- 无标题文档
查看论文信息

论文中文题名:

 控制孔导控煤层水力裂缝起裂及扩展 规律研究    

姓名:

 侯亚平    

学号:

 21220089015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 煤岩层水力压裂    

第一导师姓名:

 金洪伟    

第一导师单位:

 西安科技大学    

第二导师姓名:

 徐刚    

论文提交日期:

 2024-06-17    

论文答辩日期:

 2024-06-01    

论文外文题名:

 Study on the Initiation and Propagation Law of Hydraulic Fracture in Coal Seam Controlled by Control Hole    

论文中文关键词:

 水力压裂 ; 煤层 ; 孔隙水压力 ; 控制孔 ; 裂缝导控扩展    

论文外文关键词:

 Hydraulic fracturing ; Coal seam ; Pore water pressure ; Control hole ; Fracture guidance and control expansion    

论文中文摘要:

水力压裂增透技术在高瓦斯低渗透煤层中瓦斯抽采过程中起到了重要作用。针对控制孔孔隙水压力作用下压裂孔周围地应力场分布的研究还不充分,各影响因素综合作用下控制孔导控水力裂缝的扩展规律不清楚,无法为控制孔导控煤层水力裂缝扩展工艺设计提供技术支撑的问题,论文采用理论分析、数值模拟、物理模拟试验以及现场试验等多种方法相结合,开展控制孔导控煤层水力裂缝起裂及扩展规律研究,建立控制孔导控水力裂缝起裂及裂缝扩展的力学模型,揭示孔隙水压力作用下水力裂缝导控扩展机理。主要研究成果如下:

基于H.Kastner钻孔围岩起裂力学原理,分析控制孔孔隙水压力作用下压裂孔周围地应力场分布特征,建立控制孔导控水力裂缝起裂和裂缝扩展的力学模型,获得控制孔导控水力裂缝起裂及扩展规律,揭示孔隙水压力作用下水力裂缝导控扩展机理。研究发现:压裂钻孔的起裂压力与控制孔孔压呈负相关,与孔间距呈正相关,当控制孔注水压力越大,控制孔到压裂孔之间的距离越小时,水力裂缝起裂压力就越小;在控制孔孔隙水压力作用下,λ>1或λ<1时压裂钻孔的起裂角不受控制孔的影响;当λ>1时,裂缝起裂角为θ=0°或θ=180°,随着λ从1.1增加到1.3时,裂缝扩展时受到原始地应力的控制作用越强,裂缝在扩展过程中偏转越困难;当λ<1时,裂缝起裂角为θ=90°或θ=270°,随着λ从0.7增加到0.9时,裂缝扩展时受到原始地应力的控制作用越弱,裂缝在扩展过程中偏转越容易;当λ=1时,裂缝起裂角为θ=β+π,裂缝沿着两孔中心连线的方向扩展到控制孔所在位置附近;随着裂缝扩展过程中裂缝长度的增加,裂缝扩展时所需要的注水压力逐渐减小。

应用岩石渗流力学理论,基于控制孔孔隙水压力作用下压裂孔周围地应力场分布特征,建立控制孔导控水力裂缝扩展渗流-应力耦合模型,采用RFPA2D-Flow软件对控制孔导控水力裂缝扩展规律进行了数值模拟研究,分析控制孔对水力裂缝定向扩展的导控作用,研究孔间距、控制孔孔压、控制孔位置和地应力等因素对水力裂缝起裂及扩展的影响,获得了控制孔各参数影响下水力裂缝扩展过程中裂缝转向规律。研究表明:控制孔导控压裂与常规压裂相比,压裂钻孔起裂所需的注水压力较小,在压裂孔和控制孔两孔中心连线周围产生最大拉应力,引导水力裂缝偏转;当控制孔距压裂孔之间的距离越小,控制孔注水压力越大时,裂缝的起裂压力越小,裂缝扩展方向的转向角越大,裂缝向控制孔方向扩展时的诱导作用效果越好。当最大主应力方向与两孔中心连线方向之间的夹角越小时,裂缝更容易偏转到控制孔附近,且最大主应力方向与两孔中心连线方向一致时,裂缝起裂压力最小,裂缝扩展最快;裂缝扩展方向的转向角随水压力的增大呈抛物线递增,在现场应用时要根据诱导方向需求合理的布置控制孔的参数。

通过自制水泥砂浆试块,组合水力压裂模拟实验室试验装置,开展控制孔导控压裂物理相似模拟试验,分析不同孔间距、控制孔孔压及控制孔所在位置对水力裂缝扩展形态的影响。研究发现:两孔间距越小,控制孔孔压越大,裂缝起裂时所需的注水压力越小,压裂完成所需用的时间越短,裂缝扩展时偏转角度越大,控制孔导向压裂裂缝定向扩展的诱导作用越明显;当两孔连线方向与最大水平主应力方向一致,裂缝起裂时所需的注水压力最小,压裂完成所需用的时间最短。

采用现场试验对控制孔导控压裂和常规压裂技术增透效果进行了对比分析。现场试验结果表明:控制孔导控压裂方法的定向增透效果要优于常规水力压裂方法;两孔间距越小,控制孔导控压裂方法增透效果越好。控制孔导控压裂相对于常规水力压裂方法和普通钻孔抽采方法,在平均瓦斯浓度上分别提高了1.64 倍和6.57倍;孔间距从6m增加到10m时,在平均瓦斯浓度上降低了1.24倍。在钻场抽采一个月后,采用控制孔导控压裂技术进行瓦斯抽采时,平均瓦斯浓度的衰减速度相对较慢,衰减了4个百分点,衰减率为8.8%;当孔间距从6m增加到10m时,控制孔导控压裂技术的平均瓦斯浓度的衰减增加了10个百分点,衰减率增加了22.3%。

论文外文摘要:

Hydraulic fracturing technology plays an important role in the process of gas extraction in high gas and low permeability coal seam. In view of the fact that the research on the distribution of in-situ stress field around the fracturing hole under the pore water pressure of the control hole is not sufficient, and the propagation law of the hydraulic fracture controlled by the control hole under the combined action of various influencing factors is not clear, it can not provide technical support for the design of the hydraulic fracture propagation process of the coal seam controlled by the control hole. In this paper, theoretical analysis, numerical simulation, physical simulation test and field test are combined to study the initiation and propagation law of hydraulic fractures in the coal seam controlled by the control hole, and the mechanical model of the initiation and propagation of hydraulic fractures controlled by the control hole is established to reveal the propagation mechanism of hydraulic fractures under the action of pore water pressure. The main research results are as follows:

Based on the mechanical principle of H.Kastner borehole surrounding rock crack initiation, the distribution characteristics of in-situ stress field around the fracturing hole under the pore water pressure of the control hole are analyzed, and the mechanical model of the crack initiation and crack propagation of the hydraulic fracture controlled by the control hole is established. The crack initiation and propagation law of the hydraulic fracture controlled by the control hole is obtained, and the mechanism of the hydraulic fracture propagation under the pore water pressure is revealed. It is found that the initiation pressure of the fracturing borehole is negatively correlated with the pore pressure of the control hole and positively correlated with the hole spacing. When the water injection pressure of the control hole is larger, the distance between the control hole and the fracturing hole is smaller, and the hydraulic fracture initiation fracturing is smaller. Under the control of pore water pressure, when λ>1 or λ<1, the crack initiation angle is θ=0° or θ=180°. With the increase of λ from 1.1 to 1.3, the crack propagation is controlled by the original in-situ stress. The stronger the control, the more difficult the crack deflection during the expansion process; when λ<1, the crack initiation angle is θ=90° or θ=270°. When λ increases from 0.7 to 0.9, the crack propagation is less controlled by the original ground stress, and the crack is more easily deflected during propagation. When λ=1, the crack initiation angle is θ=β+π, and the crack extends to the vicinity of the control hole along the direction of the connection between the two holes. With the increase of fracture length in the process of fracture propagation, the water injection pressure required for fracture propagation gradually decreases.

Based on the theory of rock seepage mechanics and the distribution characteristics of in-situ stress field around the fracturing hole under the pore water pressure of the control hole, the seepage-stress coupling model of the hydraulic fracture propagation controlled by the control hole is established. The RFPA2D-Flow software is used to numerically simulate the propagation law of the hydraulic fracture controlled by the control hole, and the control effect of the control hole on the directional propagation of the hydraulic fracture is analyzed. The effects of hole spacing, control pore pressure, control hole position and in-situ stress on the initiation and propagation of hydraulic fractures are studied, and the fracture steering law during the propagation of hydraulic fractures under the influence of control hole parameters is obtained. The results show that compared with the control hole guided fracturing, the water injection pressure required for fracturing borehole initiation is reduced, and the maximum tensile stress is generated around the center line of the two holes of the fracturing hole and the control hole to guide the deflection of the hydraulic fracture. When the distance between the control hole and the fracturing hole is smaller, the water injection pressure of the control hole is larger, the crack initiation pressure is smaller, the steering angle of the crack propagation direction is larger, and the induction effect is better when the crack propagates to the control hole. When the angle between the direction of the maximum principal stress and the direction of the connection between the two holes is smaller, the crack is more likely to deflect to the vicinity of the control hole, and when the direction of the maximum principal stress is consistent with the direction of the connection between the two holes, the crack initiation pressure is the smallest and the crack propagation is the fastest. The turning angle of the crack propagation direction increases parabolically with the water pressure. In the field application, the parameters of the control hole should be reasonably arranged according to the demand of the induced direction.

Through the self-made cement mortar test block, combined with the hydraulic fracturing simulation laboratory test device, the physical similarity simulation test of the control hole guide control fracturing is carried out, and the influence of different hole spacing, control hole pore pressure and control hole location on the hydraulic fracture propagation morphology is analyzed. It is found that the smaller the distance between the two holes is, the larger the pore pressure of the control hole is, the smaller the water injection pressure required for the initiation of the fracture is, the shorter the time required for the completion of the fracturing is, the larger the deflection angle of the fracture propagation is, and the more obvious the induction effect of the directional propagation of the fracture guided by the control hole is. When the direction of the connection between the two holes is consistent with the direction of the maximum horizontal principal stress, the water injection pressure required for the initiation of the fracture is the smallest, and the time required for the completion of the fracturing is the shortest.

The field test is used to compare and analyze the anti-reflection effect of control hole guided fracturing and conventional fracturing technology. The field test results show that the directional anti-reflection effect of the control hole guided fracturing method is better than that of the conventional hydraulic fracturing method. The smaller the distance between the two holes, the better the anti-reflection effect of the control hole guided fracturing method. Compared with the conventional hydraulic fracturing method and the ordinary borehole drainage method, the average gas concentration of the control hole guided controlled fracturing is increased by 1.64 times and 6.57 times respectively. When the hole spacing increases from 6m to 10m, the average gas concentration is reduced by 1.24 times. After one month of extraction in the drilling field, when the gas extraction is carried out by using the control hole guide control fracturing technology, the attenuation rate of the average gas concentration is relatively slow, which is attenuated by 4 percentage points, and the attenuation rate is 8.8%. When the hole spacing increases from 6m to 10m, the attenuation of the average gas concentration of the control hole guided fracturing technology increases by 10 percentage points, and the attenuation rate increases by 22.3%.

参考文献:

[1] 蔺海晓, 杜春志. 煤岩拟三轴水力压裂实验研究[J]. 煤炭学报, 2011, 36(11): 1801-1805.

[2] Huang B, Wang Y Z, Cao S G. Cavability control by hydraulic fracturing for top coal caving in hard thick coal seams[J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 74: 45-57.

[3] 黄炳香, 程庆迎, 刘长友, 等. 煤岩体水力致裂理论及其工艺技术框架[J]. 采矿与安全工程学报, 2011, 28(02): 167-173.

[4] 黄炳香, 赵兴龙, 陈树亮, 等. 坚硬顶板水压致裂控制理论与成套技术[J]. 岩石力学与工程学报, 2017, 36(12): 2954-2970.

[5] 黄炳香, 陈树亮, 程庆迎. 煤层压裂开采与治理区域瓦斯的基本问题[J]. 煤炭学报, 2016, 41(01): 128-137.

[6] Gidley J L, Holditch S A, Nierode D E, et al. Recent advances in hydraulic fracture [J]. Richardson, TX (USA); Society of Petroleum Engineers, 1989.

[7] Murdoch L C, Slack W W. Forms of Hydraulic Fractures in Shallow Fine-Grained Formations[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2002, 128(6): 479-487.

[8] 杜春志. 煤层水压致裂理论及应用研究[D]. 北京: 中国矿业大学, 2008.

[9] Klee G, Rummel F, Williams A. Hydraulic fracturing stress measurements in Hong Kong[J]. International Journal of Rock Mechanics & Mining Sciences, 1999, 36(6): 731-741.

[10] 康向涛. 煤层水力压裂裂缝扩展规律及瓦斯抽采钻孔优化研究[D]. 重庆: 重庆大学, 2014.

[11] 王耀锋, 何学秋, 王恩元, 等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报, 2014, 39(10): 1945-1955.

[12] 赵熙. 页岩压裂裂纹三维起裂与扩展行为的数值模拟与实验研究[D]. 北京: 中国矿业大学, 2017.

[13] Hou B, Chen M, Wang Z, et al. Hydraulic fracture initiation theory for a horizontal well in a coal seam[J]. Petroleum Science, 2013, 10(02): 219-225.

[14] 侯振坤, 杨春和, 王磊, 等. 大尺寸真三轴页岩水平井水力压裂物理模拟试验与裂缝延伸规律分析[J]. 岩土力学, 2016, 37(02): 407-414.

[15] Huang J, Griffiths D V, Wong S W. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49(1): 59-67.

[16] Zhang X, Jeffrey R G, Bunger A P, et al. Initiation and growth of a hydraulic fracture from a circular wellbore[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(6): 984-995.

[17] Qi D X, Li L J, Jiao Y S. The stress state around an elliptical borehole in anisotropy medium[J]. Journal of Petroleum Science & Engineering, 2018, 166: 313-323.

[18] 尹光志, 刘超, 李铭辉, 等. 椭圆形钻孔应力场解析解及水力压裂特性[J]. 煤炭学报, 2019, 44(S1): 61-73.

[19] Hubbret M K, Willis D G. Mechanics of hydraulic fracturing[J]. Trans AIME, 1957, 210: 153-163.

[20] Zhang X W, Lu Y Y, Tang J R, et al. Experimental study on fracture initiation and propagation in shale using supercritical carbon dioxide fracturing[J]. Fuel, 2016, 190(feb.15): 370-378.

[21] Hubbert M K, Willis D G. Mechanics of hydraulic fracturing[J]. Trans. aime T.p, 1957, 153-166.

[22] Haimson B, Fairhurst C. Hydraulic fracturing in porous-permeable materials[J]. Journal of Petroleum Technology, 1969, 21(7): 811-817.

[23] Wrobel M, Papanastasiou P, Peck D. A simplified modelling of hydraulic fractures in elasto-plastic materials[J]. 2021: doi: 10.48550/arXiv.2107.08783.

[24] Anderson R A, Ingram D S, Zanier A M. Determining Fracture Pressure Gradient from Well Logs[J]. Journal of Petroleum Technology, 1973, 25(11): 1259-1268.

[25] 黄荣樽. 水力压裂的裂缝起裂与扩展[J]. 石油勘探与开发, 1981, 7(5): 44-74.

[26] 李传亮, 孔祥言. 油井压裂过程中岩石破裂压力计算公式的理论研究[J]. 石油钻采工艺, 2000, 22(2): 54-56.

[27] 张国华. 本煤层水力压裂致裂机理及裂隙发展过程研究[D]. 阜新: 辽宁工程技术大学, 2003.

[28] 张国华, 魏光平, 侯凤才. 穿层钻孔起裂注水压力与起裂位置理论[J]. 煤炭学报, 2007, 32(1): 52-55.

[29] 冯彦军, 康红普. 水力压裂起裂与扩展分析[J]. 岩石力学与工程学报, 2013(s2): 3169-3179.

[30] 冯彦军, 康红普. 受压脆性岩石Ⅰ-Ⅱ型复合裂纹水力压裂研究[J]. 煤炭学报, 2013, 38(2): 226-232.

[31] Simonson E R, Abousayed A S, Clifton R J. Containment of Massive Hydraulic Fractures[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 27-32.

[32] Zoback M D, Rummel F, Jung R, et al. Laboratory hydraulic fracturing experiments in intact and pre-fractured rock[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1977, 14(2): 49-58.

[33] Zhang Z B, Li X. The Shear Mechanisms of Natural Fractures during the Hydraulic Stimulation of Shale Gas Reservoirs[J]. Materials, 2016, 9(9): doi: 10.3390/ma9090713.

[34] Murphy H D , Fehler M C .Hydraulic Fracturing of Jointed Formations[J].Society of Petroleum Engineers, 2024: doi: 10.2118/14088-MS.

[35] Wei H C, Li L G, Wu X M, et al. The Analysis and Theory Research on the Factor of Multiple Fractures During Hydraulic Fracturing of CBM Wells[J]. Procedia Earth & Planetary Science, 2011, 3: 231-237.

[36] Li Y W, Jia D, Liu J, et al. The calculation method based on the equivalent continuum for the fracture initiation pressure of fracturing of coal bed methane well[J]. Journal of Petroleum Science and Engineering, 2016, 146: doi: 10.1016/j.petrol.2016.07.041

[37] Wang T, Hu W R, et al. The effect of natural fractures on hydraulic fracturing propagation in coal seams[J]. Journal of Petroleum Science and Engineering, 2017, 150: 180-190.

[38] Moradian Z, Fathi A, Evans B. Shear Reactivation of Natural Fractures in Hydraulic Fracturing[J]. Arma, 2016, 829: 26-29.

[39] 周健, 陈勉, 金衍, 等. 压裂中天然裂缝剪切破坏机制研究[J]. 岩石力学与工程学报, 2008, 27 (S1): 2637-2641.

[40] Nolte K G. A General Analysis of Fracturing Pressure Decline With Application to Three Models[J]. SPE Formation Evaluation, 1986, (6): 571-583.

[41] Detournay E. A Poroelastic PKN Hydraulic Fracture Model Based on an Explicit Moving Mesh Algorithm[J]. Journal of Energy Resources Technology, 1990, 112(4): 224-230.

[42] Ababou R, Wood E F. Comment on “Effective Groundwater Model Parameter Values: Influence of Spatial Variability of Hydraulic Conductivity, Leakance, and Recharge” by J. J. Gómez-Hernández and S. M. Gorelick[J]. Water Resources Research, 1990, 26: 1843-1846.

[43] Wiest D, Roger J M. Hydraulic model study of nonsteady flow to multiaquifer wells[J]. Journal of Geophysical Research, 1966, 71(20): 4799-4810.

[44] Geertsma J. The Effect of Fluid Pressure Decline on Volumetric Changes of Porous Rocks[J]. Society of Petroleum Engineers, 1957, 210 (01): 331-340.

[45] Geertsma J. Problems of rock mechanics in petroleum production engineering[C]. Proc 1st Int Congr Rock Mechanics, 1966, 1: 585-594.

[46] Geertsma J. Land subsidence above compacting oil and gas reservoirs. J Petrol Tech, 1973, 25(06): 734-744.

[47] Geertsma J, Deklerk F. A rapid method of predicting width and extent of hydraulically induced fractures. J Petrol Tech, 1969, 21(12): 1571-1581.

[48] Sack R A. Extension of Griffith's theory of rupture to three dimensions[J]. Proceedings of the Physical Society, 1946, (6): 729-736.

[49] 彭剑文. 浅海沉积石英砂岩各向异性与I型断裂尺寸效应试验研究[D]. 北京: 北京科技大学, 2018.

[50] 张红亮. 断裂韧性判据Irwin准则与coulomb准则的内在联系[J]. 水运工程, 2009, (11): 52-54.

[51] Cartney L N M. Crack growth laws for a variety of viscoelastic solids using energy and COD fracture criteria[J]. International Journal of Fracture, 1979, 15(1): 31-40.

[52] Rice J R, Sorensen E P. Continuing crack-tip deformation and fracture for plane-strain crack growth in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1978, 26(3): 163-186.

[53] Li Q S, Xing H L, Liu J J, et al. A review on hydraulic fracturing of unconventional reservoir[J]. Petroleum, 2015, 1(1): 8-15.

[54] 卢义玉, 杨枫, 葛兆龙, 周哲, 林晓东. 清洁压裂液与水对煤层渗透率影响对比试验研究[J]. 煤炭学报, 2015, 40(01): 93-97.

[55] 刘勇. 煤矿井下导向压裂裂缝扩展及增透机理[D]. 重庆: 重庆大学, 2012.

[56] Fu X, Li G, Huang Z, et al. Experimental and numerical study of radial lateral fracturing for coalbed methane[J]. Journal of Geophysics & Engineering, 2015, 12(5): doi: 10.1088/1742-2132/12/5/875

[57] 张广清, 陈勉, 赵艳波. 新井定向射孔转向压裂裂缝起裂与延伸机理研究[J]. 石油学报, 2008, 29(1): 116-119.

[58] 姜浒, 陈勉, 张广清, 等. 定向射孔对水力裂缝起裂与延伸的影响[J]. 岩石力学与工程学报, 2009, 28(7): 1321-1326.

[59] 朱海燕, 邓金根, 刘书杰, 等. 定向射孔水力压裂起裂压力的预测模型[J]. 石油学报, 2013, 34(3): 556-562.

[60] Liu H, Yang T, Xu T, et al. A comparative study of hydraulic fracturing with various boreholes in coal seam[J]. Geosciences Journal, 2015, 19(3): 489-502.

[61] Cheng Y G, Lu Z H, Du X D, et al. A Crack Propagation Control Study of Directional Hydraulic Fracturing Based on Hydraulic Slotting and a Nonuniform Pore Pressure Field[J]. Hindawi Geofluids, 2020: doi: 10.1155/2020/8814352

[62] Zhai C, Li M, Sun C, et al. Guiding-controlling technology of coal seam hydraulic fracturing fractures extension[J]. International Journal of Mining Science and Technology, 2012, 22(6): 822-827.

[63] 李全贵, 翟成, 林柏泉, 等. 定向水力压裂技术研究与应用[J]. 西安科技大学学报, 2011, 31(6): 735-739.

[64] Bruno M S, Nakagawa F M. Pore pressure influence on tensile fracture propagation in sedimentary rock[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1991, 28(4): 261-273.

[65] 唐春安, 杨天鸿, 李连崇, 等. 孔隙水压力对岩石裂纹扩展影响的数值模拟[J]. 岩土力学, 2003(s2): 17-20.

[66] 卢义玉, 贾云中, 汤积仁, 等. 非均匀孔隙压力场导向水压裂纹扩展机制[J]. 东北大学学报(自然科学版). 2016, 37(7): 1028-1033.

[67] 宋晨鹏. 煤矿井下多孔联合压裂裂缝控制方法研究[D]. 重庆: 重庆大学, 2015.

[68] Song C, Lu Y, Tang H, et al. A method for hydrofracture propagation control based on non uniform pore pressure field[J]. Journal of Natural Gas Science and Engineering. 2016, 33: 287-295.

[69] 吕闰生, 彭苏萍, 徐延勇. 含瓦斯煤体渗透率与煤体结构关系的实验[J]. 重庆大学学报, 2012, 35(07): 114-118+132.

[70] 郝萌. 低渗煤层水力裂缝扩展演化特征及瓦斯渗流规律研究[D]. 西安: 西安科技大学, 2020.

[71] 李星. 径向钻孔水力压裂裂缝起裂与扩展机理研究[D]. 大庆: 东北石油大学, 2019.

[72] 赵兴龙. 压裂的孔隙压力梯度作用机制与扰动应力致裂效应研究[D]. 北京: 中国矿业大学, 2019.

中图分类号:

 TD712    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式