- 无标题文档
查看论文信息

题名:

 多机械臂煤炭异物分拣机器人任务分配方法研究    

作者:

 吴旭东    

学号:

 20105016006    

保密级别:

 保密(3年后开放)    

语种:

 chi    

学科代码:

 0802    

学科:

 工学 - 机械工程    

学生类型:

 博士    

学位:

 工学博士    

学位年度:

 2025    

学校:

 西安科技大学    

院系:

 机械工程学院    

专业:

 机械工程    

研究方向:

 矿山机器人    

导师姓名:

 曹现刚    

导师单位:

 西安科技大学    

提交日期:

 2025-06-19    

答辩日期:

 2025-06-03    

外文题名:

 Research on task allocation method of multi-manipulator coal foreign object sorting robot    

关键词:

 多机械臂 ; 煤炭异物 ; 任务分配 ; 遗传算法 ; 深度学习 ; 时变原煤流    

外文关键词:

 Multi-manipulator ; Coal foreign object ; Task allocation ; Genetic algorithm ; Deep learning ; Time-varying raw coal flow    

摘要:

煤炭异物分拣是煤炭洗选过程中保障生产安全、提高煤炭质量的关键环节之一。近些年发展起来的多机械臂煤炭异物分拣机器人广泛应用于煤炭洗选过程,代替手选矸环节。在煤炭异物分拣过程中,原煤流中矸石和杂物的类别、时空分布规律不同及皮带速度、过煤量上限差异等因素,都对多机械臂煤炭异物分拣机器人的分拣策略、分拣结果产生影响,如何提高这些复杂因素下的分拣效率和效益是必须解决的关键技术难题之一。因此,本文聚焦输送机带速和过煤量上限差异、原煤流和异物分布波动等复杂环境条件下的多机械臂煤炭异物分拣机器人任务分配方法研究,提高煤炭异物分拣效率、收益和稳定性。

针对煤炭异物种类与特征不同、到达时间与空间位置分布随机导致多机械臂煤炭异物分拣机器人任务分配效率低的难题,深入分析煤炭异物在原煤流中的分布规律,构建基于滚动时间窗的煤炭异物仿真模型。基于现有多机械臂煤炭异物分拣机器人系统,构建相应的运动学模型,并建立带式输送机运动学模型和机械臂轨迹规划模型,为多机械臂煤炭异物分拣机器人任务分配方法研究奠定基础。

针对矸石在时间、空间和特征等维度分布规律受原煤流时变特性影响,导致机器人任务分配结果稳定性差、效率低的问题,研究构建基于M/D/S/∞排队模型的同构多机械臂煤矸分拣任务分配模型。通过机械臂轨迹规划模型的轨迹函数计算机械臂执行任务的时间,基于匹配矩阵与效益矩阵的哈达玛积计算同构多机械臂与矸石队列的环境状态矩阵,采用最小迭代时间的状态转移函数实现环境状态更新。研究基于贪婪自适应权重(Greedy Adaptive Weights, GAW)的任务分配模型优化求解方法,从而提高原煤流时变性影响下煤矸分拣的任务分配效率。

针对铁丝、编织袋、木块等杂物与矸石混杂情况下分拣对象复杂、优先级不同导致的多种类任务分配难题,构建量化煤炭异物分配优先级的效用函数,研究基于效用函数的异构多机械臂煤炭异物分拣任务分配模型,建立综合考虑异构机械臂类型、能力、附加收益等的综合效益函数,以实现分拣矸石总重量和分拣杂物总数量为优化目标。最后,研究基于遗传算法的任务分配模型优化求解方法,提高煤炭异物分拣多评价指标的适应度值。

针对复杂煤炭异物分拣过程中任务分配模型求解时间随任务数量非线性增加,实时性差的问题,研究基于DenseNet网络的动态任务分配方法。构建RGB特征表征煤炭异物在时间、空间和特征等维度的分布规律,描述煤炭异物组成的任务队列。构建面向动态任务分配的不同输送机速度、过煤量上限的多策略任务分配模型数据集,提高数据集的多样性。最后,研究基于DenseNet网络的多策略动态任务分配模型,提高任务分配效率,保证良好的准确率。

设计搭建多机械臂煤炭异物分拣机器人系统实验平台,验证所研究的多机械臂煤炭异物分拣机器人任务分配方法。实验结果表明,煤矸分拣中,GAW的分选率优于FIFO、MF和SPT,具有稳定性。基于遗传算法的组合规则策略在煤炭异物分拣中具有优越性,其最大适应度值相对GAW平均提高14.12%。多策略动态任务分配方法将煤矸分拣任务分配的求解时间降低了84.75%,将煤炭异物分拣任务分配的求解时间降低了92.95%,任务分配结果的准确性良好。工业性试验中,所提出的煤矸分拣任务分配模型整体分选率达到95%以上。

外文摘要:

The coal foreign object sorting is one of the key steps in the coal washing process, which is crucial for ensuring production safety and improving coal quality. The multi-manipulator coal foreign object sorting robot developed in recent years is widely used in the coal washing process to replace the hand gangue selection link. In the process of coal foreign object sorting, factors such as the different categories, spatial and temporal distribution rules of gangue and sundry in the raw coal flow, the belt speed and the coal flow upper limit affect the sorting strategy and sorting results of the multi-manipulator coal foreign object sorting robot. How to improve the sorting efficiency and income under these complex factors is one of the key technical problems that must be solved. Therefore, this study focuses on the research on task allocation method of multi-manipulator coal foreign object sorting robot under complex environmental conditions such as the difference of conveyor belt speed and the coal flow upper limit, the fluctuation of raw coal flow and foreign object distribution, so as to improve the efficiency, income and stability of coal foreign object sorting.

Different types and features of coal foreign object, random arrival time and spatial location distribution lead to low task allocation efficiency of multi-manipulator coal foreign object sorting robot. In order to solve the problem, the distribution law of coal foreign object in raw coal flow was deeply analyzed, and a coal foreign object simulation model based on tumbling time window was constructed. Based on the existing multi-manipulator coal foreign object sorting robot system, the corresponding kinematic model is constructed, and the belt conveyor motion model and the manipulator trajectory planning model are established, which lays a foundation for the research on task allocation method of multi-manipulator coal foreign object sorting robot.

Given that the distribution patterns of gangue in terms of time, space and feature are affected by the time-varying of the raw coal flow, resulting in poor stability and low efficiency of the robot task allocation, this study constructs a homogeneous multi-manipulator coal gangue sorting task allocation model based on the M/D/S/∞ queuing model. The time required for the manipulator to perform the task is calculated through the trajectory function of the manipulator trajectory planning model. The environmental state matrix of the isomorphic multi-manipulator and the coal gangue queue is calculated based on the Hadamard product of the matching matrix and the benefit matrix. The environmental state update is achieved by using the minimum iterative time state transition function. This study researches the optimization solution method of task allocation model based on Greedy Adaptive Weights (GAW), so as to improve the efficiency of coal gangue sorting task allocation under the influence of time-varying raw coal flow.

Aiming at the problem of multi-type task allocation caused by complex sorting objects and different priorities in the case of mixed gangue and sundry, such as iron wire, sacks, wood blocks and other sundry objects, a utility function was constructed to quantify the coal foreign object allocation priority, and a heterogeneous multi-manipulator coal foreign object sorting task allocation model based on utility function was studied. A comprehensive benefit function considering the types, capabilities and additional benefits of heterogeneous manipulators is established, and the total mass of the gangue and the total number of the sundry sorted are optimized. Finally, the optimization solution method of task allocation model based on Genetic Algorithm (GA) was studied to improve the fitness value of multi-evaluation indexes in coal foreign object sorting.

Aiming at the problem that the solution time of the task allocation model increases non-linearly with the task number in the process of complex coal foreign object sorting, and the real-time performance is poor, a dynamic task allocation method based on DenseNet network was researched. RGB features were constructed to characterize the distribution of coal foreign object in time, space and feature dimensions, and to describe the task queue composed of coal foreign objects. A multi-strategy task allocation model dataset with different conveyor speeds and coal flow upper limits for dynamic task allocation was constructed to improve the diversity of the dataset. Finally, a multi-strategy dynamic task allocation model based on DenseNet network was studied to improve the efficiency of task allocation, and ensure good accuracy.

A multi-manipulator coal foreign object sorting robot system experimental platform was designed and built to verify the task allocation method of the multi-manipulator coal foreign object sorting robot. Experimental results show that GAW has better sorting rate than First-in-first-out (FIFO), Mass First (MF), and Shortest Processing Time (SPT) in coal gangue sorting, and it has stability. The multi-strategy dynamic task allocation method reduces the task allocation solution time of coal ganging sorting by 84.75%, and reduces the task allocation solution time of coal foreign object sorting by 92.95%, and the obtained task allocation results have good accuracy. In the industrial test, the task allocation method of coal gangue sorting was tested, and the overall sorting rate reached more than 95%.

参考文献:

谢和平, 王金华, 王国法, 等. 煤炭革命新理念与煤炭科技发展构想[J]. 煤炭学报, 2018, 43 (5): 1187-1197.

张绍强. 中国煤炭清洁高效利用的实践与展望[J]. 科技导报, 2016, 34 (17): 56-63.

中华人民共和国国务院. 中华人民共和国国民经济和社会发展第十四个五年规划和年远景目标纲要[R]. 北京: 中华人民共和国国务院, 2022.

Dai L, Zhang X, Gardoni P, et al. A new machine vision detection method for identifying and screening out various large foreign objects on coal belt conveyor lines[J]. Complex & Intelligent Systems, 2023, 9(5): 5221-5234.

曹现刚, 李虎, 王鹏, 等. 基于跨模态注意力融合的煤炭异物检测方法[J]. 工矿自动化, 2024, 50 (1): 57-65.

煤炭工业“十四五”安全高效煤矿建设指导意见.中国煤炭工业协会, 2021. 12. 7.

Yang Y, Li D, Guo Y, et al. Research on coal gangue recognition method based on XBS-YOLOv5s[J]. Measurement Science and Technology, 2023, 35(1): 015404.

马宏伟, 张烨, 王鹏, 等. 多机械臂煤矸石智能分拣机器人关键共性技术研究[J]. 煤炭科学技术, 2023, 51 (1): 427-436.

曹现刚, 李宁, 王鹏, 等. 基于比例导引法的机械臂拣矸过程轨迹规划方法研究[J]. 煤炭工程, 2019, 51 (5): 154-158.

费佳浩. 煤矸分拣机器人结构设计及运动分析[D]. 西安: 西安科技大学, 2019.

曹现刚, 向敬芳, 王鹏, 等. 混合工作模式的双路径传动欠驱动机械手设计与接触力学分析[J]. 机械传动, 2025, 49 (2): 62-69.

黄邦松. TDS智能干选机在双柳煤矿的应用[J]. 中国煤炭, 2020, 46(3): 47-50.

王鹏, 曹现刚, 夏晶, 等. 基于机器视觉的多机械臂煤矸石分拣机器人系统研究[J]. 工矿自动化, 2019, 45 (9): 47-53.

曹现刚, 李莹, 王鹏, 等. 煤矸石识别方法研究现状与展望[J]. 工矿自动化, 2020, 46 (1): 38-43.

韩成石, 董长双, 周西军, 等. 煤和矸石γ-射线分选系统的研究[J]. 山西矿业学院学报, 1997 (2): 45-49.

郭永存, 何磊, 刘普壮, 等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报, 2021, 46 (1): 300-309.

杨晨光, 冯岸岸, 朱金波, 等. 智能分选中煤矸X射线识别技术的研究[J]. 安徽化工, 2020, 46 (3): 25-29+33.

程葳, 孔力, 袁树风, 等. 基于模糊神经网络的煤矸石模式识别方法研究[J]. 华中科技大学学报(自然科学版), 1999, 27(6): 30-32.

范振, 陈乃建, 黄玉林, 等. 基于支持向量机与多种特征的煤矸石识别[J]. 济南大学学报(自然科学版), 2021, (3): 1-6.

王文鑫, 黄杰, 王秀宇, 等. X射线透射煤矸智能识别方法[J]. 工矿自动化, 2022, 48 (11): 27-32+62.

Li M, Duan Y, He X, et al. Image positioning and identification method and system for coal and gangue sorting robot[J]. International Journal of Coal Preparation and Utilization, 2022, 42(6), 1759-1777.

李曼, 段雍, 曹现刚, 等. 煤矸分选机器人图像识别方法和系统[J]. 煤炭学报, 2020, 45 (10): 3636-3644.

曹现刚, 刘思颖, 王鹏, 等. 面向煤矸分拣机器人的煤矸识别定位系统研究[J]. 煤炭科学技术, 2022, 50 (1): 237-246.

李娟莉, 魏代良, 李博, 等. 基于深度学习轻量化的改进SSD煤矸快速分选模型[J]. 东北大学学报(自然科学版), 2023, 44 (10): 1474-1480.

Pan H, Shi Y, Lei X, et al. Fast identification model for coal and gangue based on the improved tiny YOLO v3[J]. Journal of Real-Time Image Processing, 2022, 19(3): 687-701.

李德永, 王国法, 郭永存, 等. 基于CFS-YOLO算法的复杂工况环境下煤矸图像识别方法[J]. 煤炭科学技术, 2024, 52 (6): 226-237.

曹现刚, 郝朋英, 王鹏, 等. 多因素光照条件下高质量煤矸图像获取方法研究[J]. 煤炭科学技术, 2023, 51 (1): 455-463.

李曼, 杨茂林, 刘长岳, 等. 基于图像的煤矸分选中图像照度调节方法[J]. 煤炭学报, 2021, 46 (S2): 1149-1158.

李曼, 何仙利, 杨茂林, 等. 外在水分对煤矸图像特征影响的试验研究[J]. 煤炭科学技术, 2022, 50 (10): 179-187.

张锦旺, 王家臣, 何庚, 等. 液体介入提升煤矸识别效率的试验研究[J]. 煤炭学报, 2021, 46 (S2): 681-691.

张锦旺, 何庚, 王家臣. 不同混合度下液体介入难辨别煤矸红外图像识别准确率[J]. 煤炭学报, 2022, 47 (3): 1370-1381.0

Wang W, Zhang C. Separating coal and gangue using three-dimensional laser scanning[J]. International Journal of Mineral Processing, 2017, 169: 79-84.

曹现刚, 袁娜, 王鹏, 等. 面向煤矸体积检测的图像特征匹配算法研究[J]. 煤炭技术, 2023, 42 (2): 175-178.

黄邦松. TDS智能干选机在双柳煤矿的应用[J]. 中国煤炭, 2020, 46 (3): 47-50.

宋文革, 陶亚东, 齐成军, 等. 智能机器人拣矸系统的设计研究[J]. 煤炭加工与综合利用, 2018 (9): 5-8.

曹现刚, 费佳浩, 王鹏, 等. 基于多机械臂协同的煤矸分拣方法研究[J]. 煤炭科学技术, 2019, 47 (4): 7-12.

朱伟, 郭倩, 马致远, 等. SCARA并联机构刚度和动力学分析[J]. 农业机械学报, 2019, 50 (10): 375-385.

商德勇, 潘崭, 索双富, 等. 基于旋量理论的Delta并联机器人误差分析[J/OL]. 清华大学学报(自然科学版), 1-11[2025-03-17].

蔡肖肖. UR5型机器人的运动学分析与标定实验研究[D]. 杭州: 浙江理工大学, 2017.

李阳阳. 长平公司洗煤厂智能煤矸分选机器人技术研究[J]. 机械管理开发, 2022, 37 (1): 221-222.

许鸣吉, 李胜, 陈庆伟, 等. 直角坐标机器人迭代滑模交叉耦合控制器设计[J]. 组合机床与自动化加工技术, 2018, (5): 78-81.

曹现刚, 吴旭东, 王鹏, 等. 面向煤矸分拣机器人的多机械臂协同策略[J]. 煤炭学报, 2019, 44 (S2): 763-774.

王鹏, 曹现刚, 马宏伟, 等. 基于余弦定理-PID的煤矸石分拣机器人动态目标稳准抓取算法[J]. 煤炭学报, 2020, 45 (12): 4240-4247.

马宏伟, 孙那新, 张烨, 等. 煤矸石分拣机器人动态目标稳定抓取轨迹规划[J]. 工矿自动化, 2022, 48 (4): 20-30.

Zhang Y, Ma H, Wang P, et al. Research on dynamic target steady and quasi-grasping method of coal gangue sorting robot based on global planning and local vision[J]. International Journal of Coal Preparation and Utilization, 2024: 1-20.

Wang P, Ma H, Zhang Y, et al. Trajectory planning for coal gangue sorting robot tracking fast-mass target under multiple constraints[J]. Sensors, 2023, 23(9): 4412.

曹现刚, 王虎生, 王鹏, 等. 基于改进ORB的复杂场景煤矸石匹配算法[J]. 煤炭工程, 2024, 56 (6): 189-195.

曹现刚, 王虎生, 王鹏, 等. 基于视觉实时引导的煤矸石精准跟踪方法[J]. 煤炭科学技术, 2025, 53 (1): 356-364.

曹现刚, 藏家松, 吴旭东, 等. 基于AE-RRT*的煤矸分拣机器人避障拣轨迹规划方法[J/OL]. 煤炭学报, 1-12[2025-03-17].

夏晶, 张昊, 周世宁, 等. 煤矸分拣机器人动态拣取避障路径规划[J]. 煤炭学报, 2021, 46 (S1): 570-577.

Cao, X., Wei, H., Wang, P., et al. High quality coal foreign object image generation method based on StyleGAN-DSAD[J]. Sensors, 2023, 23, 374.

曹现刚, 乔欢乐, 吴旭东, 等. 考虑含矸率时变性的多臂协同策略优化方法[J]. 机械科学与技术, 2023, 42 (11): 1887-1894.

Wang P, Ma H, Zhang Y, et al. A cooperative strategy of multi-arm coal gangue sorting robot based on immune dynamic workspace[J]. International Journal of Coal Preparation and Utilization, 2022: 1-21.

Debie E, Kasmarik K, Garratt M. Swarm robotics: a survey from a multi-tasking perspective[J]. ACM Computing Surveys, 2023, 56(2): 1-38.

Chen J, Ling F, Zhang Y, et al. Coverage path planning of heterogeneous unmanned aerial vehicles based on ant colony system[J]. Swarm and Evolutionary Computation, 2022, 69: 101005.

Fukuhara A, Gunji M, and Masuda Y. Comparative anatomy of quadruped robots and animals: a review[J]. Advanced Robotics, 2022, 36(13): 612-630.

Huang Y, Zhang S. Cooperative object transport by two robots connected with a ball-string-ball structure[J]. IEEE Robotics and Automation Letters, 2024.

Gupta S, Shekhar S, Karpe K, et al. LOGISWARM: A low-cost multi-robot testbed for cooperative transport research[J]. Multimedia Tools and Applications, 2022, 81(19): 27339-27362.

Aguilar G, Bravo L, Ruiz U, et al. A distributed algorithm for exploration of unknown environments with multiple robots[J]. Journal of Intelligent & Robotic Systems, 2019, 95: 1021-1040.

Yu X, Su R. Decentralized circular formation control of nonholonomic mobile robots under a directed sensor graph[J]. IEEE Transactions on Automatic Control, 2022, 68(6): 3656-3663.

Park S, Lee S. M. Formation reconfiguration control with collision avoidance of nonholonomic mobile robots[J]. IEEE Robotics and Automation Letters, 2023, 8(12): 7905-7912.

Parhi D R. Chaos-based optimal path planning of humanoid robot using hybridized regression-gravity search algorithm in static and dynamic terrains[J]. Applied Soft Computing, 2023, 140: 110236.

Gerkey B P, Matarić M J. A formal analysis and taxonomy of task allocation in multi-robot systems[J]. The International journal of Robotics research, 2004, 23(9): 939-954.

Kuhn H W. The Hungarian method for the assignment problem[J]. Naval research logistics quarterly, 1955, 2(1-2): 83-97.

Clinch K, Wood T A, Manzie C. Auction algorithm sensitivity for multi-robot task allocation[J]. Automatica, 2023, 158: 111239.

Zlot R, Stentz A, Dias M B, et al. Multi-robot exploration controlled by a market economy[C]. Proceedings 2002 IEEE international conference on Robotics and automation (Cat. No. 02CH37292). IEEE, 2002, 3: 3016-3023.

Zhang T, Wang Y, Ma Z, et al. Task assignment in UAV-enabled front jammer swarm: a coalition formation game approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9562-9575.

Garey M R, Johnson D S. “strong”np-completeness results: motivation, examples, and implications[J]. Journal of the ACM (JACM), 1978, 25(3): 499-508.

Hoogeveen J A, van de Velde S L, Veltman B. Complexity of scheduling multiprocessor tasks with prespecified processor allocations[J]. Discrete Applied Mathematics, 1994, 55(3): 259-272.

Quinton F, Grand C, Lesire C. Market approaches to the multi-robot task allocation problem: a survey[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 29.

陆克中, 孙宏元. 无线传感器网络最小覆盖集的贪婪近似算法[J]. 软件学报, 2010, 21 (10): 2656-2665.

Carrabs F, Cerulli R, Mansini R, et al. Solving the set covering problem with conflicts on sets: a new parallel GRASP[J]. Computers & Operations Research, 2024, 166: 106620.

Korsah G A, Stentz A, Dias M B. A comprehensive taxonomy for multi-robot task allocation[J]. The International Journal of Robotics Research, 2013, 32(12): 1495-1512.

Antonyshyn L, Silveira J, Givigi S, et al. Multiple mobile robot task and motion planning: a survey[J]. ACM Computing Surveys, 2023, 55(10): 1-35.

叶耀华, 朱晓梅, 陈霖. 一种带时间窗口和在前约束的车辆路线问题及其算法[J]. 系统工程理论与实践, 2000, (3): 110-112.

Nunes E, Manner M, Mitiche H, et al. A taxonomy for task allocation problems with temporal and ordering constraints[J]. Robotics and Autonomous Systems, 2017, 90: 55-70.

Wang H, Chen W, Wang J. Coupled task scheduling for heterogeneous multi-robot system of two robot types performing complex-schedule order fulfillment tasks[J]. Robotics and Autonomous Systems, 2020, 131: 103560.

Shiroma P M., Campos M F M. CoMutaR: A framework for multi-robot coordination and task allocation[C]. 2009 IEEE/RSJ international conference on intelligent Robots and systems. IEEE, 2009: 4817-4824.

Berman S, Lindsey Q, Sakar M S, et al. Experimental study and modeling of group retrieval in ants as an approach to collective transport in swarm robotic systems[J]. Proceedings of the IEEE, 2011, 99(9): 1470-1481.

Lucas N P, Pandya A K, Ellis R D. Review of multi-robot taxonomy, trends, and applications for defense and space[J]. Unmanned Systems Technology XIV, 2012, 8387: 595-604.

Leofante F, Ábrahám E, Niemueller T, et al. Integrated synthesis and execution of optimal plans for multi-robot systems in logistics[J]. Information systems frontiers, 2019, 21: 87-107.

Li S Q, Yuan X H, Tang Z M, et al. Design and development of multi-robot Architecture and decision-making model[C]. 2007 International Conference on Machine Learning and Cybernetics. IEEE, 2007, 1: 610-616.

张家宝, 王海涛, 张鑫荣, 等. 一类混合型平行机生产调度问题的混合0-1规划模型[J]. 物流工程与管理, 2024, 46 (9): 21-23+56.

任爽, 韩冰. 带有不确定性的公共租赁自行车的管理优化研究[J]. 控制与决策, 2019, 34 (11): 2469-2478.

Li Z P, Zhang J L, Zhang H J, et al. Optimal selection of movable shelves under cargo-to-person picking mode[J]. International Journal of Simulation Modelling, 2017, 16(1): 145-156.

Cook J S, Han B T. Efficient heuristics for robot acquisition planning for a CIM system[J]. Operations-Research-Spektrum, 1995, 17: 99-111.

Wang R, Yang Q. Research on neural network of enterprise raw material production and transportation based on multi-objective programming[J]. Academic Journal of Business & Management, 2021, 3(12): 43-47.

张菁芳, 任家顺, 陈渝, 等. 医学应急救援任务优化调度策略研究[J]. 医疗卫生装备, 2015, 36 (9): 41-43.

Nayak A, Reyes L R, Lee S, et al. Resource sharing in cyber-physical systems: modelling framework and case studies[J]. International Journal of Production Research, 2016, 54(23): 6969-6983.

Chen Y, Du C, Chen J, et al. Cooperative task allocation of multiple UAVs based on greedy algorithm[C]. 2021 IEEE 4th international conference on computer and communication engineering technology (CCET). IEEE, 2021: 408-413.

Hu J, Niu H, Carrasco J, et al. Fault-tolerant cooperative navigation of networked UAV swarms for forest fire monitoring[J]. Aerospace Science and Technology, 2022, 123: 107494.

杜永浩, 邢立宁, 姚锋, 等. 航天器任务调度模型、算法与通用求解技术综述[J]. 自动化学报, 2021, 47 (12): 2715-2741.

杨萍, 魏征, 李春玲. 基于博弈论的群体机器人围捕策略研究[J]. 机械制造, 2014, 52 (5): 5-7.

Zhu A, Lu H, Guo S, et al. CollOR: Distributed collaborative offloading and routing for tasks with QoS demands in multi-robot system[J]. Ad Hoc Networks, 2024, 152: 103311.

Long H, Duan H. Cooperative mission planning based on game theory for UAVs and USVs heterogeneous system in dynamic scenario[J]. Aircraft Engineering and Aerospace Technology, 2024, 96(9): 1128-1138.

Dai W, Lu H, Xiao J, et al. Task allocation without communication based on incomplete information game theory for multi-robot systems[J]. Journal of Intelligent & Robotic Systems, 2019, 94: 841-856.

Liu D, Dou L, Zhang R, et al. Multi-agent reinforcement learning-based coordinated dynamic task allocation for heterogenous UAVs[J]. IEEE Transactions on Vehicular Technology, 2022, 72(4): 4372-4383.

Gronauer S, Diepold K. Multi-agent deep reinforcement learning: a survey[J]. Artificial Intelligence Review, 2022, 55(2): 895-943.

Gao Y, Luo Z. Dynamic task allocation method based on immune system for cooperative robots[C]. 2008 7th world congress on intelligent control and automation. IEEE, 2008: 1015-1020.

Lu Z, Wang Y, Dai F, et al. A reinforcement learning-based optimization method for task allocation of agricultural multi-robots clusters[J]. Computers and Electrical Engineering, 2024, 120: 109752.

Li Z, Shi N, Zhao L, et al. Deep reinforcement learning path planning and task allocation for multi-robot collaboration[J]. Alexandria Engineering Journal, 2024, 109: 408-423.

Yuan R, Dou J, Li J, et al. Multi-robot task allocation in e-commerce RMFS based on deep reinforcement learning[J]. Mathematical biosciences and engineering: MBE, 2023, 20(2): 1903-1918.

闫华, 黎丽荣, 万飞, 等. 基于排队论的智能仓库机器人数量需求分析[J]. 兵器装备工程学报, 2020, 41 (3): 102-105.

郭笛, 谢旦岚, 纪媛. 多重约束下智慧仓储机器人配置仿真优化研究[J]. 系统仿真学报, 2020, 32 (10): 2066-2072.

徐翔斌, 马中强. 基于移动机器人的拣货系统研究进展[J]. 自动化学报, 2022, 48 (1): 1-20.

Huang Y, Chiba R, Arai T, et al. Queuing theory based part-flow estimation in a pick-and-place task with a multi-robot system[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2018, 12(2): JAMDSM0061-JAMDSM0061.

Huang Y, Chiba R, Arai T, et al. Robust multi-robot coordination in pick-and-place tasks based on part-dispatching rules[J]. Robotics and Autonomous Systems, 2015, 64: 70-83.

Zhang S, Pecora F. Online sequential task assignment with execution uncertainties for multiple robot manipulators[J]. IEEE Robotics and Automation Letters, 2021, 6(4): 6993-7000.

Fukuda T, Nakagawa S, Kawauchi Y, et al. Self-organizing robots based on cell structure-CEBOT[J]. Proceedings of IEEE International workshop on Intelligent Robots and Systems, 1988: 145-150.

Ueyama T, Fukuda T. Cooperative search using genetic algorithm based on local information-path planning for structure configuration of cellular Robot[C]. Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'93). IEEE, 1993, 2: 1110-1115.

Steels L. Cooperation between distributed agents through self-orcamsation[C]. Proceedings of the First European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Cambridge, England. 1990.

Ismail Z H, Sariff N, Hurtado E G. A survey and analysis of cooperative multi-agent robot systems: challenges and directions[J]. Applications of Mobile Robots, 2018, 5: 8-14.

Parker L E. ALLIANCE: An architecture for fault tolerant multirobot cooperation[J]. IEEE transactions on Robotics and automation, 1998, 14(2): 220-240.

Parker L E. Lifelong adaptation in heterogeneous multi-robot teams: Response to continual variation in individual robot performance[J]. Autonomous Robots, 2000, 8: 239-267.

崔凯越, 洪兆溪, 娄山河, 等. 人机协作的掘进机截割部故障率稳健性容差设计[J]. 机械工程学报, 2025, 61 (3): 77-90.

王宁, 韩雨晓, 王雅萱, 等. 农业机器人全覆盖作业规划研究进展[J]. 农业机械学报, 2022, 53 (S1): 1-19.

刘全, 施眉龙, 黄志刚, 等. 基于双视角建模的多智能体协作强化学习方法[J]. 计算机学报, 2024, 47 (7): 1582-1594.

Kube C R, Bonabeau E. Cooperative transport by ants and robots[J]. Robotics and autonomous systems, 2000, 30(1-2): 85-101.

张新良, 石纯一. 对称和非对称的启发式多Agent再励学习方法[J]. 清华大学学报(自然科学版), 2006, (4): 559-562+567.

Matarić M J. Reinforcement learning in the multi-robot domain[J]. Autonomous Robots, 1997, (4): 73-83.

Zhang W, Valencia A, Chang N B. Synergistic integration between machine learning and agent-based modeling: a multidisciplinary review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 34(5): 2170-2190.

Stone P. Designing robots to best world cup winners has inspired generations of roboticists[J]. IEEE Spectrum, 2023, 60(7): 40-49.

Smit A, Engelbrecht H A, Brink W, et al. Scaling multi-agent reinforcement learning to full 11 versus 11 simulated robotic football[J]. Autonomous Agents and Multi-Agent Systems, 2023, 37(1): 20.

陈仁际, 吴镇炜, 王韬, 等. 分布式多机器人装配系统任务合作规划算法研究[J]. 中国机械工程, 2000, (4): 66-69+5.

范永, 谭民. MRCS中机器人控制体系框架结构[J]. 控制与决策, 2000, (3): 325-328.

武文亮, 周兴社, 沈博, 等. 集群机器人系统特性评价研究综述[J]. 自动化学报, 2022, 48 (5): 1153-1172.

邢虎, 陈荣, 唐文君. 基于预测算法的在线空间众包任务分配策略[J]. 计算机工程, 2020, 46 (9): 27-34+43.

Bererton C A. Multi-robot coordination and competition using mixed integer and linear programs[M]. Carnegie Mellon University, 2004.

Wang H, Chen W, Wang J. Coupled task scheduling for heterogeneous multi-robot system of two robot types performing complex-schedule order fulfillment tasks[J]. Robotics and Autonomous Systems, 2020, 131: 103560.

付旭云, 田亚鹏, 钟诗胜, 等. 一种多寿命件机会更换策略启发式搜索算法[J]. 航空动力学报, 2017, 32 (8): 1971-1977.

汪星恺, 吴维敏, 邢子超, 等. 无缓存流水线生产系统中AGV调度问题的研究[J]. 东北大学学报(自然科学版), 2024, 45 (1): 58-67+75.

Miao Z, Huang W, Jiang Q, et al. A novel multimodal multi-objective optimization algorithm for multi-Robot task allocation[J]. Transactions of the Institute of Measurement and Control, 2023: 01423312231183588.

Back T. Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms[M]. Oxford university press, 1996.

Blum C, Li X. Swarm intelligence in optimization[M]. Swarm intelligence: introduction and applications. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 43-85.

邓辅秦, 黄焕钊, 谭朝恩, 等. 结合遗传算法和滚动调度的多机器人任务分配算法[J]. 计算机应用, 2023, 43 (12): 3833-3839.

Padmanabhan P K, Rajmohan M, Sundar R, et al. Multi-objective optimisation of multi-robot task allocation with precedence constraints[J]. Defence Science Journal, 2018, 68(2): 175-182.

雷小宇, 楼朴根, 张婷婷, 等. 基于差分进化的多机器人路径规划[J]. 计算机仿真, 2011, 28 (1): 10-13.

Rechenberg I. Evolution strategy: optimization of technical systems by means of biological evolution[J]. Stuttgart: Fromman-Holzboog; 1973:104.

Zhang Y, Zhang H. Enhancing robot path planning through a twin-reinforced chimp optimization algorithm and evolutionary programming algorithm[J]. IEEE Access, 2023, 12: 170057-170078.

Simon D. Biogeography-based optimization[J]. IEEE transactions on evolutionary computation, 2008, 12(6): 702-713.

Zitouni F, Maamri R, Harous S. FA–QABC–MRTA: a solution for solving the multi-robot task allocation problem[J]. Intelligent Service Robotics, 2019, 12(4): 407-418.

Liu C, Kroll A. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-Robot task allocation problems[J]. SpringerPlus, 2016, 5(1): 1361.

Arkin R C. Cooperation without communication: Multiagent schema-based Robot navigation[J]. Journal of Robotic Systems, 1992, 9(3): 351-364.

Kim S, Lee H. Multi-robot task scheduling with ant colony optimization in antarctic environments[J]. Sensors, 2023, 23(2): 751.

倪春波, 孔一斐, 杨月全, 等. 粒子群优化及其在多机器人系统中的应用展望[J]. 中南大学学报(自然科学版), 2013, 44 (S2): 126-132.

Lope J, Maravall D, Quinonez Y. Self-organizing techniques to improve the decentralized multi-task distribution in multi-Robot systems[J]. Neurocomputing, 2015, 163: 47-55.

Khaluf Y, Vanhee S, Simoens P. Local ant system for allocating robot swarms to time-constrained tasks[J]. Journal of Computational Science, 2019, 31: 33-44.

Li Z, Barenji A V, Jiang J, et al. A mechanism for scheduling multi robot intelligent warehouse system face with dynamic demand[J]. Journal of Intelligent Manufacturing, 2020, 31: 469-480.

刘晓莹, 蔡自兴, 余伶俐, 等. 一种正交混沌蚁群算法在群机器人任务规划中的应用研究[J]. 小型微型计算机系统, 2010, 31 (1): 164-168.

张晓勇, 吴敏, 彭军, 等. 机器人救援的目标吸引动态路径规划蚁群算法[J]. 系统仿真学报, 2011, 23 (9): 1854-1859.

Shi K, Wu Z, Jiang B, et al. Dynamic path planning of mobile robot based on improved simulated annealing algorithm[J]. Journal of the Franklin Institute, 2023, 360(6): 4378-4398.

Aslan S, Erkin T. An immune plasma algorithm based approach for UCAV path planning[J]. Journal of King Saud University-Computer and Information Sciences, 2023, 35 (1): 56-69.

严李平, 吴玉秀, 张文忠. 基于CVT和模拟退火的多机器人均匀部署[J]. 现代信息科技, 2022, 6 (17): 143-149.

钱伟伟, 王有远, 张振华. 基于使用阈值和时间有色Petri网的任务与资源分配研究[J]. 组合机床与自动化加工技术, 2019, (2): 154-156+160.

段俊花, 朱怡安, 黄姝娟, 等. 多模态融合的多机器人任务分配算法研究[J]. 西北工业大学学报, 2013, 31 (6): 974-978.

Guerrero J, Miñana J J, Valero Ó. On the use of fuzzy preorders in multi-robot task allocation problem[C]. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Theory and Foundations: 17th International Conference, IPMU 2018, Cádiz, Spain, June 11-15, 2018, Proceedings, Part I 17. Springer International Publishing, 2018: 195-206.

Murphy R R, Lisetti C L, Tardif R, et al. Emotion-based control of cooperating heterogeneous mobile Robots[J]. IEEE transactions on Robotics and automation, 2002, 18(5): 744-757.

陈红梅, 王海锋, 叶文, 等. 基于标签伯努利滤波技术的多机器人随机组网协同导航[J]. 仪器仪表学报, 2024, 45 (7): 165-175.

Urdiales C, Peula J M, Fdez-Carmona M., et al. A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation[J]. Autonomous Robots, 2011, 30: 179-197.

Lope J, Maravall D, Quiñonez Y. Response threshold models and stochastic learning automata for self-coordination of heterogeneous multi-task distribution in multi-Robot systems[J]. Robotics and Autonomous Systems, 2013, 61(7): 714-720.

Shi Z, Tu J, Li Y, et al. Modeling of task planning for multi-robot system using reputation mechanism[J]. The Scientific World Journal, 2014, 2014(1): 818701.

Quinton F, Grand C, Lesire C. Market approaches to the multi-robot task allocation problem: a survey[J]. Journal of Intelligent & Robotic Systems, 2023, 107(2): 29.

Shi J, Yang Z, Zhu J. An auction-based rescue task allocation approach for heterogeneous multi-robot system[J]. Multimedia Tools and Applications, 2020, 79: 14529-14538.

Smithr G. The contract net protocol: high level communication and control in a distributed problem solver[J]. IEEE Trans on Computers, 1980(6): 1104-1113.

Botelho S C, Alami R. A multi-robot cooperative task achievement system[C]. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065). IEEE, 2000, 3: 2716-2721.

Yao W, Qi N, Liu Y, et al. Homotopic approach for robot allocation optimization coupled with path constraints[J]. IEEE Robotics and Automation Letters, 2019, 5(1): 88-95.

Sullivan N, Grainger S, Cazzolato B. Sequential single-item auction improvements for heterogeneous multi-robot routing[J]. Robotics and Autonomous Systems, 2019, 115: 130-142.

Jiang D, Pang Y, Qin Z. Coordinated control of multiple autonomous under water vehicle system[C]. Proceedings of 2010 8th World Congress on Intelligent Control and Automation.Jinan,China, 2010: 4901-4906P.

Berhault M, Huang H, Keskinocak P, et al. Robot exploration with combinatorial auctions[C]. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453). IEEE, 2003, 2: 1957-1962.

张文博. 面向工业生产线的多机器人协作系统的研究[D]. 杭州: 浙江大学, 2019.

Albina K, Lee S G. Hybrid stochastic exploration using grey wolf optimizer and coordinated multi-Robot exploration algorithms[J]. IEEE Access, 2019, 7: 14246-14255.

Zhao M, Lu H, Cheng S, et al. A multi-robot cooperative exploration algorithm considering working efficiency and working load[J]. Applied Soft Computing, 2022, 128: 109482.

Zhou L, Shi Y, Wang J, et al. A balanced heuristic mechanism for multi-robot task allocation of intelligent warehouses[J]. Mathematical Problems in Engineering, 2014, 2014(1): 380480.

陈建平. 多机器人系统中的机器人合作问题研究[D]. 广州: 广东工业大学, 2011.

徐小荷. 采掘平衡问题的运筹学计算[J]. 煤炭学报, 1964, (1): 51-60.

Sun X, Zhao Y D, Zhao Y Q. Application of volume detection based on machine vision in coal and gangue separation[C]. 2021 IEEE 5th Conference on Energy Internet and Energy System Integration (EI2). IEEE, 2021: 4094-4098.

曲学军, 张璐, 张凌云. 基于新的成像模型的摄像机标定与三维重建[J]. 仪器仪表学报, 2011, 32 (8): 1830-1836.

谢果君, 杨焕焕, 石正璞, 等. 基于DH标定的机器人正向运动学形式化验证[J]. 软件学报, 2024, 35 (9): 4160-4178.

赵津, 刘混举. 基于半马尔可夫的滚筒采煤机可靠性建模及分析[J]. 煤炭技术, 2017, 36 (2): 282-286.

杨光耀, 毛开江, 胡而已, 等. 过煤量激光图像智能监测技术研究[J]. 中国煤炭, 2021, 47 (10): 49-55.

刘建伟, 韩存地, 刘安强, 等. 刮板输送机煤流动态分布模型[J]. 矿山机械, 2022, 50 (4): 1-6.

王家臣, 杨胜利, 李良晖, 等. 图像识别智能放煤含矸率高精度预测研究(Ⅰ)——煤流表面含矸率[J]. 煤炭学报, 2025, 50 (1): 150-165.

Zhang Q, Yue J, Liu C, et al. Study of automated top-coal caving in extra-thick coal seams using the continuum-discontinuum element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 122: 104033.

李建平, 郑克洪, 杜长龙. 煤和矸石的冲击破碎粒度分布特性[J]. 煤炭学报, 2013, 38 (S1): 54-58.

郑克洪, 杜长龙, 邱冰静. 煤矸破碎粒度分布规律的分形特征试验研究[J]. 煤炭学报, 2013, 38 (6): 1089-1094.

薛爱军, 潘继红, 田茂诚, 等. 单个生物质炭颗粒气化过程的数值模拟[J]. 太阳能学报, 2016, 37 (5): 1282-1289.

Fahy C, Yang S, Góngora M. Ant colony stream clustering: a fast density clustering algorithm for dynamic data streams[J]. IEEE Transactions on Cybernetics, 2019, 49(6): 2215-2228.

Mann M, Zion B, Shmulevich I, et al. Determination of robotic melon harvesting efficiency: a probabilistic approach[J]. International Journal of Production Research, 2016, 54(11): 3216-3228.

Li T Y, Latombe J C. On-line manipulation planning for two robot arms in a dynamic environment[J]. The International Journal of Robotics Research, 1997, 16(2): 144-167.

Mattone R, Divona M, Wolf A. Sorting of items on a moving conveyor belt. Part 2: performance evaluation and optimization of pick-and-place operations[J]. Robotics and Computer-Integrated Manufacturing, 2000, 16(2-3): 81-90.

Daoud S, Chehade H, Yalaoui F, et al. Efficient metaheuristics for pick and place robotic systems optimization[J]. Journal of Intelligent Manufacturing, 2014, 25: 27-41.

Linus S. A proof of the optimality of the shortest remaining processing time discipline[J]. Operations Research, 1968, 16(3): 687-690.

黄荣. 多能工能力差异下包装盒装配线人力资源优化配置方法[D]. 广州: 广东工业大学, 2016.

Huang G, Liu Z, Van Der Maaten L, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017: 4700-4708.

中图分类号:

 TP242.3    

开放日期:

 2028-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式