- 无标题文档
查看论文信息

论文中文题名:

 GNSS高精度全球电离层实时建模研究    

姓名:

 王容    

学号:

 20210061034    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0816    

学科名称:

 工学 - 测绘科学与技术    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 测绘科学与技术学院    

专业:

 测绘科学与技术    

研究方向:

 GNSS近地空间环境监测    

第一导师姓名:

 陈鹏    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-15    

论文答辩日期:

 2023-06-03    

论文外文题名:

 Research on High-precision Global Ionospheric Real-time Modeling Based on GNSS    

论文中文关键词:

 GNSS ; 深度学习 ; VTEC短期预报 ; 电离层实时建模    

论文外文关键词:

 Global Navigation Satellite System ; Deep Learning ; Vertical Total Electron Content Short-term Forecast ; Ionospheric Real-time Modeling    

论文中文摘要:

电离层是空间天气和日地空间环境的重要组成部分,不仅在跨电离层无线电传播中发挥着重要作用,而且对电信系统和卫星导航用户具有重要意义。现代社会越来越依赖于准确预测空间天气的影响,而实时监测电离层的电子分布及其不规则变化对于空间天气事件的预测和预警也至关重要。国际GNSS服务组织(International GNSS Service, IGS)实时性服务(Real-Time Service, RTS)的建立为GNSS全球电离层实时建模研究提供了重要契机,然而全球范围内可提供实时GNSS数据流的跟踪站的数量仍然较少,且分布不均匀,造成现有的全球电离层实时模型的精度和可靠性较低,无法满足精度需求。针对目前全球电离层实时模型精度和可靠性较低这一问题,本文构建了全球电离层垂直总电子含量(Vertical Total Electron Content, VTEC)短期预报模型作为全球的电离层实时建模过程中的数据补充,并在此基础上研究了基于GNSS实时VTEC观测值的数据附加策略,建立了GNSS高精度全球电离层实时模型,生成了更加稳定可靠的电离层实时产品。研究工作主要包括以下几个方面:

(1)首先基于经典的LSTM(Long Short-Term Memory)和ConvLSTM(Convolutional LSTM)深度学习方法构建了全球电离层VTEC短期预报模型,并分析了这两种经典方法在电离层VTEC短期预报中的优势与不足。然后在此基础上,基于这两种经典方法构建了LSTM+ConvLSTM电离层短期预报模型,并对这三种模型在不同地磁活动水平条件下的预报性能进行了评估。与LSTM和ConvLSTM单一模型相比,LSTM+ConvLSTM混合模型在磁暴期表现出更加优异的性能。

(2)与传统电离层实时产品直接将预报、快速或历史产品作为背景VTEC不同,本文在GNSS实时数据流的基础上,将全球电离层VTEC短期预报结果和欧洲定轨中心(Center for Orbit Determination in Europe, CODE)的快速电离层产品CORG一同作为全球电离层实时建模过程中的补充数据。研究了基于实时GNSS数据的实时全球电离层地图(Real-Time Global Ionosphere Maps, RT GIMs)的初步构建方法和短期预报VTEC以及CORG的虚拟数据附加策略,建立了基于实时数据流和虚拟附加数据的全球电离层实时模型,生成了最终的全球电离层RT GIMs产品。

(3)利用dSTEC检验、Jason系列卫星VTEC和与事后GIMs产品对比三种方式对本文生成的RT GIMs产品的精度进行了验证,并与其他各家电离层联合分析中心(Ionosphere Associate Analysis Centers, IAACs)的RT GIMs产品的精度进行了对比。结果表明,本文生成的XRTG产品的精度与CODE的事后产品CODG十分接近,优于其余的RT GIMs产品,且在强磁暴期的稳定性更强,性能更为优越。在海洋地区,XRTG的精度与CODG和西班牙加泰罗尼亚理工大学的实时产品UADG基本处于同一水平。与其他实时产品相比,XRTG与CODG更加接近,受磁暴的影响更小。

论文外文摘要:

The ionosphere is an important part of space weather and the solar-terrestrial space environment. It not only plays an important role in trans-ionospheric radio propagation, but also has great significance for telecommunication systems and satellite navigation users. Furthermore, modern society relies more and more on accurately predicting the impact of space weather, and real-time monitoring of the electron distribution and its irregular changes in the ionosphere is also crucial for predicting and warning space weather events. The establishment of the real-time service (RTS) of the International GNSS Service (IGS) provides an important opportunity for GNSS global ionospheric real-time modeling research. However, the number of tracking stations that can provide real-time GNSS data streams around the world is still small and unevenly distributed, resulting in the low precision and reliability of the existing global ionospheric real-time models, which cannot meet the precision requirements. Aiming at the low precision and reliability of the current global ionospheric real-time model, this paper constructs a global ionospheric vertical total electron content (VTEC) short-term forecast model as a data supplement for the global ionospheric real-time modeling process. On this basis, the data addition strategy based on GNSS real-time VTEC observations is studied, a GNSS high-precision global ionospheric real-time model is established, and a more stable and reliable ionospheric real-time product is generated. The research work mainly includes the following aspects:

(1) First, based on the classic Long Short-Term Memory (LSTM) and Convolutional LSTM (ConvLSTM) deep learning methods, a global ionospheric VTEC short-term forecast model is constructed, and the advantages and disadvantages of these two classic methods in ionospheric VTEC short-term forecasting are analyzed. Then, on this basis, the LSTM+ConvLSTM ionospheric short-term forecast model was constructed based on these two classical methods, and the forecast performance of these three models under different geomagnetic activity levels was evaluated. Compared with the single model of LSTM and ConvLSTM, the hybrid model of LSTM+ConvLSTM shows better performance during the geomagnetic storm period.

(2) Different from the traditional ionospheric real-time products that directly use forecast, rapid or historical products as the background VTEC, this paper uses the global ionospheric VTEC short-term forecast results and CODE's (Center for Orbit Determination in Europe) fast ionospheric product CORG as supplementary data in the global ionospheric real-time modeling process based on GNSS real-time data streams. The primary construction method of real-time global ionospheric maps (RT GIMs) based on real-time GNSS data and the virtual data appending strategy of short-term forecast VTEC and CORG were studied. A real-time model of the global ionosphere based on real-time data streams and virtual data was built, and the final global ionosphere RT GIMs product was generated.

(3) The precision of the RT GIMs products generated in this paper is verified by using the dSTEC test, Jason series satellite VTEC and comparison with post-processed GIMs products, and compared it with the accuracy of RT GIMs products of other Ionosphere Associate Analysis Centers (IAACs). The results show that the precision of the XRTG product generated in this paper is very close to CODE's post-processed product CODG, which is better than other RT GIMs products and has stronger stability and superior performance during strong geomagnetic storms. In the ocean area, the precision of XRTG is basically at the same level as that of CODG and the real-time product UADG of the Universitat Politècnica de Catalunya (UPC). Compared with other real-time products, XRTG is closer to CODG and less affected by geomagnetic storms.

参考文献:

[1] 任晓东. 多系统GNSS电离层TEC高精度建模及差分码偏差精确估计[D]. 武汉: 武汉大学, 2017.

[2] 陈军. 全球电离层实时建模方法研究[D]. 武汉: 武汉大学, 2021.

[3] Ren X, Yang P, Liu H, et al. Deep Learning for Global Ionospheric TEC Forecasting: Different Approaches and Validation[J]. Space Weather, 2022, 20(5): e2021SW003011.

[4] Shi S, Zhang K, Wu S, et al. An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short‐Term Memory Method[J]. Space Weather, 2022, 20(6): e2022SW003103.

[5] 李航. 卫星导航定位中电离层高阶项影响研究[D]. 武汉: 武汉大学, 2018.

[6] 陈鹏. GNSS电离层层析及震前电离层异常研究[D]. 武汉: 武汉大学, 2012.

[7] 刘航. 多源数据融合的全球电离层建模研究[D]. 西安: 西安科技大学, 2020.

[8] 刘丽霞. GNSS高精度全球电离层建模研究[D]. 西安: 西安科技大学, 2021.

[9] Roma-Dollase D, Hernández-Pajares M, Krankowski A, et al. Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle[J]. Journal of Geodesy, 2018, 92(6): 691-706.

[10] Li M, Yuan Y, Wang N, et al. Performance of various predicted GNSS global ionospheric maps relative to GPS and JASON TEC data[J]. GPS Solutions, 2018, 22(2): 1-11.

[11] Liu A, Wang N, Li Z, et al. Validation of CAS's final global ionospheric maps during different geomagnetic activities from 2015 to 2017[J]. Results in Physics, 2018, 10: 481-486.

[12] Zhang Q, Zhao Q. Global ionosphere mapping and differential code bias estimation during low and high solar activity periods with GIMAS software[J]. Remote Sensing, 2018, 10(5): 705.

[13] de Bakker P F, Tiberius C C J M. Real-time multi-GNSS single-frequency precise point positioning[J]. GPS Solutions, 2017, 21(4): 1791-1803.

[14] Shi C, Gu S, Lou Y, et al. An improved approach to model ionospheric delays for single-frequency precise point positioning[J]. Advances in Space Research, 2012, 49(12): 1698-1708.

[15] Knoop V L, De Bakker P F, Tiberius C C J M, et al. Lane determination with GPS precise point positioning[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2503-2513.

[16] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378.

[17] Cai C, Gong Y, Gao Y, et al. An approach to speed up single-frequency PPP convergence with quad-constellation GNSS and GIM[J]. Sensors, 2017, 17(6): 1302.

[18] 章红平, 韩文慧, 黄玲, 耿长江. 地基GNSS全球电离层延迟建模[J]. 武汉大学学报(信息科学版), 2012, 37(10): 1186-1189.

[19] 陈鹏, 陈家君. GPS/GLONASS融合的全球电离层格网模型结果分析[J]. 大地测量与地球动力学, 2014, 34(05): 70-74.

[20] 熊波, 万卫星, 宁百齐, 胡连欢, 丁锋, 赵必强, 李建勇. 基于北斗、GLONASS和GPS系统的中低纬电离层特性联合探测[J]. 地球物理学报, 2014, 57(11): 3586-3599.

[21] Zhang R, Song W, Yao Y, et al. Modeling regional ionospheric delay with ground-based BeiDou and GPS observations in China[J]. GPS Solutions, 2015, 19(4): 649-658.

[22] Ren X, Zhang X, Xie W, et al. Global ionospheric modelling using multi-GNSS: BeiDou, Galileo, GLONASS and GPS[J]. Scientific Reports, 2016, 6(1): 1-11.

[23] Hernández-Pajares M, Juan J M, Sanz J, et al. The IGS VTEC maps: a reliable source of ionospheric information since 1998[J]. Journal of Geodesy, 2009, 83(3): 263-275.

[24] 张强, 赵齐乐. 武汉大学IGS电离层分析中心全球电离层产品精度评估与分析[J]. 地球物理学报, 2019, 62(12): 4493-4505.

[25] Schaer S, Société helvétique des sciences naturelles. Commission géodésique. Mapping and predicting the Earth's ionosphere using the Global Positioning System[M]. Zürich, Switzerland: Institut für Geodäsie und Photogrammetrie, Eidg. Technische Hochschule Zürich, 1999.

[26] Feltens J. Development of a new three‐dimensional mathematical ionosphere model at European Space Agency/European Space Operations Centre[J]. Space Weather, 2007, 5(12): S12002.

[27] Ghoddousi‐Fard R, Héroux P, Danskin D, et al. Developing a GPS TEC mapping service over Canada[J]. Space Weather, 2011, 9(6): S06D11.

[28] Li Z, Yuan Y, Wang N, et al. SHPTS: towards a new method for generating precise global ionospheric TEC map based on spherical harmonic and generalized trigonometric series functions[J]. Journal of Geodesy, 2015, 89(4): 331-345.

[29] Wielgosz P, Milanowska B, Krypiak-Gregorczyk A, et al. Validation of GNSS-derived global ionosphere maps for different solar activity levels: case studies for years 2014 and 2018[J]. GPS Solutions, 2021, 25(3): 1-15.

[30] Ho C M, Wilson B D, Mannucci A J, et al. A comparative study of ionospheric TEC measurements and models with TOPEX[J]. Radio Science, 1997, 32(4): 1499-1512.

[31] Mannucci A J, Wilson B D, Yuan D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio science, 1998, 33(3): 565-582.

[32] Komjathy A, Sparks L, Wilson B D, et al. Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms[J]. Radio Science, 2005, 40(06): 1-11.

[33] Zhang H, Xu P, Han W, et al. Eliminating negative VTEC in global ionosphere maps using inequality-constrained least squares[J]. Advances in Space Research, 2013, 51(6): 988-1000.

[34] Lei J, Syndergaard S, Burns A G, et al. Comparison of COSMIC ionospheric measurements with ground-based observations and model predictions: Preliminary results[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A7): A07308.

[35] Todorova S, Hobiger T, Schuh H. Using the global navigation satellite system and satellite altimetry for combined global ionosphere maps[J]. Advances in Space Research, 2008, 42(4): 727-736.

[36] Dettmering D, Schmidt M, Heinkelmann R, et al. Combination of different space-geodetic observations for regional ionosphere modeling[J]. Journal of Geodesy, 2011, 85(12): 989-998.

[37] Alizadeh M M, Schuh H, Todorova S, et al. Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data[J]. Journal of Geodesy, 2011, 85(12): 975-987.

[38] Chen P, Yao W, Zhu X. Combination of ground-and space-based data to establish a global ionospheric grid model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 53(2): 1073-1081.

[39] 欧明, 甄卫民, 张时生, 赵庶凡, 於晓, 徐继生. 一种融合天地基多源数据的电离层反演方法[J]. 电波科学学报, 2016, 31(04): 713-719.

[40] Chen P, Yao Y, Yao W. Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS[J]. GPS Solutions, 2017, 21(2): 639-650.

[41] An X, Meng X, Jiang W, et al. Global ionosphere estimation based on data fusion from multisource: Multi‐GNSS, IRI model, and satellite altimetry[J]. Journal of Geophysical Research: Space Physics, 2019, 124(7): 6012-6028.

[42] Hu A, Li Z, Carter B, et al. Helmert-VCE-aided fast-WTLS approach for global ionospheric VTEC modelling using data from GNSS, satellite altimetry and radio occultation[J]. Journal of Geodesy, 2019, 93(6): 877-888.

[43] Cander L R, Leitinger R, Levy M F. Ionospheric models including the auroral environment[C]. Workshop on Space Weather, Report WPP-155, Noordwijk, The Netherlands, European Space Agency (ISSN 1022-6656). 1999: 135-142.

[44] Sojka J J, Rice D, Eccles V, et al. Polar topside ionosphere during geomagnetic storms: Comparison of ISIS-II with TDIM[J]. Radio Science, 2018, 53(7): 906-920.

[45] Codrescu M V, Negrea C, Fedrizzi M, et al. A real‐time run of the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model[J]. Space Weather, 2012, 10(2): S02001.

[46] Connor H K, Zesta E, Fedrizzi M, et al. Modeling the ionosphere-thermosphere response to a geomagnetic storm using physics-based magnetospheric energy input: OpenGGCM-CTIM results[J]. Journal of Space Weather and Space Climate, 2016, 6: A25.

[47] Ho C M, Wilson B D, Mannucci A J, et al. A comparative study of ionospheric total electron content measurements using global ionospheric maps of GPS, TOPEX radar, and the Bent model[J]. Radio Science, 1997, 32(4): 1499-1512.

[48] Klobuchar J A. Ionospheric time-delay algorithm for single-frequency GPS users[J]. IEEE Transactions on Aerospace and Electronic Systems, 1987 (3): 325-331.

[49] Bilitza D, Brown S A, Wang M Y, et al. Measurements and IRI model predictions during the recent solar minimum[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2012, 86: 99-106.

[50] Tariku Y A. Comparison of performance of the IRI 2016, IRI-Plas 2017, and NeQuick 2 models during different solar activity (2013–2018) years over South American sector[J]. Radio Science, 2020, 55(8): 1-17.

[51] Radicella S M. The NeQuick model genesis, uses and evolution[J]. Annals of Geophysics, 2009, 52(3-4): 417-422.

[52] Leong S K, Musa T A, Omar K, et al. Assessment of ionosphere models at Banting: Performance of IRI-2007, IRI-2012 and NeQuick 2 models during the ascending phase of Solar Cycle 24[J]. Advances in Space Research, 2015, 55(8): 1928-1940.

[53] Chen J, Ren X, Zhang X, et al. Assessment and validation of three ionospheric models (IRI‐2016, NeQuick2, and IGS‐GIM) from 2002 to 2018[J]. Space Weather, 2020, 18(6): e2019SW002422.

[54] Krankowski A, Kosek W, Baran L W, et al. Wavelet analysis and forecasting of VTEC obtained with GPS observations over European latitudes[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(12): 1147-1156.

[55] Badeke R, Borries C, Hoque M M, et al. Empirical forecast of quiet time ionospheric Total Electron Content maps over Europe[J]. Advances in Space Research, 2018, 61(12): 2881-2890.

[56] Chen P, Liu H, Ma Y. Empirical orthogonal function analysis and modeling of global ionospheric spherical harmonic coefficients[J]. GPS Solutions, 2020, 24(3): 1-17.

[57] Kaselimi M, Voulodimos A, Doulamis N, et al. Deep recurrent neural networks for ionospheric variations estimation using gnss measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-15.

[58] Lin X, Wang H, Zhang Q, et al. A Spatiotemporal Network Model for Global Ionospheric TEC Forecasting[J]. Remote Sensing, 2022, 14(7): 1717.

[59] Natras R, Soja B, Schmidt M. Ensemble Machine Learning of Random Forest, AdaBoost and XGBoost for Vertical Total Electron Content Forecasting[J]. Remote Sensing, 2022, 14(15): 3547.

[60] Ulukavak M. Deep learning for ionospheric TEC forecasting at mid-latitude stations in Turkey[J]. Acta Geophysica, 2021, 69(2): 589-606.

[61] Tang J, Li Y, Ding M, et al. An Ionospheric TEC Forecasting Model Based on a CNN-LSTM-Attention Mechanism Neural Network[J]. Remote Sensing, 2022, 14(10): 2433.

[62] Liu L, Zou S, Yao Y, et al. Forecasting global ionospheric TEC using deep learning approach[J]. Space Weather, 2020, 18(11): e2020SW002501.

[63] Lee S, Ji E Y, Moon Y J, et al. One‐Day Forecasting of Global TEC Using a Novel Deep Learning Model[J]. Space Weather, 2021, 19(1): 2020SW002600.

[64] Chen Z, Jin M, Deng Y, et al. Improvement of a deep learning algorithm for total electron content maps: Image completion[J]. Journal of Geophysical Research: Space Physics, 2019, 124(1): 790-800.

[65] Hochreiter S. The vanishing gradient problem during learning recurrent neural nets and problem solutions[J]. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 1998, 6(02): 107-116.

[66] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.

[67] Sun W, Xu L, Huang X, et al. Forecasting of ionospheric vertical total electron content (TEC) using LSTM networks[C]. 2017 International Conference on Machine Learning and Cybernetics (ICMLC). IEEE, 2017, 2: 340-344.

[68] Srivani I, Prasad G S V, Ratnam D V. A deep learning-based approach to forecast ionospheric delays for GPS signals[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(8): 1180-1184.

[69] Zewdie G K, Valladares C, Cohen M B, et al. Data‐Driven Forecasting of Low‐Latitude Ionospheric Total Electron Content Using the Random Forest and LSTM Machine Learning Methods[J]. Space Weather, 2021, 19(6): e2020SW002639.

[70] Shi X, Chen Z, Wang H, et al. Convolutional LSTM Network: a machine learning approach for precipitation nowcasting[C]. Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 1. 2015: 802-810.

[71] Shi X, Gao Z, Lausen L, et al. Deep learning for precipitation nowcasting: a benchmark and a new model[C]. Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 5622-5632.

[72] Chen J, Zhi N, Liao H, et al. Global forecasting of ionospheric vertical total electron contents via ConvLSTM with spectrum analysis[J]. GPS Solutions, 2022, 26(3): 1-10.

[73] Liu L, Morton Y J, Liu Y. ML Prediction of Global Ionospheric TEC Maps[J]. Space Weather, 2022, 20(9): e2022SW003135.

[74] Xia G, Zhang F, Wang C, et al. ED‐ConvLSTM: A Novel Global Ionospheric Total Electron Content Medium‐Term Forecast Model[J]. Space Weather, 2022, 20(8): e2021SW002959.

[75] Caissy M, Agrotis L, Weber G, et al. The international GNSS real-time service[J]. GPS World, 2012, 6(23): 52-58.

[76] Li Z, Wang N, Hernández-Pajares M, et al. IGS real-time service for global ionospheric total electron content modeling[J]. Journal of Geodesy, 2020, 94(3): 1-16.

[77] Abdelazeem M, Çelik R N, El-Rabbany A. An enhanced real-time regional ionospheric model using IGS real-time service (IGS-RTS) products[J]. Journal of Navigation, 2016, 69(3): 521-530.

[78] Zhang L, Yao Y, Peng W, et al. Real-time global ionospheric map and its application in single-frequency positioning[J]. Sensors, 2019, 19(5): 1138.

[79] Weber G, Mervart L, Lukes Z, et al. Real-time clock and orbit corrections for improved point positioning via NTRIP[C]. Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation (ION GNSS 2007). 2007: 1992-1998.

[80] RTCM Special Committee. Proposal of new RTCM SSR messages, SSR stage 2: Vertical TEC (VTEC) for RTCM standard 10403.2 differential GNSS (Global Navigation Satellite Systems) services-version 3[J]. RTCM Special Committee, 2014 (104).

[81] Chen P, Liu H, Schmidt M, et al. Near real-time global ionospheric modeling based on an adaptive Kalman filter state error covariance matrix determination method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 1-12.

[82] Roma Dollase D, López Cama J M, Hernández Pajares M, et al. Real-time Global Ionospheric modelling from GNSS data with RT-TOMION model[C]. 5th International Colloquium Scientific and Fundamental Aspects of the Galileo Programme, Braunschweig, Germany. 2015: 27-29.

[83] Orús R, Hernández-Pajares M, Juan J M, et al. Improvement of global ionospheric VTEC maps by using kriging interpolation technique[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(16): 1598-1609.

[84] Laurichesse D, Blot A. New CNES real time products including BeiDou[J]. IGS Mail, 2015, 7183.

[85] Nie Z, Yang H, Zhou P, et al. Quality assessment of CNES real-time ionospheric products[J]. GPS Solutions, 2019, 23(1): 1-15.

[86] Jakowski N, Hoque M M, Mayer C. A new global TEC model for estimating transionospheric radio wave propagation errors[J]. Journal of Geodesy, 2011, 85: 965-974.

[87] Erdogan E, Schmidt M, Goss A, et al. Real‐Time Monitoring of Ionosphere VTEC Using Multi‐GNSS Carrier‐Phase Observations and B‐Splines[J]. Space Weather, 2021, 19(10): e2021SW002858.

[88] Liu Q, Hernández-Pajares M, Yang H, et al. The cooperative IGS RT-GIMs: A reliable estimation of the global ionospheric electron content distribution in real time[J]. Earth System Science Data, 2021, 13(9): 4567-4582.

[89] Roma-Dollase D, Hernández-Pajares M, García-Rigo A, et al. Real time global ionospheric maps: a low latency alternative to traditional GIMs[J]. Radio Science, 2016, 47(0).

[90] Ren X, Chen J, Li X, et al. Performance evaluation of real-time global ionospheric maps provided by different IGS analysis centers[J]. GPS Solutions, 2019, 23: 1-17.

[91] Wang A, Chen J, Zhang Y, et al. Evaluating the impact of CNES real-time ionospheric products on multi-GNSS single-frequency positioning using the IGS real-time service[J]. Advances in Space Research, 2020, 66(11): 2516-2527.

[92] 何世闯, 张东和, 郝永强, 肖佐. 北半球电离层中纬槽发生率及其槽极小位置变化的统计研究[J]. 地球物理学报, 2020, 63(01): 31-46.

[93] 安家春, 王泽民, 李斐, 艾松涛. 基于地基GPS技术的威德尔海异常研究[J]. 地球物理学进展, 2014, 29(03): 993-998.

[94] 王泽民, 车国伟, 安家春. 南极威德尔海电离层异常的综合观测及分析[J]. 武汉大学学报(信息科学版), 2015, 40(11): 1421-1427.

[95] Bent R B, Llewllyn S K. Documentation and description of the Bent ionospheric model[J]. SAMSO technical, 1973, 73-252.

[96] 刘立龙, 陈军, 黄良珂, 吴丕团, 秦旭元, 蔡成辉. 基于Holt指数平滑模型的Klobuchar模型精化[J]. 武汉大学学报(信息科学版), 2018, 43(04): 599-604.

[97] 王军, 党亚民, 薛树强. NeQuick电离层模型在中国地区的应用[J]. 测绘科学, 2007, 32(04): 38-40.

[98] 吴佳姝, 徐良. 欧洲扇区不同纬度电离层暴特征的统计分析[J]. 地球物理学报, 2015, 58(02): 349-361.

[99] Liu L, Zou S, Yao Y, et al. Multi-scale ionosphere responses to the May 2017 magnetic storm over the Asian sector[J]. GPS Solutions, 2020, 24: 1-15.

[100] 聂文锋. 多系统GNSS全球电离层监测及差分码偏差统一处理[D]. 山东: 山东大学, 2019.

[101] Zha J, Zhang B, Yuan Y, et al. Use of modified carrier-to-code leveling to analyze temperature dependence of multi-GNSS receiver DCB and to retrieve ionospheric TEC[J]. GPS Solutions, 2019, 23: 1-12.

[102] Chen P, Wang R, Yao Y, et al. A novel ionospheric mapping function modeling at regional scale using empirical orthogonal functions and GNSS data[J]. Journal of Geodesy, 2022, 96(5): 34.

[103] Livieris I E, Stavroyiannis S, Pintelas E, et al. A novel validation framework to enhance deep learning models in time-series forecasting[J]. Neural Computing and Applications, 2020, 32: 17149-17167.

[104] Lopez J H. The power of the ADF test[J]. Economics Letters, 1997, 57(1): 5-10.

[105] Heidari A, Khovalyg D. Short-term energy use prediction of solar-assisted water heating system: Application case of combined attention-based LSTM and time-series decomposition[J]. Solar Energy, 2020, 207: 626-639.

[106] Han Y, Wang L, Chen R, et al. Toward real-time construction of global ionosphere map from ground and space-borne observations[J]. GPS Solutions, 2022, 26(4): 147.

中图分类号:

 P228.4    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式