] Liu X, Athanasiou C E, Padture N P, et al. A machine learning approach to fracture mechanics problems[J]. Acta Materialia, 2020, 190: 105-112.

[64] Song G, Gu H, Mo Y L. Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review[J]. Smart Materials and Structures, 2008, 17(3): 033001.

[65] 自密实混凝土应用技术规程, JGJ/T 283-2012[S]. 行业标准-建筑工业, 2012: 75P.; B5.

[66] Puthipad N, Ouchi M, Rath S, et al. Enhancement in self-compactability and stability in volume of entrained air in self-compacting concrete with high volume fly ash[J]. Construction and Building Materials, 2016, 128: 349-360.

[67] 普通混凝土拌合物性能试验方法标准: GB/T 50080-2002[S]. 中华人民共和国国家标准, 2003:66p:A4.

[68] 丁一宁, 刘思国, 纤维增强自密实混凝土早龄期非自由收缩研究[J]. 建筑材料学报, 2008(8-13).

[69] 杨冬升, 杨小春, 赵玉印等. 不同长度玻璃纤维对陈积粉煤灰加气混凝土力学性能影响[J]. 混凝土, 2019, No.362(12):92-94+98.

[70] 中国加气混凝土协会, 同济大学, 浙江开元新型墙体材料有限公司, 等. 蒸压加气混凝土性能试验方法[S]. 2020.

[71] Martys N S, Ferraris C F, Capillary transport in mortars and concrete[J]. Cement and Concrete Research, 1997, 27(5): 747-760.

[72] Yuan Z, Jia Y. Mechanical properties and microstructure of glass fiber and polypropylene fiber reinforced concrete: An experimental study[J]. Construction and Building Materials, 2021, 266: 121048.

[73] Blazy J, Blazy R, Drobiec Ł. Glass Fiber Reinforced Concrete as a Durable and Enhanced Material for Structural and Architectural Elements in Smart City—A Review[J]. Materials, 2022, 15(8): 2754.

[74] Mahakavi P, Chithra R, Gogoi R, et al. Effect of recycled aggregate and flyash on glass fiber reinforced concrete[J]. Materials Today: Proceedings, 2021, 47: 7105-7110.

[75] Yuan Z, Jia Y. Experimental Study on the Mechanical Properties, Water Absorption, and Fiber Degradation of Naturally Aged Glass Fiber and Polypropylene Fiber-Reinforced Concrete[J]. Materials, 2022, 15(11): 3760.

中图分类号:

 TU528    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式