论文中文题名: |
碳纳米管/双金属硫化物复合材料的制备及其对储锂性能提升研究
|
姓名: |
丁云云
|
学号: |
19213211038
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085216
|
学科名称: |
工学 - 工程 - 化学工程
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
化学与化工学院
|
专业: |
化学工程
|
研究方向: |
储能材料合成
|
第一导师姓名: |
蔡江涛
|
第一导师单位: |
西安科技大学化学与化工学院
|
论文提交日期: |
2022-06-26
|
论文答辩日期: |
2022-06-05
|
论文外文题名: |
The Synthesis and Improved Lithium Storage Properties of Carbon Nanotubes/Bimetallic Sulfides
|
论文中文关键词: |
碳纳米管 ; 双金属硫化物 ; 聚多巴胺 ; 负极材料 ; 储锂性能
|
论文外文关键词: |
Bimetallic Sulfide ; Polydopamine ; Anode Material ; ; Lithium Ion Battery ; Lithium Storage Performance
|
论文中文摘要: |
︿
当前日益增长的能源需求与不可再生化石能源枯竭的矛盾日益加剧,而新能源能平稳利用则亟需大量的储能器件。锂离子电池由于较高能量密度而广泛用于解决新能源转换和储存问题。本文针对高性能锂离子电池负极材料进行开发研究。由于过渡金属硫化物具有比石墨高得多的理论比容量,近年来受到广大科研者的极大关注。其中,双金属硫化物与单一金属硫化物相比,可以生成更多的氧化还原位活性位点,但存在导电性与结构稳定性差的问题而制约了其发展。构建过渡金属硫化物与碳纳米管(CNTs)的包覆结构,可协同发挥两者的效应,以获得综合电化学性能优良的复合电极材料。本文通过水热法合成了两种不同的CNTs/双金属硫化物复合材料,以期制备出具有高比电容、高倍率性能、长循环寿命的锂离子电池负极材料,探究了所得材料结构与储锂性能之间的构效关系及调控机制。主要工作如下:
(1) 以CNTs为骨架,通过多巴胺的原位聚合制备了CNTs@PDA(聚多巴胺),然后通过水热法在其上原位沉积CoMoS4而获得了比表面积为148.9 m2/g、CoMoS4含量占比为64.23%的CNTs@PDA/CoMoS4复合材料。以CNTs@PDA/CoMoS4作为锂离子电池负极材料,在0.1 A/g时循环100圈后其放电比容量仍能保持在1025.2 mAh/g,并且在1 A/g下进行200次充放电循环后仍具有490.3 mAh/g的可逆容量。此外,储锂性能研究表明CNTs@PDA/CoMoS4电极的电容贡献为57.8%以上。良好的电化学性能得益于PDA通过羟基增强了CoMoS4纳米颗粒在CNTs上的的紧密沉积,而CNTs有效地降低了具有高活性位点的CoMoS4纳米粒子团聚问题,实现了CoMoS4纳米颗粒均匀地生长在CNTs@PDA表面。此外,CNTs的高导电性可以促进Li+的扩散,有效提高离子传输效率,且CNTs的骨架稳定性有效缓解了复合材料的体积膨胀效应。
(2) 以CNTs为碳基底材料,先构筑出CNTs@PDA,然后通过水热反应将FeCo2S4纳米粒子附着沉积在其上,最后通过碳化处理制备出了比表面积为75.3 m2/g、FeCo2S4含量占比为55.5%的CNTs@NC/FeCo2S4复合材料。所获得的复合材料充放电循环稳定性以及倍率性能得到明显的提升,在电流密度为0.1 A/g下进行80次充放电循环,CNTs@NC/FeCo2S4活性电极仍然具有884.6 mAh/g的放电比容量。且在大的电流密度2 A/g下进行300次循环后,复合材料电极仍能提供481.6 mAh/g的比容量。储锂动力学研究表明CNTs@NC/FeCo2S4储能主要由电容过程贡献。CNTs@NC/FeCo2S4电极表现出良好的储能容量、循环稳定性和倍率性能,归因于PDA起着促进双金属硫化物FeCo2S4与CNTs之间紧密均匀包覆的桥梁作用;且将PDA进一步碳化成电导率更高的炭层,既大大降低了活性物质在锂离子嵌入与脱出过程中的体积变化问题,又提升了三元复合材料CNTs@NC/FeCo2S4的导电性能。
﹀
|
论文外文摘要: |
︿
At present, the contradiction between the increasing energy demand and the exhaustion of non-renewable fossil energy is intensifying, and a large number of energy storage devices are urgently needed for the stable utilization of new energy. Lithium-ion batteries are widely used to solve new energy conversion and storage problems due to their higher energy density. In this paper, the development and research of high-performance lithium-ion battery anode materials are carried out. Transition metal sulfides have received great attention from researchers in recent years due to their much higher theoretical specific capacity than graphite. Among them, bimetallic sulfides can generate more redox active sites than single metal sulfides, but the problems of poor electrical conductivity and structural stability restrict their development. Constructing the coating structure of transition metal sulfides and carbon nanotubes (CNTs) can synergistically exert their effects to obtain composite electrode materials with excellent comprehensive electrochemical performance. In this paper, two different CNTs/bimetallic sulfide composites were synthesized by hydrothermal method to prepare lithium-ion battery anode materials with high specific capacitance, high rate performance and long cycle life.
(1) CNTs@PDA (polydopamine) was prepared by in-situ polymerization of dopamine with CNTs as skeleton, and then CoMoS4 was in-situ deposited on it by hydrothermal method to obtain the CNTs@PDA/CoMoS4 composite that specific surface area achieved 148.9 m2/g and the content of CoMoS4 accounted for 64.2%. As the anode material for Li-ion batteries, the discharge specific capacity of CNTs@PDA/CoMoS4 can still be maintained at 1025.2 mAh/g after 100 cycles at 0.1 A/g. And it still has a reversible capacity of 490.3 mAh/g after 200 charge-discharge cycles at 1 A/g. In addition, the lithium storage performance study shows that the capacitance contribution of CNTs@PDA/CoMoS4 electrode is more than 57.8%. The good electrochemical performance is attributed to the enhanced compact deposition of CoMoS4 nanoparticles on PDA through hydroxyl groups. In this encapsulated ternary material, CNTs effectively reduce the agglomeration problem of CoMoS4 nanoparticles with high active sites, and realize the uniform growth of CoMoS4 nanoparticles on the surface of CNTs@PDA. In addition, the high conductivity of CNTs can promote the diffusion of Li+ and effectively improve the ion transport efficiency, and the framework stability of CNTs can effectively alleviate the volume expansion effect of the composites.
(2) CNTs@PDA was first constructed with CNTs as carbon base material, and then FeCo2S4 nanoparticles were attached and deposited on it through hydrothermal reaction. Finally, the CNTs@NC/FeCo2S4 composite that specific surface area of 75.3 m2/g and FeCo2S4 content of 55.5% were prepared by carbonization treatment. The charge-discharge cycle stability and rate performance of the obtained composites were significantly improved. The CNTs@NC/FeCo2S4 electrode still had a high rate of 884.6 mAh/g after 80 charge-discharge cycles at 0.1 A/g. And after 300 cycles at a high current density of 2 A/g, the composite electrode can still provide a specific capacity of 481.6 mAh/g. The studies of Li-storage kinetics show that the energy storage of CNTs@NC/FeCo2S4 is mainly contributed by capacitive processes. The reason for the good electrochemical performance of the CNTs@NC/FeCo2S4 electrode may be that PDA acts as a bridge to promote the tight and uniform coating between the FeCo2S4 and CNTs. The subsequent carbonization process further strengthens the stability of this coating structure, and further carbonizes the PDA into a carbon layer with higher conductivity, which not only greatly reduced the volume change of the active material during the intercalation and deintercalation of Li+, but also improved the electrical conductivity of the ternary composite CNTs@NC/FeCo2S4, and the cycle stability and rate performance of the composite were significantly improved.
﹀
|
参考文献: |
︿
[1] Gaurav A, Tarascon J M. Fundamental understanding and practical challenges of anionicredox activity in Li-ion batteries [J]. Nature Energy, 2018, 3(5):373-386. [2] Hu H, Li Q, Li L, et al. Laser irradiation of electrode materials for energy storage and conversion[J]. Matter, 2020, 3(1):95–126. [3] Zhang X, Cheng X, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. J. Energy Chem, 2016, 25(6):967–984. [4] Yu L, Zhou X, Lu L, et al. Recent developments of nanomaterials and nanostructures for high-rate lithium ion batteries [J]. ChemSusChem, 2020, 13(20):5361-5407. [5] Wang J, Zhao S, Xian X. Co9S8@partly-graphitized carbon composites obtained through catalytic graphitization strategy as anode materials for lithium-ions batteries[J]. J. Electroanal. Chem, 2021, 897(15):115569. [6] Wang L, Fu Y, Battaglia V S, et al. SBR–PVDF based binder for the application of SLMP in graphite anodes [J]. Rsc Advances, 2013, 3(35):15022-15027. [7] Gao X, li G, xu y, et al. TiO2 Microboxes with controlled internal porosity for high performance lithium storage [J]. Angewandte Chemie International Edition, 2012, 54(48):14334-14335. [8] 彭博, 陈梓钧, 唐雁煌, 等. 石墨烯制备与改性的研究进展[J]. 塑料科技, 2020, 48(343):124-139. [9] Liu R, Duay J, Lee S. Heterogeneous nanostructured electrode materials for electrochemical energy storage[J]. Chem Commun, 2011, 47:1384-1404. [10] Itahara H, Seo W S, Lee S, et al. The formation mechanism of a textured ceramic of thermoelectric [Ca2CoO3]0.62[CoO2] on β-Co(OH)2 templates through in situ topotactic conversion[J]. Journal of the American Chemical Society, 2005, 127(17):6367-6373. [11] Lim S, Kim J H, Yamada Y, et al. Improvement of rate capability by graphite Foam anode for Li secondary batteries[J]. Journal of Power Sources, 2017, 355(1): 164-170. [12] Park M S, Lee J, Lee J W, et al. Tuning the surface chemistry of natural graphite anode by H3PO4 and H3BO3 treatments for improving electrochemical and thermal properties[J]. Carbon, 2013, 62: 278-287. [13] Yi T F, Liu H, Zhu Y R, et al. Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution[J]. Journal of Power Sources, 2012, 215(1): 258-265. [14] Wang Q, Jiao L, Han Y, et al. CoS2 Hollow Spheres: Fabrication and their application in lithium-ion batteries[J]. Journal of Physical Chemistry C, 2011, 115(16):8300-8304. [15] Hu Z, Liu Q, Sun W, et al. MoS2 with an intercalation reaction as a long-life anode material for lithium ion batteries[J]. Inorganic Chemistry Frontiers, 2016, 3:532-535. [16] Zhang G, Feng H, Ma C, et al. MoS2 Nanotubes via ionic-liquid-assisted assembly of MoS2 nanosheets for lithium storage[J]. ACS Appl. Nano Mater, 2021, 4(4): 3397–3405. [17] Yoder T S, Tussing M, Cloud J E, et al. Resilient carbon encapsulation of iron pyrite (FeS2) cathodes in lithium ion batteries[J]. Journal of Power Sources, 2015, 274(15):685-692. [18] Xu Q T, Li J C, Xue H G, et al. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries[J]. Journal of Power Sources, 2018, 396(31):675-682. [19] 李宝华, 李开喜, 吕永根,等. 改性石墨用于锂离子电池负极[J]. 炭素科技, 2003,013(004):13-18. [20] 吴宇平, 方世壁, 江英彦,等. 锂离子二次电池碳负极材料的改性[J]. 物理化学报, 1999, (02):133-137 [21] Winter M, Besenhard J Q, Spahr M E, et al. Insertion electrode materials for rechargeable lithium batteries [J]. Advanced Materials, 1998, 10(10):725-763. [22] Xu Z L, Liu X, Luo Y, et al. Nanosilicon anodes for high performance rechargeable batteries [J]. Progress in Materials Science, 2017, 90: 1-44. [23] 方锐. 锂离子电池用硅基负极材料研究进展[J]. 炭素技术,2021, 40(02): 1-5. [24] Vaulin D D, Hentz O D, Chen S, et al. Formation of sns nanoflowers for lithiumion batteries [J]. Chemical Communications, 2012, 48(45):5608-5610. [25] Xu X, Liu W, Kim Y, et al. Nanostructured transition metal sulfides for lithium ion batteries: Progress and challenges[J]. Nanotoday, 2014, 9 (5): 604-630. [26] Yan J M, Huang H Z, Zhang J, et al. A study of novel anode material CoS2 for lithium ion battery[J]. Journal of Power Sources, 2005, 146:264-269. [27] Kalimuldina G, Taniguchi L. Electrochemical properties of stoichiometric CuS coated on carbon fiber paper and Cu foil current collectors as cathode material for lithium batteries[J]. Journal of Materials Chemistry A, 2017, 5 (2017): 6937-6946. [28] Zhang S S, Tran D T. Electrochemical verification of the redox mechanism of FeS2 in a rechargeable lithium battery[J]. Electrochimica Acta, 2015, 176 (10):784-789. [29] Sen U K, Johari P, Basu S, et al. An experimental and computational study to understand the lithium storage mechanism in molybdenum disulfide[J]. Nanoscale, 2014, 6: 10243-10254. [30] Yu C, Wang Y, Zhang J, et al. One-step electrodeposition of Co0.12Ni1.88S2@Co8S9 nanoparticles on highly conductive TiO2 nanotube arrays for battery-type electrodes with enhanced energy storage performance[J]. Journal of Power Sources, 2017, 364 (1):400-409. [31] Xiao Y, Hwang J Y, Belharouak L, et al. Superior Li/Na-storage capability of a carbon-free hierarchical CoSx hollow nanostructure [J]. Nano Energy, 2017, 32:320-328. [32] Zhou H, Lv Z, Liu H, et al. Self-assembled hierarchical hollow CuS@MoS2 microcubes with superior lithium storage[J]. Electrochimica Acta, 2017, 250 (1):376-383. [33] Xie D, Xia X, Tang W, et al. Novel carbon channels from loofah sponge for construction of metal sulfide/carbon composites with robust electrochemical energy storage[J]. Journal of Materials Chemistry A, 2017, 5:7578-7585. [34] Lee S Y, Park K Y, Kim W S, et al. Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis[J]. Nano Energy, 2016, 19:234-245. [35] Ranganath S B, Hassan A S, Ramachandran B R, et al. Role of metal-lithium oxide interfaces in the extra lithium capacity of metal oxide lithium-ion battery anode materials[J]. Journal of The Electrochemical Society, 2016, 163:A2172-A2178. [36] Rezvani S J, Gunnella R, Witkowska A, et al. Is the solid electrolyte interphase an extra-charge reservoir in Li-ion batteries [J]. ACS Appl Mater Interfaces, 2017, 9(5):4570-4576. [37] Yuan L, Qiu X, Chen L, et al. New insight into the discharge process of sulfur cathode by electrochemical impedance spectroscopy [J]. Journal of Power Sources, 2009, 189(1):127-132. [38] Ding S, Zhang D, Chen J S, et al. Facile synthesis of hierarchical MoS2 microspheres composed of few-layered nanosheets and their lithium storage properties [J]. Nanoscale, 2012, 4:95-98. [39] Wan Z, Shao J, Yun J, et al. Core–shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries [J]. Small, 2014, 10 (23):4975–4981. [40] Idris N H, Rahman M M, Chou S L, et al. Rapid synthesis of binary α-NiS–β-NiS by microwave autoclave for rechargeable lithium batteries [J]. Electrochimica Acta, 2011, 58 (30) :456-462. [41] Youn D H, Jo C, Kim J Y, et al. Ultrafast synthesis of MoS2 or WS2-reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries [J]. Journal of Power Sources, 2015, 295:228-234. [42] Xiao S, Li X, Sun W, et al. General and facile synthesis of metal sulfide nanostructures: In situ microwave synthesis and application as binder-free cathode for Li-ion batteries [J]. Chemical Engineering Journal, 2016, 306 (15) 251-259. [43] Kalimuldina G, Taniguchi I. Electrochemical characterization of non-stoichiometric Cu2Sx cathode for lithium batteries [J]. Journal of Solid State Electrochemistry, 2017, 21:3057-3063. [44] Liu J, Fu A, Wang Y, et al. Spraying coagulation-assisted hydrothermal synthesis of MoS2/carbon/graphene composite microspheres for lithium-ion battery applications [J]. ChemElectroChem, 2017, 4(8):2027–2036. [45] Son M Y, Choi J H, Kang Y C. Electrochemical properties of bare nickel sulfide and nickel sulfide–carbon composites prepared by one-pot spray pyrolysis as anode materials for lithium secondary batteries [J]. Journal of Power Sources, 2014, 251:480-487. [46] Zhang L, Huang Y, Zhang Y, et al. Flexible electrospun carbon nanofiber@NiS core/sheath hybrid membranes as binder-free anodes for highly reversible lithium storage[J]. Advanced Materials Interfaces, 2016, (3)2: 1500467. [47] Verma R, Kothandaraman R, Varadaraju U V. In-situ carbon coated CuCo2S4 anode material for Li-ion battery applications[J]. Applied Surface Science, 2017, 418:30-39. [48] Yuan D, Huang G, Yin D, et al. Metal-organic framework template synthesis of NiCo2S4@C encapsulated in hollow nitrogen-doped carbon cubes with enhanced electrochemical performance for lithium storage[J]. ACS Appl. Mater. Interfaces, 2017, 9(21):18178–18186. [49] Wu X, Li S, Wang B, et al. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as threedimensional binder-free integrated anodes for high-performance lithium-ion batteries [J]. Phys. Chem. Chem. Phys, 2016,18:4505-4512. [50] Jin R, Cui Y, Gao S, et al. CNTs@NC@CuCo2S4 nanocomposites: an advanced electrode for high performance lithium-ion batteries and supercapacitors [J]. Electrochimica Acta, 2018, 273(20):43-52. [51] Lin Z, Min Z, Chen W, et al. NiCo2S4/Carbon nanotube composites as anode material for lithium-Ion batteries [J]. Journal of Electronic Materials, 2019, 48:8138-8148. [52] Kong L, Liu Y, Huang H, et al. Interconnected CoS2/NC-CNTs network as highperformance anode materials for lithium-ion batteries [J]. Science China Materials, 2021, 64:820-829. [53] Zhu D, Zhang Q, Li X, et al. Structural and electronic properties of MO2/MS2 heterojunctions and potential application in lithium-ion batteries [J]. J. Phys. Chem. C, 2021, 125(8):4391–4396. [54] Rana M, Boaretto N, Mikhalchan A, et al. Composite fabrics of conformal MoS2 grown on CNT fibers: tough battery anodes without metals or binders [J]. ACS Appl. Energy Mater, 2021, 4(6):5668–5676. [55] Chen X, Wang P, Zhang Z, et al. Bi2S3–CoS@C core- shell structure derived from ZIF-67 as anodes for high performance lithium-ion batteries [J]. J. Alloys Compd, 2020, 844(5):156008. [56] Zhang X, Gao X, Li J, et al. In-situ synthesis of Fe7S8 nanocrystals decorated on N, S-codoped carbon nanotubes as anode material for high-performance lithium-ion batteries [J]. J. Colloid. Interface. Sci, 2020, 579(1):699–706. [57] Dong X, Deng Z P, Huo L H, et al. Large-scale synthesis of NiS@N and S co-doped carbon mesoporous tubule as high-performance anode for lithium-ion battery [J]. J. Alloys Compd, 2019, 788(5), 984–992. [58] Li J, Ding Z, Li J, et al. Synergistic coupling of NiS1.03 nanoparticle with S-doped reduced graphene oxide for enhanced lithium and sodium storage [J]. Chem. Eng. J, 2021, 407(1):127199. [59] Yao L, Gu Q, Yu X. Three-dimensional MOFs@MXene aerogel composite derived MXene threaded hollow carbon confined CoS nanoparticles toward advanced alkali-ion batteries [J]. ACS Nano, 2021, 15(2):3228–3240. [60] Liao S Y, Cui T T, Zhang S Y, et al. Cross-nanoflower CoS2 in-situ self-assembled on rGO sheet as advanced anode for lithium/sodium ion battery [J]. Electro. Acta, 2019, 326(5):134992. [61] Zhou Z, Chen F, Jiang Z, et al. MoS2 nanosheets uniformly grown on polyphosphazene-derived carbon nanospheres for lithium-ion batteries [J]. Surf. Interfaces, 2021, 24:101034. [62] Jin Y, Lin Z, Chen H, et al. A nonpolar buffer layer on MoS2 surface to improve stability in lithium-ion battery [J]. Mater. Lett, 2021, 287(15):129228. [63] Wang M H, Guo S P. Highly uniform hollow CuCo2S4@C dodecahedra derived from ZIF–67 for high performance lithium–ion batteries [J]. J. Alloys Compd, 2020, 832(15):154978. [64] Yan M, Yao Y, Wen J, et al. Construction of a hierarchical NiCo2S4@PPy core-shell heterostructure nanotube array on Ni foam for a high-performance asymmetric supercapacitor [J]. ACS Appl. Mater. Interfaces, 2016, 8(37):24525–24535. [65] Chen H, Ma X, Shen P K. NiCo2S4 nanocores in-situ encapsulated in graphene sheets as anode materials for lithium-ion batteries [J]. Chem. Eng. J, 2019, 364(15):167–176. [66] Li D, Liu Z, Wang J, et al. Hierarchical trimetallic sulfide FeCo2S4-NiCo2S4 nanosheet arrays supported on a Ti mesh: An efficient 3D bifunctional electrocatalyst for full water splitting [J]. Electro. Acta, 2020, 340(20):135957. [67] Wang W, Li J, Jin Q, et al. Rational construction of sulfur-deficient NiCo2S4–X hollow microspheres as an effective polysulfide immobilizer toward Hhigh-performance lithium/sulfur batteries [J]. ACS Appl. Energy Mater, 2021, 4(2):1687–1695. [68] Xu J, Xu Y, Lai C, et al. Challenges and perspectives of covalent organic frameworks for advanced alkali-metal ion batteries [J]. Sci. China. Chem, 2021, 64(8):1267-1282. [69] Zhu Y, Zhao J, Chen J, et al. One‑step hydrothermal synthesis of amorphous CoMoS4/N‑rGO nanocomposites as anode materials with improved cyclability for sodium‑ion batteries [J]. J. Appl. Electrochem, 2020, 50:513–522. [70] Fan S, Liu H, Bi S, et al. Insight on the conversion reaction mechanism of NiCo2S4@CNTs as anode materials for lithium-ion batteries and sodium ion batteries [J]. Electrochimica Acta, 2021, 388(20):138618. [71] 陈沿宏, 徐一刚, 马强. 碳纳米管及其在锂离子电池中的应用探析[J].轻工科技, 2021, 37(01):37-38. [72] Liu J, Zhang P, Yu D, et al. Hierarchical Co2VO4 yolk-shell microspheres confined by N-doped carbon layer as anode for high-rate lithium-ion batteries [J]. J. Electroanal. Chem, 2021, 882(1):115027. [73] Zhou X, Gao X, Liu M, et al. Synthesis of 3D phosphorus doped graphene foam in carbon cloth to support V2O5/CoMoS4 hybrid for flexible all-solid-state asymmetry supercapacitors [J]. J. ower Sources, 2020, 453(31):227902. [74] Ma M, Zhang S, Wang L, et al. Harnessing the volume expansion of MoS3 anode by structure engineering to achieve high performance beyond lithium-based rechargeable batteries [J]. Advanced Materials, 2021, 33(45):2106232. [75] Ku J H, Ryu J H, Kim S H, et al. Reversible lithium storage with high mobility at structural defects in amorphous molybdenum dioxide electrode [J]. Adv. Funct. Mater, 2012, 22(17):658−3664. [76] Zhu K, Wang X, Liu J, et al. Novel amorphous MoS2/MoO3/nitrogen-doped carbon composite with excellent electrochemical performance for lithium ion batteries and sodium ion batteries [J]. ACS Sustainable Chem. Eng, 2017, 5(9):8025–8034. [77] Ette P M, Chithambararaj A, Prakash A S, et al. MoS2 nanoflower-derived interconnected CoMoO4 nanoarchitectures as a stable and high rate performing anode for lithium-ion battery applications [J]. ACS Appl. Mater. Interfaces. 2020, 12(10):11511–11521. [78] Kadam S R, Late D J, Panmand R P, et al. Nanostructured 2D MoS2 honeycomb and hierarchical 3D CdMoS4 marigold nanoflowers for hydrogen production under solar light [J]. J. Mater. Chem. A, 2015, 3:21233-21243. [79] Kumar D R, Manoj D, Santhanalakshmi J. Optimization of site specific adsorption of oleylamine capped CuO nanoparticles on MWCNT for electrochemical determination of guanosine [J]. Sens Actuators B, 2013, 188:603-612. [80] Xu X, Song Y, Xue R, et al. Amorphous CoMoS4 for a valuable energy storage material candidate [J]. Chem. Eng. J. 2016, 301(1):266–275. [81] Zhang Z, Huang Y, Gao X, et al. Rational design of hierarchically structured CoS2@NCNTs from metal–organic frameworks for efficient lithium/sodium storage performance [J]. ACS Appl. Energy Mater. 2020, 3(7):6205–6214. [82] Zhao S, Zha Z, Liu X, et al. Core–shell structured MoO3@MoS2 composite for high-performance lithium-ion battery anodes [J]. Energy & Fuels, 2020, 34(9):11498–11507. [83] Zhao X, Liu Z, Xiao W, et al. Low crystalline MoS2 nanotubes from MoS2 nanomasks for lithium-ion battery applications [J]. ACS Appl. Nano Mater, 2020, 3(8):7580–7586. [84] Wang J, Cui Y, Wang D. Design of hollow nanostrutures for energy storage, conversion and production [J]. Adv. Mater, 2018, 31(38):1801993. [85] Miao J, Cai D, Si J, et al. Multi-component hierarchical hollow Co–Mo–O nanocages anchored on reduced graphene oxide with strong interfacial interaction for lithium-ion batteries [J]. J. Alloys Compd, 2020, 828(5):154379. [86] Liu H, Dong Y, Liu L. A facile polymer-pyrolysis preparation of submicrometer CoMoO4 as an electrode of lithium-ion batteries and supercapacitors [J]. Ceram. Int, 2021, 47(9):11840–11847. [87] Guo J, Zheng X, Shi Y, et al. Low-Cost and high-performance CoMoS4 and NiMoS4 counter electrodes for dye-sensitized solar cells [J]. Chem. Commun, 2013, 49:9645–9647. [88] Zhao Y, Dong W, Riaz M S, et al. "Electron-Sharing" mechanism promotes Co@Co3O4/CNTs composite as the high-capacity anode material of lithium-ion battery [J]. ACS Appl Mater Interfaces, 2018, 10(5):43641–43649. [89] Park H, Kim K, Jeong K, et al. Integrated porous cobalt oxide/cobalt anode with micro- and nano-pores for lithium-ion battery [J]. Appl. Surf. Sci, 2020, 525(30):146592. [90] Zhang P, Cao M, Feng Y, et al. Uniformly growing Co9S8 nanoparticles on flexible carbon foam as a free-standing anode for lithium-ion storage devices [J]. Carbon, 2021, 182, 404–412. [91] Nie L, Wang H, Chai Y, et al. In situ formation of flower-like CuCo2S4 nanosheets/graphene composites with enhanced lithium storage properties [J]. RSC Adv, 2016, 6:38321–38327. [92] Wu X, Li S, Wang B, et al. NiCo2S4 nanotube arrays grown on flexible nitrogen-doped carbon foams as three-dimensional binder-free integrated anodes for high-performance lithium-ion batteries [J]. Phys. Chem. Chem. Phys, 2016, 18:4505–4512. [93] Wang M, Yang J, Liu S, et al. Nitrogen-doped hierarchically porous carbon nanosheets derived from polymer/graphene oxide hydrogels for high-performance supercapacitors [J]. J. Colloid Interface Sci. 2020, 560:69-76. [94] Chen L, Zhao Y, Liu S, et al. Hard carbon wrapped Na3V2(PO4)3@C porous composite extending cycling lifespan for sodium-ion batteries [J]. ACS Appl. Mater. Interfaces, 2017, 9(51):44485-44493. [95] Yang C, Yu S, Lin C, Lv F, et al. Cr0.5Nb24.5O62 Nanowires with high electronic conductivity for high-rate and long-life lithium-ion storage [J]. ACS Nano, 2017, 11(4):4217-4224. [96] Halankar K K, Mandal B P, Nigam S, et al. Experimental and theoretical study on rGO-decorated Mo2C composite as the anode material for lithium-ion batteries [J]. Energy & Fuels, 2021, 35(15):12556–12568. [97] Lou S, Cheng X, Zhao Y, et al. Superior performance of ordered macroporous TiNb2O7 anodes for lithium-ion batteries: Understanding from the structural and pseudocapacitive insights on achieving high-rate capability [J]. Nano Energy, 2017, 34, 15–25. [98] Mohamed S G, Chen C J, Chen C K, et al. High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes [J]. ACS Appl. Mater. Interfaces, 2014, 6(24), 22701–22708. [99] Yan S, Luo S, Feng J, et al. Rational design of flower-like FeCo2S4/reduced graphene oxide films: Novel binder-free electrodes with ultra-high conductivity flexible substrate for high-performance all-solid-state pseudocapacitor [J]. Chemical Engineering Journal, 2020, 381:122695. [100] Zhao J, Li Z, Yuan X, et al. A high-energy density asymmetric supercapacitor based on Fe2O3 nanoneedle arrays and NiCo2O4/Ni(OH)2 hybrid nanosheet arrays grown on sic nanowire networks as free-standing advanced electrodes [J]. Adv. Energy Mater, 2018, 8(12):1702787. [100] Deng C, Yang L, Yang C, et al. Spinel FeCo2S4 nanoflower arrays grown on Ni foam as novel binder-free electrodes for long-cycle-life supercapacitors [J]. Applied Surface Science, 2018, 428:148-153. [101] He X, Li R, Liu J, et al. Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors [J]. Chemical Engineering Journal, 2018, 334:1573-1583. [102] Tang S, Zhu B, Shi X, et al. General controlled sulfidation toward achieving novel nanosheet-built porous square-FeCo2S4-tube arrays for high-performance asymmetric all-solid-state pseudocapacitors [J]. Adv. Energy Mater, 2017, 7(6):1601985. [103] Gao H, Xiang J, Cao Y, et al. Controlled synthesis of MnO2 nanosheets vertically covered FeCo2O4 nanoflakes as a binder-free electrode for a high-power and durable asymmetric supercapacitor [J]. Nanotechnology, 2017, 28, 235401. [104] Li S, Wang B, Liu J, et al. In situ one-step synthesis of CoFe2O4/graphene nanocomposites as high-performance anode for lithium-ion batteries [J]. Electrochim. Acta, 2014, 129:33-39. [105] Mo Y, Ru Q, Song X, et al. The sucrose-assisted NiCo2O4@C composites with enhanced lithium-storage properties [J]. Carbon, 2016, 109:616-623. [106] Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium-ion batteries [J]. Energy Environ Sci, 2009, 2:638. [107] Xu X, Li L, Chen H, et al. Constructing heterostructured FeS2/CuS nanospheres as high-rate performance lithium-ion battery anodes [J]. Inorg. Chem. Front, 2020, 7:1900-1908. [108] Chen Z, Wu R, Liu M, et al. General synthesis of dual carbon-confined metal sulfides quantum dots toward high-performance anodes for sodium-ion batteries [J]. Adv. Funct. Mater, 2017, 27: 1702046. [109] Wu M H, Chen H Q, Lv L P, et al. Graphene quantum dots modification of yolk-shell Co3O4@CuO microspheres for boosted lithium storage performance [J]. Chemical Engineering Journal, 2019, 373:985-994.
﹀
|
中图分类号: |
TQ152
|
开放日期: |
2022-06-27
|