论文中文题名: | 基于深度学习的光纤感知围岩变形预测方法研究 |
姓名: | |
学号: | B201412023 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0819 |
学科名称: | 工学 - 矿业工程 |
学生类型: | 博士 |
学位级别: | 工学博士 |
学位年度: | 2024 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 矿业信息工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2024-07-02 |
论文答辩日期: | 2024-06-08 |
论文外文题名: | Research on deformation prediction of surrounding rock in fiber optic sensing based on deep learning |
论文中文关键词: | |
论文外文关键词: | prediction of surrounding rock deformation ; fiber sensing monitoring ; deep learning ; two-zone height ; periodic pressure step distance ; roadway surrounding rock deformation. |
论文中文摘要: |
<p>矿山围岩变形的监测与预测是保证矿井安全及实现智能化开采的重要前提和基础。现有光纤感知围岩变形的研究工作通过相似材料物理模型试验和现场应用实践,建立了采动覆岩变形的光纤表征和光纤与巷道围岩间的应变传递机制。然而,缺乏对光纤监测数据蕴含的围岩变形时空特征规律的深入解析和围岩变形预测方法的研究。采动覆岩变形是由煤层开采引起上覆岩层应力重新分布和动态调整,导致岩层破断、垮落和移动而形成;采动覆岩变形结合煤层厚度、煤层倾角以及推进速度等地质条件和采矿工艺参数因素的影响与工作面周期来压具有时空相关性。而巷道围岩变形是由于应力分布不平衡引起。可见,采动覆岩变形和巷道围岩变形的成因不同,构建一个统一的预测模型颇具挑战。为此,本文利用深度学习强大的非线性表征能力,分别研究光纤监测两带高度、工作面来压步距和巷道围岩变形的预测方法,对煤矿智能化开采具有重要意义。</p>
<p>主要研究内容如下:</p>
<p>(1) 光纤监测数据的异常数据识别方法。监测数据数量和数据表现特征的不同,使异常数据具有不同的特点。针对数据量小且长期缓慢变化的监测数据,提出了改进聚类密度的快速识别方法。首先,采用K-means聚类算法快速定位单点异常和区间异常范围,然后采用基于最近邻密度算法识别异常数据。针对数据量大且正常与异常数据不平衡的监测数据,提出了结合不同采样方法的随机森林异常数据识别方法。正常多数类数据进行去重复的欠采样,异常少数类数据进行合成少数类的过采样,对新数据集采用随机森林方法进行异常数据识别。最后以工程应用中的光纤监测数据验证了两种异常数据识别方法的有效性。</p>
<p>(2) 光纤监测数据的缺失数据填补方法。不同采样方式下光纤传感器监测数据中缺失数据的特点不同,针对分布式光纤多采样点少量随机缺失值的填补问题,提出了最小二乘支持向量机(LSSVM)的多采样点单属性缺失数据快速填补方法。针对单采样点光纤传感器时间序列数据连续缺失数据的填补问题,利用同类光纤传感器监测数据间的相关性,提出了遗传算法(GA)优化极端梯度提升(XGBoost)的缺失数据填补方法。以物理模型试验和工程应用中的采动覆岩变形和巷道围岩中平硐变形的不同监测数据,验证了缺失数据填补方法的有效性。</p>
<p>(3) 分布式光纤监测采动覆岩变形两带高度动态预测方法。在光纤频移值对采动覆岩变形时空特征表征框架的基础上,考虑岩层的抗压强度、岩层弹性模量、煤层厚度以及开采速度等因素对采动应力的影响,提出了集成经验模态分解(EEMD)和集成深度学习的两带高度动态预测方法。使用EEMD分解方法消除监测数据噪声和非平稳性;对光纤全采样点频移值分量建立集成学习CNN-GRU-BP的预测方法,预测分量叠加得到全采样点的预测频移值曲线。根据频移值曲线的阶跃高度预测出垮落带和裂隙带发育高度。在三维和平面物理模型试验中验证了预测方法的有效性和鲁棒性。</p>
<p>(4) 分布式光纤监测采动覆岩变形工作面来压步距动态预测方法。在光纤频移变化度对工作面周期来压时空特征表征框架的基础上,定义了光纤频移值的覆岩应变信息熵,定量表征不同岩层变形对工作面来压的影响,并考虑了煤层厚度、开采高度、工作面推进距离以及煤层倾角等影响因素,提出了双分支卷积循环神经网络工作面来压步距预测方法。设计了融合注意力机制的APMCNN-GRU网络分支,提取不同空间覆岩应变信息熵蕴含的周期来压的时空特征。设计了ID-CNN-GRU网络分支,深入挖掘光纤频移变化度数据序列和周期来压影响因素中蕴含的来压步距特征。通过BP神经网络将提取的特征进行融合,并输出预测的周期来压步距。在三维和平面物理模型试验中验证了预测方法的有效性和鲁棒性。</p>
<p>(5) 光纤监测巷道围岩中平硐变形多步预测方法。光纤监测巷道围岩变形的工程中监测数据含有大量噪声,影响多步预测的精度并产生较大的误差累积。在巷道围岩中平硐等缓慢变形场景下,提出了结合EEMD方法的TCN-LSTM平硐变形多步预测方法。采用EEMD方法消除监测数据噪声并使用模糊熵提取有效分量,构建了多路TCN-LSTM深度神经网络提取不同分量的长时间域特征和非线性特征,并采用多输出策略,有效降低了累积误差。叠加预测分量输出未来一段时间的平硐变形预测结果。利用光纤监测平硐变形的现场应用数据,验证了多步预测方法的有效性和鲁棒性。</p>
<p>本文基于深度学习建立了光纤监测围岩变形预测方法,为围岩控制提供了理论和技术支撑,对推动矿山围岩变形智能预测预报技术的研发与应用具有积极意义。</p>
﹀
|
论文外文摘要: |
<p>The monitoring and predicting the surrounding rock deformation in mines is a crucial prerequisite and foundation for ensuring mine safety and achieving intelligent mining. Existing work on optical fiber sensing of surrounding rock deformation has established the optical fiber characterization of mining overburden deformation and the strain transfer mechanism between optical fiber sensors and tunnel surrounding rock through similar material physical model tests and field applications. However, there is a lack of in-depth exploration on the spatiotemporal characteristics of surrounding rock deformation implied by fiber optic monitoring data and on methods for predicting surrounding rock deformation. Mining-induced overburden deformation is caused by the redistribution and dynamic adjustment of stress in overlying strata due to coal extraction, leading to rock fracture, collapse, and movement. The deformation of strata combined with by geological conditions such as coal seam thickness, coal seam dip angle, and advancement speed, as well as mining process parameters, and exhibits spatiotemporal correlation with the periodic pressure of the working face. In contrast, deformation of tunnel surrounding rock is caused by imbalanced stress distribution. It is evident that the causes of mining-induced overburden deformation and roadway surrounding rock deformation differ, making it quite challenging to establish a unified prediction model. Therefore, this thesis leverages the powerful nonlinear representation capabilities of deep learning to separately study prediction methods for fiber optic monitoring of the two-zone height, the periodic pressure distance of the working face, and roadway surrounding rock deformation. This research holds significant importance for the intelligent mining of coal.</p>
<p> The main research contents are as follows:</p>
<p>(1) Anomaly detection methods for fiber optic monitoring data. The differences in the quantity and characteristics of monitoring data result in varying features of abnormal data. For monitoring data with small quantities and long-term slow changes, a fast identification method based on improved clustering density is proposed. Firstly, the K-means clustering algorithm is used to quickly locate the ranges of single-point anomalies and interval anomalies, and then the nearest neighbor density-based algorithm is employed to identify abnormal data. For monitoring data with large quantities and imbalances between normal and abnormal data, a random forest anomaly detection method combining different sampling techniques is proposed. The method involves undersampling the normal majority class data by removing duplicates and oversampling the abnormal minority class data by synthetic minority oversampling. The random forest method is then applied to the new dataset for anomaly detection. Finally, the effectiveness of both anomaly detection methods is validated using fiber optic monitoring data from engineering applications.</p>
<p>(2) Methods for filling missing data in fiber optic monitoring data. The characteristics of missing data in fiber optic sensor monitoring data vary with different sampling methods. To address the problem of filling a small number of randomly missing values at multiple sampling points in distributed fiber optics, a fast filling method for single-attribute missing data at multiple sampling points using the Least Squares Support Vector Machine (LSSVM) is proposed. For addressing the problem of continuously missing data in time series from single sampling point fiber optic sensors, a method utilizing the correlation among data from similar fiber optic sensors is proposed. This method employs a Genetic Algorithm (GA) to optimize Extreme Gradient Boosting (XGBoost) for filling in the missing data. The effectiveness of this method is validated using different monitoring data from physical model tests and engineering applications, including mining-induced overburden deformation and tunnel deformation in roadway surrounding rock.</p>
<p>(3) Dynamic prediction method of two-zone height for distributed fiber optic monitoring of mining-induced overburden deformation. Building upon the framework of fiber optic frequency shift values for characterizing the spatiotemporal features of mining-induced overburden deformation, this factors such as rock compressive strength, rock elastic modulus, coal seam thickness, and mining speed affecting mining stress affecting mining stress is considered. It proposes an integrated approach using Empirical Mode Decomposition (EEMD) and integrated deep learning for dynamic prediction of two-zone height variations. The EEMD decomposition method is utilized to eliminate noise and non-stationarity in monitoring data. A prediction method is developed using integrated learning CNN-GRU-BP for the frequency shift components at all fiber optic sampling points, and these components are combined to obtain the predicted frequency shift curve across all sampling points. Based on the step heights of the frequency shift curve, the development heights of collapse zones and fracture zones are predicted. The effectiveness and robustness of the prediction method are validated through physical modeling experiments in both three-dimensional and planar setups.</p>
<p>(4) Dynamic prediction method for the step pressure on the working face of mining-induced overburden deformation using distributed fiber optic monitoring. Building upon the framework where the fiber frequency shift variability characterizes the spatiotemporal features of pressure on the working face using fiber optic frequency shift variations, the overburden strain information entropy of the fiber frequency shift value is defined. This quantitatively characterizes the impact of different rock strata deformations on the working face pressure.Considering factors such as coal seam thickness, mining height, working face advancement distance, and coal seam dip angle, a dual-branch convolutional recurrent neural network method for predicting the step pressure on the working face is proposed. Additionally, an ID-CNN-GRU network branch was developed to delve into the features of the step pressure implied by the fiber optic frequency shift variations and factors affecting periodic stress. These features are fused using a BP neural network to predict the periodic advancing step distance. The effectiveness and robustness of the prediction method are validated through experiments in both three-dimensional and planar physical models.</p>
<p>(5) Multi-step prediction method for deformation of adit deformation in tunnel surrounding rock monitored by fiber optics. In the engineering practice of fiber optic monitoring of surrounding rock deformation in tunnel roadways, the monitoring data contains a significant amount of noise, which affects the accuracy of multi-step predictions and leads to considerable error accumulation. In scenarios of slow surrounding rock deformation, such as adit deformation, a multi-step prediction method for adit deformation combining EEMD and TCN-LSTM is proposed. The EEMD method is used to eliminate noise from the monitoring data, and fuzzy entropy is utilized to extract effective components. A multi-channel TCN-LSTM deep neural network is constructed to extract long-term domain features and nonlinear characteristics from different components. By employing a multi-output strategy, the method effectively reduces cumulative error. The predicted components are superimposed to output the future deformation prediction results for the tunnel. The effectiveness and robustness of the multi-step prediction method are validated using field application data from fiber optic monitoring of tunnel deformation.</p>
<p>This thesis establishes a prediction method for surrounding rock deformation based on fiber optic monitoring using deep learning. This method provides theoretical and technical support for surrounding rock control and has significant positive implications for advancing the research and application of intelligent prediction and forecasting technology for mine surrounding rock deformation.</p>
﹀
|
参考文献: |
[1] 袁亮,姜耀东,何学秋等.煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J].煤炭学报,2018,43(2):306-319. [2] 王国法, 杜毅博,任怀伟,等.智能化煤矿顶层设计研究与实践[J].煤炭学报, 2020,45(6):1910-1922. [3] 王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J]煤炭学报,2019, 44(1):34-41. [4] 袁亮,吴劲松,杨科. 煤炭安全智能精准开采关键技术与应用[J].采矿与安全工程学报,2023,40(5):861-869. [5] 王国法,刘峰,庞义辉,等.煤矿智能化-煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(2):349-357. [6] 钱鸣高,缪协兴,何富连等.采场支架与围岩藕合作用机理研究[J].煤炭学报,1996,21(1):40-45. [7] 李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):906-913. [8] 张通,赵毅鑫,朱广沛,等.神东浅埋工作面矿压显现规律的多因素耦合分析[J]煤炭学报, 2016,41( S2) :287-296. [9] 朱磊,袁超峰,吴玉意等. 覆土偏载对浅埋主平硐衬砌支护结构影响研究[J].采矿与安全工程学报,2023,40(2):264-275. [10] 侯公羽,胡志宇,李子祥等.分布式光纤及光纤光栅传感技术在煤矿安全监测中的应用现状及展望. [J].煤炭学报, 2023,2(21):1-15. [11] 侯公羽,胡涛,李子祥,等.基于分布式光纤技术的采动影响下覆岩变形演化规律试验研究[J].岩土力学, 2020, 41(3): 970-979. [12] 柴敬,霍晓斌,钱云云等.采场覆岩变形和来压判别的分布式光纤监测模型试验[J].煤炭学报,2018,43(S1):36-43. [13] 张丹,张平松,施斌,等.采场覆岩变形与破坏的分布式光纤监测与分析[J].岩土工程学报,2015,37(5):952-957. [15] 柴敬,李淑军,张丁丁.基于分布式光纤的覆岩变形特征监测试验研究[J].煤矿安全,2020,51(4):47-51. [16] 柴敬,刘永亮,袁强等.矿山围岩变形与破坏光纤感测理论技术及应用[J].煤炭科学技术,2021,49(1):208-217. [22] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7. [25] 柴敬,邱标,魏世明,等.岩层变形检测的植入式光纤 Bragg光栅应变传递分析与应用[J]. 岩石力学与工程学报,2008,27(12):2 551-2556. [26] 张丁丁,柴敬,李毅等.松散层沉降光纤光栅监测的应变传递及其工程应用[J].岩石力学与工程学报,2015,34(S1):3289-3297. [27] 李飞,朱鸿鹄,张诚成等.地基变形光纤光栅监测可行性的试验研究[J].浙江大学学报(工学版),2017,51(01):204-211. [28] 郭东,魏强,李锦辉等.基于FRP筋自感知监测技术的隧道衬砌施工全过程应变分析[J].岩土力学,2022,43(12):3503-3512. [33] 张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究[J].工程地质学报, 2004, 12(4):422-426. [34] 张磊,施斌,魏广庆.基于BOTDA的削坡作用下边坡破坏过程模型试验研究[J].防灾减灾工程学报,2020,40(5):698-706. [36] 朱磊,柴敬,陈娜.基于光纤光栅技术的井筒变形监测[J].煤矿安全,2017,48(3) : 140-143. [37] 黄明利,吴彪,刘化宽,等.基于光纤光栅技术的井壁监测预警系统研究[J].土木工程学报,2015,48( S1) : 424-428. [40] 郭建伟,涂兴彦,朱伟强,等.基于光纤应变测试技术的井筒壁后注浆井壁变形监测[J].煤矿安全,2015,46(3):153-159. [41] 杨仁树,王茂源,马鑫民等. 煤巷围岩稳定性分类研究 [J].煤炭科学技术, 2015,10(43):40-47. [43] 梁敏富,方新秋,柏桦林,等.温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]煤炭学报,2017,42(11):2826-2833. [45] 李延河,杨战标,朱元广,等. 基于弱光纤光栅传感技术的围岩变形监测研究[J]. 煤炭科学技术,2023,51(6):11-19. [46] 柴敬,刘泓瑞,张丁丁,等.覆岩载荷扰动下平硐围岩变形分析及支护优化[J].工矿自动化,2023,49(03):13-22. [47] 方新秋,梁敏富,李爽等.智能工作面多参量精准感知与安全决策关键技术[J].煤炭学报,2020,45(01):493-508. [48] 侯公羽,李子祥,胡涛,等.植入式光纤传感器在隧道结构中的边界效应研究[J]. 岩土力学,2020,41( 8) : 2839-2850. [49] 侯公羽,李子祥,胡涛,等.用于隧道变形监测的分布式光纤定点式布设监测误差测定研究[J]岩土力学, 2020,41( 10) :3481-3490. [51] 侯公羽,谢冰冰,江玉生,等.基于BOTDR的光纤应变与顶板沉降变形关系的模型构建与试验研究[J].岩土力学,2017,38(5):1298-1304. [52] 侯公羽,谢冰冰,江玉生,等.用于巷道沉降变形监测的光纤锯齿状布设技术与原理[J].岩土力学,2017,38(A1):96-102. [53] 孙斌杨,张平松,付茂如,等.采场底板岩层破坏规律光纤测试方法与效果[J].合肥工业大学报(自然科学版),2017,40(5):701-707. [54] 张平松,张丹,孙斌杨,等.巷道断面空间岩层变形与破坏演化特征光纤监测研究[J].工程地质学报,2019,27(2):260-270. [57] 程刚,施斌,张平松,等.采动覆岩变形分布式光纤物理模型试验研究[J].工程地质学报,2017,25(4):926-934. [62] 刘少林,张丹,张平松,等.基于分布式光纤传感技术的采动覆岩变形监测[J].工程地质学报,2016,24(6):1118-1125. [63] 袁亮,郭华,沈宝堂,等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(3):357-365. [64] 谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8): 1391-1397. [65] 煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S]北京: 煤炭工业出版社,1985. [66] 夏小刚,黄庆享. 基于空隙率的冒落带动态高度研究[J]. 采矿与安全工程学报,2014,31(1):103-109. [67] 向鹏,孙利辉,纪洪广,等. 大采高工作面冒落带动态分布特征及确定方法[J]. 采矿与安全工程学报,2017,34(5):863-869. [68] 付建新,朱鹏瑞,宋卫东. 基于时滞非线性 MGM 模型的崩落法开采冒落高度预测研究[J]. 采矿与安全工程学报,2020,37(4):742-751. [69] 王志强,赵景礼,李泽荃.错层位内错式采场“三带”高度的确定方法[J].采矿与安全工程学报,2013,30(2):231-236. [70] 张军,王建鹏.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,2014,31(2):249-254. [71] 张宏伟,朱志洁,霍利杰,等.特厚煤层综放开采覆岩破坏高度[J].煤炭学报,2014,39(5):816-821. [72] 张建民,张凯,曹志国,等.基于采动-爆裂模型的导水裂隙带高度计算方法[J].煤炭学报,2017,42(6):1557-1564. [73] 柴敬,薛子武,郭瑞,等.采场覆岩垮落形态与演化的分布式光纤检测试验研究[J].中国矿业大学学报,2018,47(6):1185-1192. [74] 杜文刚,柴敬,张丁丁,等.采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J].煤炭学报,2021,46(5):1565-1575. [75] 侯公羽,李子祥,胡涛,等.基于BOFDA的覆岩采动“两带”变形表征研究[J].采矿与安全学报,2020,37(2):224-237. [76] 张庆贺,杨科,袁亮,等. 基于位移连续监测的采场两带变形垮落特性试验研究[J].工程科学与技术,2019,51(3):37-46. [77] 任奋华,蔡美峰,来兴平,等.采空区覆岩破坏高度监测分析[J]北京科技大学学报,2004,26(2):115-117. [78] 孙庆先,牟义,杨新亮,等. 红柳煤矿大采高综采覆岩“两带”高度的综合探测[J].煤炭学报,2019,38(s2):284-288. [79] 吴荣新,张卫,张平松.并行电法监测工作面“垮落带”岩层动态变化[J].煤炭学报,2012,37(4): 571-577. [80] 杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316. [81] 张军,王建鹏,杨文光.综采工作面冒落高度模糊综合预测模型研究[J].中国矿业大学学报,2014,43(3):426-431. [82] 柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018,35(2):360-367. [84] 施龙青,吴洪斌,李永雷,等.导水裂隙带发育高度预测的PCA-GA-Elman 优化模型[J]河南理工大学学报(自然科学版),2021,40(4) : 10-18.. [86] 袁峰,申涛,谢晓深,等.基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J].煤炭学报,2021,46(10):3234-3244. [87] 钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1991. [88] A.A.鲍里索夫.矿山压力原理与计算[M].北京:煤炭工业出版社,1986. [89] 钱鸣高,缪协兴,徐家林等.石平五.岩层控制的关键层理论[M].徐州:中国矿业大学出版. [90] 宋振骐.实用矿山压力控制[M].中国矿业大学出版社,1988. [91] 郑建伟,鞠文君,赵曦等.采场全生命周期及其应力的时空演化特征分析[J].煤炭学报,2019,44(4):995-1002. [92] 来兴平,许慧聪,康延雷.综放面覆岩运动“时-空-强”演化规律分析[J].西安科技大学学报,2018,6(38):871-878. [93] 王新丰,高明中,李隆钦.深部采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J].采矿与安全工程学报,2016,33(4):604-610. [94] 霍丙杰,荆雪冬,于斌,等.坚硬顶板厚煤层采场来压强度分级预测方法研究[J].岩石力学与工程学报,2019,38(9):1828-1835. [95] 尹希文,徐刚,刘前进,等.基于支架载荷的矿压双周期分析预测方法[J].煤炭学报,2021,46(10):3116-3126. [96] 金宝圣,王爱午,黄志栋,等.朔南矿区特厚煤层超长综放工作面矿压显现规律研究[J].煤矿安全,2019,50(12):203-206+211. [98] 程海星,朱磊,宋立平,等.基于逆向传播神经网络的工作面顶板矿压数据预测[J].煤矿安全,2021,52(5):216-220. [99] 张洋,马云东,崔铁生.基于小波和混沌优化LSSVM的周期来压预测[J].安全与环境学报,2014,14(4):63-67. [101] 赵毅鑫,杨志良,马斌杰,等.基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(01):54-65. [102] 曾庆田,吕珍珍,石永奎,等.基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J].煤炭科学技术,2021,49(7):16-23. [103] 庞义辉,巩师鑫,刘庆波,等. 深部采场覆岩断裂失稳过程及支架载荷预测分析[J]. 采矿与安全工程学报,2021,38(2):305-317. [104] 杨科,刘文杰,焦彪,等.深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J].岩土工程学报,2021,43(01):85-93. [105] 张诚成,施斌,朱鸿鹄,等.地面沉降分布式光纤监测土-缆耦合性分析[J].岩土工程学报,2019,41(9):1670-1679. [106] 柴敬,王润沛,杜文刚,等.基于XGBoost的光纤监测矿压时序预测研究[J].采矿与岩层控制工程学报,2020,2(4):64-71. [107] 柴敬,张锐新,欧阳一博等.基于贝叶斯算法优化的CatBoost矿压显现预测[J].工矿自动化,2023,49(07):83-91. [108] 冀汶莉,刘艺欣,柴敬,等.基于随机森林的矿压预测方法[J].采矿与岩层控制工程学报,2021,3(3):3-11. [111] 张志强,李化云,阚呈,等. 大相岭隧道断层破碎带围岩变形的GA-BP神经网络预测技术[J].现代隧道技术,2014,51(2):83-89. [112] 周冠南,孙玉永,贾蓬. 基于遗传算法的 BP 神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113. [113] 卜庆为.基于ARMA 时序分析模型的巷道围岩变形预测[J].采矿技术,2014, 14(1):56-58. [114] 文明,张顶立,房倩,等. 隧道围岩变形的非线性自回归时间序列预测方法研究[J]. 北京交通大学学报,2017, 41(4): 1-7. [115] 蔡舒凌,李二兵,陈 亮, 等. 基于FA-NAR 动态神经网络的隧洞围岩变形时序预测研究[J]. 岩石力学与工程学报,2019,38(S2):3346-3354. [116] 郗刘涛,基于LSTM的采动覆岩变形监测数据预测方法研究[D].西安:西安科技大学,2019. [119] 赵京胜,宋梦雪,高祥,朱巧明.自然语言处理中的文本表示研究[J].软件学报,2022,33(1):102-128. [122] 农元君,王俊杰,陈红,等.基于注意力机制和编码-解码架构的施工场景图像描述方法[J].浙江大学学报,2022,56(2):237-246. [123] 李潇睿,班晓娟,袁兆麟,等.工业场景下基于深度学习的时序预测方法及应用[J].工程科学学报,2022,44(4)757-766. [142] 张强,孙绍安,张坤,等.基于主动红外激励的煤岩界面识别[J].煤炭学报, 2020,45(9):3363-3370. [143] 司垒,王忠宾,熊祥祥,等.基于改进U-Net网络模型的综采工作面煤岩识别方法[J].煤炭学报,2021,46(S1):578-589. [145] 曹玉超,范伟强.基于不同深度识别算法的矿井水位标尺刻度识别性能分析与研[J].煤炭学报,2019,44(11):3529-3538. [147] 乔伟,靳德武,王皓,等.基于云服务的煤矿水害监测大数据智能预警平台构建[J].煤炭学报,2020,45(07):2619-2627. [148] 靳德武,赵春虎,段建华,等.煤层底板水害三维监测与智能预警系统研究[J].煤炭学报,2020,45(6):2256-2264. [152] 蒋磊,马六章,杨克虎,等.基于MFCC和FD-CNN卷积神经网络的综放工作面煤矸智能识别[J].煤炭学报,2020,45(S2):1109-1117. [153] 陈伟华,南鹏飞,闫孝姮,等.基于深度学习的采煤机截割轨迹预测及模型优化[J].煤炭学报,2020,45(12):4209-4215. [154] 田睿,孟海东,陈世江,等.基于深度神经网络的岩爆烈度分级预测[J].煤炭学报, 2020,45(S1):191-201. [155] 向阳,赵银娣,董霁红.基于改进UNet孪生网络的遥感影像矿区变化检测[J].煤炭学报,2019,44(12):3773-3780. [156] 王绍清,常方哲,陈昊,等.高变质煤HRTEM图像中芳香晶格条纹的MASK R-CNN识别[J].煤炭学报,2021,46(2):591-601. [157] 钟国强,王浩,李莉,等.基于SFLA-GRNN模型的基坑地表最大沉降预测[J].岩土力学,2019,40(2):792-780. [158] 邵勇,陈从新,鲁祖德,等.基于机器学习的深基坑人字形支护变形预测分析[J].岩土力学, 2020,40(S1):2-11. [159] 刘靖阳,王涛,张倩等.BOTDA系统温度应变双参量传感技术研究进展[J].激光与光电子学进展,2021,58(13):1306021.1-10. [161] 柴敬,雷武林,杜文刚,等.分布式光纤监测的采场巨厚复合关键层变形试验研究[J].煤炭学报,2020,45(1):44-53. [163] 朱磊. 基于光纤频移变化度的采动覆岩变形表征试验研究[D]. 西安:西安科技大学,2018. [166] 杨娜,付颖煜,李天昊. 基于局部离群因子的数据异常识别方法及其在古建结构监测中的应用[J]. 建筑结构学报,2022,43(10):7-16. [167] 吴永斌,张建忠,袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J] 电网技术,2023,47(6):2368-2372. [168] 杨旭,朱振峰,徐美香等.多视角数据缺失补全[J].软件学报,2018,29(4):945-956. [170] 袁强.采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安:西安科技大学,2017年. [171] 龚尚红,潘庭龙,吴定会等.基于 MCMC 的微网光伏数据缺失填补方法的研究[J].可再生能源,2018, 36 (3):346-351. [172] 庞新生.缺失数据处理方法的比较[J].统计与决策,2010(24):152-155. [179] 李艳霞,柴毅,胡友强,等.不平衡数据分类方法综述[J].控制与决策, 2019, 34(5):673-689. [180] Breiman L. Random Forest[J]. Machine Learning,2001,45(1):5-32. [181] 余嘉茵,何玉林,崔来中, 等. 针对大规模数据的分布一致缺失值插补算法[J].清华大学学报(自然科学版), 2023,63(5):740-753. [185] 舒宗运,黎灵,李宏杰.特厚煤层综放开采覆岩“两带”高度研究[J].煤炭科学技术,2016,44(s):52-54. [186] 徐峰,范春菊,徐勋建,等.基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J].上海交通大学学报,2018,52(10):1388-1395+1416. [187] 谢丽蓉,王斌,包洪印,等.基于EEMD-WOA-LSSVM的超短期风电功率预测[J].太阳能学报,2021,42(7):290-297. [189] Lecun Y, Bengio Y, Hinton G. Deep learning[J]Nature,2015,521(7553):436-444. [192] 薛建坤,王皓, 赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(6):1223-1231. [193] 许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J]煤炭学报,2014, 39(8):1625-1634. [194] 蒋力帅,武泉森,李小裕,等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报,2017,42(8):1 951-1 959. [197] 陈珂,梁斌,柯文德,等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展,2018,55(5):945-957. [199] 刘帅,张旭含,李笑迎,等. 基于双分支卷积网络的高光谱与多光谱图像协同土地利用分类.[J]农业工程学报,2020,36(14):253-263. [200] 于健洋,李元辉,于适维等.初次来压前综采工作面前方应力影响区范围[J],东北大学学报(自然科学版),2018,39(4):559-565. [201] 冀汶莉,田忠,张丁丁,等. 基于遗传-深度神经网络的分布式光纤监测工作面矿压预测[J].科学技术与工程,2022,22(24):135-143. [203] 刘志慧,徐兴平,牛怀磊等. 基于 BBKC 的立管涡激振动响应最优降噪光滑模型参数识别研究[J].振动与冲击,2022,41(12):254-261. [205] 熊波,李肖霖,王宇晴等.基于长短时记忆神经网络的中国地区电离层TEC预测[J].地球物理学报,2022,65(07):2365-2377. [206] 向玲,刘佳宁,苏浩.基于CEEMDAN二次分解和LSTM的风速多步预测研究[J].太阳能学报,2022,43(8):334-350. |
中图分类号: | TD325 |
开放日期: | 2024-07-02 |