论文中文题名: | 结构瞬变激励下采场煤岩静态力学响应阶变特征分析 |
姓名: | |
学号: | 21201106045 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 080102 |
学科名称: | 工学 - 力学(可授工学、理学学位) - 固体力学 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿上压力与岩层控制 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-06-16 |
论文答辩日期: | 2024-05-30 |
论文外文题名: | Analysis of static mechanical response of coal and rock in stope under structural transient excitation |
论文中文关键词: | |
论文外文关键词: | overburden spatial structure transient ; Order change ; Static mechanical response |
论文中文摘要: |
随着我国煤炭开采逐渐向深部转移,采场煤岩的力学响应趋于复杂,冲击地压、矿震、煤与瓦斯突出等动力灾害频发,对煤炭安全高效开采构成严重威胁。明确采场煤岩的力学响应规律是实现围岩动力灾害精准防控的基础。煤岩力学响应的阶变是地下煤层开采中普遍存在的一种力学现象,且在深部矿井中,煤岩力学响应的阶变,使得原本就处于高应力状态下的岩体易发生瞬时失稳,严重威胁煤矿安全高效开采。因此,深入研究结构瞬变激励下采场煤岩的静态力学响应阶变特征,对实现煤矿安全开采与优质产能的提高具有重要的理论和工程意义。本文采用相似模拟实验、数值计算和理论分析相结合的研究手段,对结构瞬变激励下采场煤岩的静态力学响应阶变特征与机理进行分析与研究。结果表明: (1)工作面形成后,覆岩变形破坏,其破裂包络呈非规则残垣状,以覆岩破裂面为分界,破裂面内岩块堆砌铰接,形成覆岩块体结构,其对上覆未破坏岩层有一定的支撑作用,但作用有限;破裂面以外,采动影响范围内的未破坏岩层形成覆岩空间结构。覆岩空间结构是上覆岩层自重载荷大范围转移、传递的载体,是其影响范围内的采场煤岩产生不同力学响应的内因。 (2)坚硬岩层的破断具有瞬时性,并随工作面推进呈现周期性的破断演化特征。受此影响,覆岩空间结构的几何属性和内边界条件发生瞬变,并呈现出周期性的瞬变特征。覆岩空间结构瞬变导致采场煤岩力学响应的内因瞬变,进而引发采场煤岩动态力学响应的发生和静态力学响应的阶变。 (3)来压期间,采场煤岩产生了明显的动力学响应。工作面前方煤体的动力学响应呈现为较明显的衰减振动波形,这种动力学响应与对应位置处的静态应力阶变特征相关,并具有明显的区域性特征。静态应力阶变量越大,其加速度峰值越大,持续时间越长,而距离瞬变区域越远的位置,其动力学响应相对微弱。 (4)来压前、后,采场煤岩的静态力学响应产生阶变。采场煤岩的静态力学响应同样具有区域性,距离瞬变区域越远煤岩静态力学响应阶变量越小。采场不同层位煤岩的应力、位移、能量等静态力学响应的峰值和峰值位置产生变化,形成正、负阶变区。距离瞬变区域较远的高位坚硬岩层,其三个方向应力阶变量和应变能阶变量最小,垂直位移和重力势能阶变量最大,煤层上垂直应力阶变量最大,垂直位移和重力势能阶变量最小,低位坚硬岩层水平方向应力、切应力、应变能阶变量最大。 (5)基于覆岩空间结构瞬变特征,构建了一个系统动力学模型,得出结构瞬变期间采场煤岩体动载主要由震源区的振动与覆岩空间结构瞬变共同引起,动载所耗散的能量由震源区岩层应变能的释放和覆岩空间结构重力势能的释放共同构成。基于动静法,建立了一种结构瞬变过程中煤岩动-静载荷叠加的定量计算方法,来压期间,采场煤岩最大动载量约为其对应位置处静态应力阶变量的2倍,煤体瞬时最大支承压力峰值位置位于初始静载峰值的前方。 |
论文外文摘要: |
With the gradual shift of coal mining to the deep in China, the mechanical response of coal and rock in stope tends to be complicated, and dynamic disasters such as rock burst, mine earthquake, coal and gas outburst occur frequently, which pose a serious threat to the safe and efficient coal mining. It is the basis of disaster prevention and control of surrounding rock to make clear the mechanical response law of coal and rock in stope. The step change of mechanical response of coal and rock is a common mechanical phenomenon in underground coal seam mining, and in deep mine, the step change of mechanical response of coal and rock makes the rock mass which is originally in a state of high stress prone to instantaneous instability, posing a serious threat to the safe and efficient mining of coal mine. Therefore, it is of great theoretical and engineering significance to study the static mechanical response of coal and rock under structural transient excitation. In this paper, the characteristics and mechanism of static mechanical response of coal and rock under structural transient excitation are analyzed and studied by means of similar simulation experiment, numerical calculation and theoretical analysis. The results show that: (1) After the formation of the working face, the overlying rock deformation and failure, the rupture envelope of the overlying rock is irregular residual, with the overlying rock fracture surface as the boundary, the rock layers in the fracture surface are stacked and hinged, forming the overlying rock block structure, which has a certain supporting effect on the undamaged overlying rock, but the effect is limited; Outside the fracture surface, the undamaged rock strata within the mining influence area form the overlying rock spatial structure. The spatial structure of overlying rock is the carrier of the large-scale transfer and transmission of the self-weight load of overlying rock, which is the internal cause of the different mechanical responses of coal and rock in the mining area under its influence. (2) The breaking of hard rock strata is instantaneous and presents a periodic breaking evolution with the advance of the working face. Under the influence of this, the geometric properties and inner boundary conditions of the overburden spatial structure are transient and show periodic transient characteristics. The transient of overburden spatial structure leads to the internal transient of mechanical response of coal and rock in stope, which leads to the occurrence of dynamic mechanical response of coal and rock in stope and the step change of static mechanical response. (3) During compaction, the coal and rock in the stope produce obvious dynamic response. The dynamic response of the coal body in front of the working face presents a relatively obvious attenuation vibration waveform, which is related to the static stress step change characteristics at the corresponding position, and has obvious regional characteristics. The larger the static stress order variable, the larger the peak value of acceleration, the longer the duration, and the farther away from the transient region, the weaker the dynamic response. (4) The static mechanical response of coal and rock in the stope changes in steps before and after the mining. The static mechanical response of coal and rock in stope is also regional, and the farther away from the transient region, the smaller the static mechanical response order variable. The peak value and peak position of static mechanical response such as stress, displacement and energy of coal rock in different strata of stope change, and there are positive and negative order variation zones. For the upper hard rock strata far away from the transient region, the three direction stress and strain energy variables are the smallest, and the vertical displacement and gravitational potential energy variables are the largest. The variable of vertical stress level is the largest, and the variable of vertical displacement and gravity potential energy level is the smallest. The horizontal stress, shear stress and strain energy level of the low hard rock strata are the most variable. (5) Based on the transient characteristics of the overlying rock spatial structure, a system dynamic model is constructed, which verifies that the dynamic load of coal and rock mass in the mine during the structural transient is mainly caused by the vibration in the focal area and the transient of the overlying rock spatial structure, and the energy dissipated by the dynamic load is composed of the release of strain energy in the focal area and the release of gravitational potential energy in the overlying rock spatial structure. A quantitative calculation method for dynamic and static load superposition of coal and rock during structural transient is established. The maximum dynamic load of coal and rock in stope is about twice of the static stress order variable at its corresponding position, and the peak of instantaneous maximum abutment pressure on coal body is in front of the initial static load peak. |
参考文献: |
[1] 窦林名, 田鑫元, 曹安业, 等. 我国煤矿冲击地压防治现状与难题[J]. 煤炭学报, 2022, 47(01): 152-171. [2] 潘一山, 肖永惠, 罗浩, 等. 冲击地压矿井安全性研究[J]. 煤炭学报, 2023, 48(05) : 1846-1860. [3] 潘一山, 宋义敏, 刘军. 我国煤矿冲击地压防治的格局、变局和新局[J]. 岩石力学与工程学报, 2023, 42(09): 2081-2095. [4] 齐庆新, 马世志, 孙希奎, 等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报, 2023, 48(05): 1861-1874. [5] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院学报, 1985(03): 37-43. [6] 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005(16) : 2803-2813. [7] 王平, 姜福兴, 冯增强, 等. 高位厚硬顶板断裂与矿震预测的关系探讨[J]. 岩土工程学报, 2011, 33(04): 618-623. [8] 潘俊锋, 高家明, 闫耀东, 等. 煤矿冲击地压发生风险判别公式及应用[J]. 煤炭学报, 2023, 48(05) : 1957-1968. [9] 朱建波, 马斌文, 谢和平, 等. 煤矿矿震与冲击地压的区别与联系及矿震扰动诱冲初探[J]. 煤炭学报, 2022, 47(09) : 3396-3409. [10] 曹安业, 陈凡, 刘耀琪, 等. 冲击地压频发区矿震破裂机制与震源参量响应规律[J]. 煤炭学报, 2022, 47 (02) : 722-733. [11] 杜涛涛. 矿震震动传播与响应规律[J].岩土工程学报, 2018, 40(03) : 418-425. [12] 朱志洁, 王洪凯, 张宏伟, 等. 多层坚硬顶板综放开采矿压规律及控制技术研究[J]. 煤炭科学技术, 2017, 45(07): 1-6. [13] Petukhov. 煤矿冲击地压[M].北京:煤炭工业出版社,1980. [21] 李玉生. 冲击地压机理及其初步应用[J].中国矿业学院学报,1985(03):42-48. [22] 章梦涛, 徐曾和, 潘一山,等. 冲击地压和突出的统一失稳理论[J]. 煤炭学报, 1991(04): 48-53. [23] 齐庆新, 史元伟, 刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报, 1997(02): 34-38. [24] 李海涛,齐庆新,赵善坤, 等. 煤矿动力灾害广义“三因素”机理探讨[J]. 煤炭科学技术, 2021, 49(06): 42-52. [25] 窦林名, 陆菜平, 牟宗龙, 等. 冲击矿压的强度弱化减冲理论及其应用[J]. 煤炭学报, 2005(06): 690-694. [26] 潘俊锋, 宁宇, 毛德兵, 等. 煤矿开采冲击地压启动理论[J]. 岩石力学与工程学报, 2012, 31(03): 586-596. [27] 潘俊锋. 煤矿冲击地压启动理论及其成套技术体系研究[J]. 煤炭学报, 2019, 44(01): 173-182 [28] 潘一山. 煤矿冲击地压扰动响应失稳理论及应用[J]. 煤炭学报, 2018, 43(08): 2091-2098. [29] 何江, 窦林名, 蔡武, 等.薄煤层动静组合诱发冲击地压的机制[J]. 煤炭学报, 2014, 39(11): 2177-2182. [30] 窦林名, 何江, 曹安业等. 煤矿冲击矿压动静载叠加原理及其防治[J]. 煤炭学报, 2015, 40(07): 1469-1476. [31] 曹安业, 窦林名. 采场顶板破断型震源机制及其分析[J]. 岩石力学与工程学报, 2008, No.207(S2): 3833-3839. [32] 曹安业, 范军, 牟宗龙, 等. 矿震动载对围岩的冲击破坏效应[J]. 煤炭学报, 2010, 35(12): 2006-2010. [33] 姜福兴, 冯宇, KOUAME K J A, 等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报, 2015, 37(10): 1762-1768. [34] 李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, No.200(07): 1387-1395. [35] 左宇军, 马春德, 朱万成, 等. 动力扰动下深部开挖洞室围岩分层断裂破坏机制模型试验研究[J]. 岩土力学, 2011, 32(10): 2929-2936. [36] 左宇军, 李夕兵, 张义平. 动、静组合加载下岩石的破坏特性[M]. 北京: 冶金工业出版社, 2008. [37] 刘少虹, 毛德兵, 齐庆新 ,等. 动静加载下组合煤岩的应力波传播机制与能量耗散[J]. 煤炭学报, 2014, 39(S1): 15-22. [38] 刘少虹. 动静加载下组合煤岩破坏失稳的突变模型和混沌机制[J]. 煤炭学报, 2014, 39(2): 292-300. [39] 苗小虎, 姜福兴, 王存文, 等. 微地震监测揭示的矿震诱发冲击地压机理研究[J] 岩土工程学报, 2011, 33(6): 971-976. [40] 张晓春, 卢爱红, 王军强. 动力扰动导致巷道围岩层裂结构及冲击矿压的数值模拟[J]. 岩石力学与工程学报, 2006, 25(S1): 3110-3114. [41] 卢爱红, 郁时炼, 秦昊, 等. 应力波作用下巷道围岩层裂结构的稳定性研究[J]. 中国矿业大学学报, 2008, 37(6): 769-774. [42] 宋振骐. 实用矿山压力控制[M].徐州: 中国矿业大学出版社, 1988: 85-106. [43] 钱鸣高, 许家林, 王家臣. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2021. [44] 吴健, 陆明心, 张勇, 等. 综放工作面围岩应力分布的试验研究[J]. 岩石力学与工程学报, 2002, 21(S2): 2356-2359. [45] 朱德仁, 蒋金泉, 钱鸣高. 长壁工作面基本顶破断的计算机模拟[J]. 中国矿业学院学报, 1987(03): 1-9. [46] 刘学生, 谭云亮, 宁建国, 等. 采动支承压力引起应变型冲击地压能量判据研究[J]. 岩土力学, 2016, 37(10): 2929-2936. [47] 姜福兴. 采场覆岩空间结构观点及其应用研究[J]. 采矿与安全工程学报, 2006, (01): 30-33. [48] 姜福兴, 刘懿, 张益超, 等. 采场覆岩的“载荷三带”结构模型及其在防冲领域的应用[J].岩石力学与工程学报, 2016, 35(12): 2398-2408. [49] 许家林, 鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报, 2011, 30(08): 1547-1556. [50] 汪锋, 许家林, 陈绍杰, 等. 松散层拱结构模型及其对覆岩运动的影响[J]. 采矿与安全工程学报, 2019, 36(03): 497-504+512. [51] 于 斌, 高 瑞, 孟祥斌, 等. 大空间远近场结构失稳矿压作用与控制技术[J]. 岩石力学与工程学报, 2018, 37(05): 1134–1145. [52] 张宏伟, 付兴, 于斌, 等. 特厚煤层坚硬覆岩柱壳结构特征模型及应用[J]. 中国矿业大学学报, 2017, 46(06): 1226-1230. [53] 于斌, 匡铁军, 杨敬轩等. 特厚煤层开采坚硬顶板覆岩结构及其演化特征分析[J]. 煤炭科学技术, 2023, 51(01): 95-104. [54] 冯军发, 周英, 李回贵, 等. 试论近水平煤层采场的3种基本结构形式[J]. 煤炭学报, 2016, 41(10): 2576-2587. [55] 冯军发, 周英, 张开智等. 浅埋近距离多煤层采空区下厚关键层破断特征及支架工作阻力确定[J]. 采矿与安全工程学报, 2018, 35(02): 332-338. [56] 李志华, 杨科, 华心祝, 等. 采场覆岩“宏观-大-小”结构及其失稳致灾机理[J]. 煤炭学报,2020,45(S2):541-550. [57] 杜晓丽. 采矿岩石压力拱演化规律及其应用的研究[D]. 徐州: 中国矿业大学,2011. [58] 曹君林, 张军, 马浩. 大倾角煤层组合覆岩结构力学特征及失稳判据研究[J]. 煤炭技术, 2018, 37(06): 103-105. [59] 窦林名, 贺虎. 煤矿覆岩空间结构OX-F-T演化规律研究[J]. 岩石力学与工程学报, 2012, 31(03): 453-460. [60] 冯飞胜. 综放采场“O-S”型覆岩结构转化及应用研究[D]. 淮南: 安徽理工大学, 2015. [61] 武泉林. 高位硬厚岩层下采场覆岩运动规律及采动应力演化规律[J]. 中国煤炭, 2017, 43(02): 38-43. [62] 陈学华. 构造应力型冲击地压发生条件研究[D]. 阜新: 辽宁工程技术大学, 2004. [63] 陈学华, 张振华. 济三煤矿岩体应力状态对冲击地压影响[J]. 辽宁工程技术大学学报: 自然科学版, 2016(05): 456-459. [64] 何团, 黄志增, 李春睿, 等. 特厚煤层综放工作面侧向煤体应力时空演化特征[J]. 采矿与安全工程学报, 2018, 35(01): 100-105. [65] 何团. 特厚煤层综放开采巷道沿空侧覆岩结构与煤柱稳定性研究[D]. 北京: 煤炭科学研究总院, 2017. [66] 朱志洁, 张宏伟, 兰天伟, 等. 重叠煤柱作用下综放采场围岩应力演化规律研究[J]. 煤炭科学技术, 2017, 45(03): 26-31. |
中图分类号: | TD323 |
开放日期: | 2024-06-17 |