- 无标题文档
查看论文信息

论文中文题名:

     

姓名:

 冀汶莉    

学号:

 B201412023    

保密级别:

     

论文语种:

 chi    

学科代码:

 0819    

学科名称:

  -     

学生类型:

     

学位级别:

     

学位年度:

 2024    

培养单位:

 西    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

     

第一导师姓名:

 柴敬    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-07-02    

论文答辩日期:

 2024-06-08    

论文外文题名:

 Research on deformation prediction of surrounding rock in fiber optic sensing based on deep learning    

论文中文关键词:

 围岩变形预测 ; 深度学习 ; 光纤监测 ; 两带高度 ; 周期来压步距 ; 巷道围岩变形    

论文外文关键词:

 prediction of surrounding rock deformation ; fiber sensing monitoring ; deep learning ; two-zone height ; periodic pressure step distance ; roadway surrounding rock deformation.    

论文中文摘要:
<p>线</p> <p></p> <p>(1) 使K-means</p> <p>(2) (LSSVM)(GA)(XGBoost)</p> <p>(3) (EEMD)使EEMDCNN-GRU-BP线线</p> <p>(4) APMCNN-GRUID-CNN-GRUBP</p> <p>(5) EEMDTCN-LSTMEEMD使TCN-LSTM线</p> <p></p>
论文外文摘要:
<p>The monitoring and predicting the surrounding rock deformation in mines is a crucial prerequisite and foundation for ensuring mine safety and achieving intelligent mining. Existing work on optical fiber sensing of surrounding rock deformation has established the optical fiber characterization of mining overburden deformation and the strain transfer mechanism between optical fiber sensors and tunnel surrounding rock through similar material physical model tests and field applications. However, there is a lack of in-depth exploration on the spatiotemporal characteristics of surrounding rock deformation implied by fiber optic monitoring data and on methods for predicting surrounding rock deformation. Mining-induced overburden deformation is caused by the redistribution and dynamic adjustment of stress in overlying strata due to coal extraction, leading to rock fracture, collapse, and movement. The deformation of strata combined with by geological conditions such as coal seam thickness, coal seam dip angle, and advancement speed, as well as mining process parameters, and &nbsp;exhibits spatiotemporal correlation with the periodic pressure of the working face. In contrast, deformation of tunnel surrounding rock is caused by imbalanced stress distribution. It is evident that the causes of mining-induced overburden deformation and roadway surrounding rock deformation differ, making it quite challenging to establish a unified prediction model. Therefore, this thesis leverages the powerful nonlinear representation capabilities of deep learning to separately study prediction methods for fiber optic monitoring of the two-zone height, the periodic pressure distance of the working face, and roadway surrounding rock deformation. This research holds significant importance for the intelligent mining of coal.</p> <p>&nbsp;The main research contents are as follows:</p> <p>(1)&nbsp; Anomaly detection methods for fiber optic monitoring data. The differences in the quantity and characteristics of monitoring data result in varying features of abnormal data. For monitoring data with small quantities and long-term slow changes, a fast identification method based on improved clustering density is proposed. Firstly, the K-means clustering algorithm is used to quickly locate the ranges of single-point anomalies and interval anomalies, and then the nearest neighbor density-based algorithm is employed to identify abnormal data. For monitoring data with large quantities and imbalances between normal and abnormal data, a random forest anomaly detection method combining different sampling techniques is proposed. The method involves undersampling the normal majority class data by removing duplicates and oversampling the abnormal minority class data by synthetic minority oversampling. The random forest method is then applied to the new dataset for anomaly detection. Finally, the effectiveness of both anomaly detection methods is validated using fiber optic monitoring data from engineering applications.</p> <p>(2) Methods for filling missing data in fiber optic monitoring data. The characteristics of missing data in fiber optic sensor monitoring data vary with different sampling methods. To address the problem of filling a small number of randomly missing values at multiple sampling points in distributed fiber optics, a fast filling method for single-attribute missing data at multiple sampling points using the Least Squares Support Vector Machine (LSSVM) is proposed. For addressing the problem of continuously missing data in time series from single sampling point fiber optic sensors, a method utilizing the correlation among data from similar fiber optic sensors is proposed. This method employs a Genetic Algorithm (GA) to optimize Extreme Gradient Boosting (XGBoost) for filling in the missing data. The effectiveness of this method is validated using different monitoring data from physical model tests and engineering applications, including mining-induced overburden deformation and tunnel deformation in roadway surrounding rock.</p> <p>(3) Dynamic prediction method of two-zone height for distributed fiber optic monitoring of mining-induced overburden deformation. Building upon the framework of fiber optic frequency shift values for characterizing the spatiotemporal features of mining-induced overburden deformation, this factors such as rock compressive strength, rock elastic modulus, coal seam thickness, and mining speed affecting mining stress affecting mining stress is considered. It proposes an integrated approach using Empirical Mode Decomposition (EEMD) and integrated deep learning for dynamic prediction of two-zone height variations. The EEMD decomposition method is utilized to eliminate noise and non-stationarity in monitoring data. A prediction method is developed using integrated learning CNN-GRU-BP for the frequency shift components at all fiber optic sampling points, and these components are combined to obtain the predicted frequency shift curve across all sampling points. Based on the step heights of the frequency shift curve, the development heights of collapse zones and fracture zones are predicted. The effectiveness and robustness of the prediction method are validated through physical modeling experiments in both three-dimensional and planar setups.</p> <p>(4) Dynamic prediction method for the step pressure on the working face of mining-induced overburden deformation using distributed fiber optic monitoring. Building upon the framework where the fiber frequency shift variability characterizes the spatiotemporal features of pressure on the working face using fiber optic frequency shift variations, the overburden strain information entropy of the fiber frequency shift value is defined. This quantitatively characterizes the impact of different rock strata deformations on the working face pressure.Considering factors such as coal seam thickness, mining height, working face advancement distance, and coal seam dip angle, a dual-branch convolutional recurrent neural network method for predicting the step pressure on the working face is proposed. Additionally, an ID-CNN-GRU network branch was developed to delve into the features of the step pressure implied by the fiber optic frequency shift variations and factors affecting periodic stress. These features are fused using a BP neural network to predict the periodic advancing step distance. The effectiveness and robustness of the prediction method are validated through experiments in both three-dimensional and planar physical models.</p> <p>(5)&nbsp; Multi-step prediction method for deformation of adit deformation in tunnel surrounding rock monitored by fiber optics. In the engineering practice of fiber optic monitoring of surrounding rock deformation in tunnel roadways, the monitoring data contains a significant amount of noise, which affects the accuracy of multi-step predictions and leads to considerable error accumulation. In scenarios of slow surrounding rock deformation, such as adit deformation, a multi-step prediction method for adit deformation combining EEMD and TCN-LSTM is proposed. The EEMD method is used to eliminate noise from the monitoring data, and fuzzy entropy is utilized to extract effective components. A multi-channel TCN-LSTM deep neural network is constructed to extract long-term domain features and nonlinear characteristics from different components. By employing a multi-output strategy, the method effectively reduces cumulative error. The predicted components are superimposed to output the future deformation prediction results for the tunnel. The effectiveness and robustness of the multi-step prediction method are validated using field application data from fiber optic monitoring of tunnel deformation.</p> <p>This thesis establishes a prediction method for surrounding rock deformation based on fiber optic monitoring using deep learning. This method provides theoretical and technical support for surrounding rock control and has significant positive implications for advancing the research and application of intelligent prediction and forecasting technology for mine surrounding rock deformation.</p>
参考文献:

[1] 袁亮,姜耀东,何学秋等.煤矿典型动力灾害风险精准判识及监控预警关键技术研究进展[J].煤炭学报,2018,43(2):306-319.

[2] 王国法, 杜毅博,任怀伟,等.智能化煤矿顶层设计研究与实践[J].煤炭学报, 2020,45(6):1910-1922.

[3] 王国法,赵国瑞,任怀伟.智慧煤矿与智能化开采关键核心技术分析[J]煤炭学报,2019, 44(1):34-41.

[4] 袁亮,吴劲松,杨科. 煤炭安全智能精准开采关键技术与应用[J].采矿与安全工程学报,2023,40(5):861-869.

[5] 王国法,刘峰,庞义辉,等.煤矿智能化-煤炭工业高质量发展的核心技术支撑[J].煤炭学报,2019,44(2):349-357.

[6] 钱鸣高,缪协兴,何富连等.采场支架与围岩藕合作用机理研究[J].煤炭学报,1996,21(1):40-45.

[7] 李振华,许延春,李龙飞,等.基于BP神经网络的导水裂隙带高度预测[J].采矿与安全工程学报,2015,32(6):906-913.

[8] 张通,赵毅鑫,朱广沛,等.神东浅埋工作面矿压显现规律的多因素耦合分析[J]煤炭学报, 2016,41( S2) :287-296.

[9] 朱磊,袁超峰,吴玉意等. 覆土偏载对浅埋主平硐衬砌支护结构影响研究[J].采矿与安全工程学报,2023,40(2):264-275.

[10] 侯公羽,胡志宇,李子祥等.分布式光纤及光纤光栅传感技术在煤矿安全监测中的应用现状及展望. [J].煤炭学报, 2023,2(21):1-15.

[11] 侯公羽,胡涛,李子祥,等.基于分布式光纤技术的采动影响下覆岩变形演化规律试验研究[J].岩土力学, 2020, 41(3): 970-979.

[12] 柴敬,霍晓斌,钱云云等.采场覆岩变形和来压判别的分布式光纤监测模型试验[J].煤炭学报,2018,43(S1):36-43.

[13] 张丹,张平松,施斌,等.采场覆岩变形与破坏的分布式光纤监测与分析[J].岩土工程学报,2015,37(5):952-957.

[14] B Y Sun,P S Zhang,R X Wu,et al. Dynamic detection and analysis of overburden deformation and failure in a mining face using distributed optical fiber sensing[J]. Journal of Geophysics and Engineering,2018,15:2545-2555.

[15] 柴敬,李淑军,张丁丁.基于分布式光纤的覆岩变形特征监测试验研究[J].煤矿安全,2020,51(4):47-51.

[16] 柴敬,刘永亮,袁强等.矿山围岩变形与破坏光纤感测理论技术及应用[J].煤炭科学技术,2021,49(1):208-217.

[17] Jiang Z P, Liu Y Y, Shao Z E, et al. An Improved VGG16 Model for Pneumonia Image Classification[J]. Applied Sciences, 2021,11(23): 11185.

[18] Gholamalinejad H, Khosravi H. Vehicle classification using a real-time convolutional structure based on DWT pooling layer and SE blocks[J]. Expert Systems with Applications, 2021, 183: 115420.

[19] Agrawal A, Choudhary A. Perspective: materials informatics and big data: realization of the fourth paradigm of science in materials science[J]. APLMaterials, 2016, 4(5): 053208..

[20] Bogaerts, T., Masegosa, A.D., Angarita-Zapata, J.S., et al. A graph CNN-LSTM neural network for short and long-term traffic forecasting based on trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2020, (112): 62-77.

[21] Tian Zhou, Ziqing Ma, Qingsong Wen, et al. FEDformer :Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting[C].//2022 Thirty-ninth International Conference on Machine Learning(ICML),2022:1381-1400.

[22] 袁亮.煤炭精准开采科学构想[J].煤炭学报,2017,42(1):1-7.

[23] Shmidt Hattenberger C,Naumann M,Borm G. Fiber Bragg grating strain measurements in comparison with additional techniques for rock mechanical testing[J]. IEEE Sensors Journal,2003,3(1):50-55.

[24] SANADA H, SUGITA Y, KASHIWAI Y. Development of a multi-interval displacement sensor using fiber Bragg grating technology[J]. International Journal of Rock Mechanics and Mining Sciences,2012,54:27-36.

[25] 柴敬,邱标,魏世明,等.岩层变形检测的植入式光纤 Bragg光栅应变传递分析与应用[J]. 岩石力学与工程学报,2008,27(12):2 551-2556.

[26] 张丁丁,柴敬,李毅等.松散层沉降光纤光栅监测的应变传递及其工程应用[J].岩石力学与工程学报,2015,34(S1):3289-3297.

[27] 李飞,朱鸿鹄,张诚成等.地基变形光纤光栅监测可行性的试验研究[J].浙江大学学报(工学版),2017,51(01):204-211.

[28] 郭东,魏强,李锦辉等.基于FRP筋自感知监测技术的隧道衬砌施工全过程应变分析[J].岩土力学,2022,43(12):3503-3512.

[29] Klar A, Linker R. Feasibility study of automated detection of tunnel excavation by Brillouin optical time domain reflectometry[J]. Tunnelling and underground space technology,2010,25(5):575-586.

[30] Tina Schwamb, Kenichi Soga, Robert J Mair, et al. Fiber optic monitoring of a deep circular excavation[J]. Geotechnical Engineering,2014,167(2):144-154.

[31] Marcel Fajkus, Jan Nedoma, Pavel Mec, et al. Analysis of the highway tunnels monitoring using an optical fiber implemented into primary lining[J]. Journal of ELECTRICAL ENGINEERING,2017,68(5):364-370.

[32] Aldo Minardo, Ester Catalano,1 Agnese Coscetta, et al. Long-Term Monitoring of a Tunnel in a Landslide Prone Area by Brillouin-Based Distributed Optical Fiber Sensors[J]. Sensors,2021;21:7032-7046.

[33] 张丹,施斌,徐洪钟.基于BOTDR的隧道应变监测研究[J].工程地质学报, 2004, 12(4):422-426.

[34] 张磊,施斌,魏广庆.基于BOTDA的削坡作用下边坡破坏过程模型试验研究[J].防灾减灾工程学报,2020,40(5):698-706.

[35] Tao Wang, Bin Shi, Yihuan Zhu. Structural Monitoring and Performance Assessment of Shield Tunnels during the Operation Period Based on Distributed Optical-Fiber Sensors[J]. Symmetry 2019,11:940-953.

[36] 朱磊,柴敬,陈娜.基于光纤光栅技术的井筒变形监测[J].煤矿安全,2017,48(3) : 140-143.

[37] 黄明利,吴彪,刘化宽,等.基于光纤光栅技术的井壁监测预警系统研究[J].土木工程学报,2015,48( S1) : 424-428.

[38] LIU Z,GAO G,XU F,et al.Optical fiber sensing technology in deformation monitoring shaft of Jinchuan Mine[J].Rock Mechanics: Achievements and Ambitions,2012: 31-34.

[39] J Piao C, Yuan J, Shi B, et al. Application of distributed optical fiber sensing technology in the anomaly detection of shaft lining in grouting[J]. Journal of Sensors,2015(2015):1-8.

[40] 郭建伟,涂兴彦,朱伟强,等.基于光纤应变测试技术的井筒壁后注浆井壁变形监测[J].煤矿安全,2015,46(3):153-159.

[41] 杨仁树,王茂源,马鑫民等. 煤巷围岩稳定性分类研究 [J].煤炭科学技术, 2015,10(43):40-47.

[42] LIANG Minfu, FANG Xinqiu. Application of fiber Bragg grating sensing technology for bolt force status monitoring in roadways[J].Applied Sciences,2018,8(1):107-118.

[43] 梁敏富,方新秋,柏桦林,等.温补型光纤Bragg光栅压力传感器在锚杆支护质量监测中的应用[J]煤炭学报,2017,42(11):2826-2833.

[44] JO B W, KHAN R M A, LEE Y S, et al.A fiber Bragg grating-based condition monitoring and early damage detection system for the structural safety of underground coal mines using the Internet of things[J].Journal of Sensors,2018(4) : 1-16.

[45] 李延河,杨战标,朱元广,等. 基于弱光纤光栅传感技术的围岩变形监测研究[J]. 煤炭科学技术,2023,51(6):11-19.

[46] 柴敬,刘泓瑞,张丁丁,等.覆岩载荷扰动下平硐围岩变形分析及支护优化[J].工矿自动化,2023,49(03):13-22.

[47] 方新秋,梁敏富,李爽等.智能工作面多参量精准感知与安全决策关键技术[J].煤炭学报,2020,45(01):493-508.

[48] 侯公羽,李子祥,胡涛,等.植入式光纤传感器在隧道结构中的边界效应研究[J]. 岩土力学,2020,41( 8) : 2839-2850.

[49] 侯公羽,李子祥,胡涛,等.用于隧道变形监测的分布式光纤定点式布设监测误差测定研究[J]岩土力学, 2020,41( 10) :3481-3490.

[50] Tang B, Cheng H. Application of distributed optical fiber sensing technology in surrounding rock deformation control of TBM-excavated coal mine roadway[J]. Journal of Sensors,2018,2018:1-10.

[51] 侯公羽,谢冰冰,江玉生,等.基于BOTDR的光纤应变与顶板沉降变形关系的模型构建与试验研究[J].岩土力学,2017,38(5):1298-1304.

[52] 侯公羽,谢冰冰,江玉生,等.用于巷道沉降变形监测的光纤锯齿状布设技术与原理[J].岩土力学,2017,38(A1):96-102.

[53] 孙斌杨,张平松,付茂如,等.采场底板岩层破坏规律光纤测试方法与效果[J].合肥工业大学报(自然科学版),2017,40(5):701-707.

[54] 张平松,张丹,孙斌杨,等.巷道断面空间岩层变形与破坏演化特征光纤监测研究[J].工程地质学报,2019,27(2):260-270.

[55] Lei WL, Chai J, Zhang D, et al. Experimental Study on Overburden Deformation Evolution under Mining Effect Based on Fiber Bragg Grating Sensing Technology[J]. Journal of Sensors, 2020(4):1-16.

[56] Hu T, Hou G, Li Z. The field monitoring experiment of the roof strata movement in coal mining based on DFOS[J]. Sensors, 2020, 20(5): 1318-1340.

[57] 程刚,施斌,张平松,等.采动覆岩变形分布式光纤物理模型试验研究[J].工程地质学报,2017,25(4):926-934.

[58] Chai J, Du W, Yuan Q, et al. Analysis of test method for physical model test of mining based on optical fiber sensing technology detection[J]. Optical Fiber Technology, 2019,48:84-94.

[59] Jing Chai, Wengang Du. Experimental study on the application of BOTDA in the overlying strata deformation monitoring induced by coal mining[J]. Journal of Sensors, 2019:1314-1324.

[60] Liu Y, Li W, He J, et al. Application of Brillouin optical time domain reflectometry to dynamic monitoring of overburden deformation and failure caused by underground mining[J]. International Journal of Rock Mechanics and Mining Sciences, 2018,106:133-143.

[61] Zhou W, Zhang P, Wu R, et al. Dynamic monitoring the deformation and failure of extra-thick coal seam floor in deep mining[J]. Journal of Applied Geophysics, 2019, 163: 132-138.

[62] 刘少林,张丹,张平松,等.基于分布式光纤传感技术的采动覆岩变形监测[J].工程地质学报,2016,24(6):1118-1125.

[63] 袁亮,郭华,沈宝堂,等.低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J].煤炭学报,2011,36(3):357-365.

[64] 谢和平,周宏伟,薛东杰,等.我国煤与瓦斯共采:理论、技术与工程[J].煤炭学报,2014,39(8): 1391-1397.

[65] 煤炭工业部.建筑物、水体、铁路及主要井巷煤柱留设与压煤开采规程[S]北京: 煤炭工业出版社,1985.

[66] 夏小刚,黄庆享. 基于空隙率的冒落带动态高度研究[J]. 采矿与安全工程学报,2014,31(1):103-109.

[67] 向鹏,孙利辉,纪洪广,等. 大采高工作面冒落带动态分布特征及确定方法[J]. 采矿与安全工程学报,2017,34(5):863-869.

[68] 付建新,朱鹏瑞,宋卫东. 基于时滞非线性 MGM 模型的崩落法开采冒落高度预测研究[J]. 采矿与安全工程学报,2020,37(4):742-751.

[69] 王志强,赵景礼,李泽荃.错层位内错式采场“三带”高度的确定方法[J].采矿与安全工程学报,2013,30(2):231-236.

[70] 张军,王建鹏.采动覆岩“三带”高度相似模拟及实证研究[J].采矿与安全工程学报,2014,31(2):249-254.

[71] 张宏伟,朱志洁,霍利杰,等.特厚煤层综放开采覆岩破坏高度[J].煤炭学报,2014,39(5):816-821.

[72] 张建民,张凯,曹志国,等.基于采动-爆裂模型的导水裂隙带高度计算方法[J].煤炭学报,2017,42(6):1557-1564.

[73] 柴敬,薛子武,郭瑞,等.采场覆岩垮落形态与演化的分布式光纤检测试验研究[J].中国矿业大学学报,2018,47(6):1185-1192.

[74] 杜文刚,柴敬,张丁丁,等.采动覆岩导水裂隙发育光纤感测与表征模型试验研究[J].煤炭学报,2021,46(5):1565-1575.

[75] 侯公羽,李子祥,胡涛,等.基于BOFDA的覆岩采动“两带”变形表征研究[J].采矿与安全学报,2020,37(2):224-237.

[76] 张庆贺,杨科,袁亮,等. 基于位移连续监测的采场两带变形垮落特性试验研究[J].工程科学与技术,2019,51(3):37-46.

[77] 任奋华,蔡美峰,来兴平,等.采空区覆岩破坏高度监测分析[J]北京科技大学学报,2004,26(2):115-117.

[78] 孙庆先,牟义,杨新亮,等. 红柳煤矿大采高综采覆岩“两带”高度的综合探测[J].煤炭学报,2019,38(s2):284-288.

[79] 吴荣新,张卫,张平松.并行电法监测工作面“垮落带”岩层动态变化[J].煤炭学报,2012,37(4): 571-577.

[80] 杨达明,郭文兵,赵高博,等.厚松散层软弱覆岩下综放开采导水裂隙带发育高度[J].煤炭学报,2019,44(11):3308-3316.

[81] 张军,王建鹏,杨文光.综采工作面冒落高度模糊综合预测模型研究[J].中国矿业大学学报,2014,43(3):426-431.

[82] 柴华彬,张俊鹏,严超.基于GA-SVR的采动覆岩导水裂隙带高度预测[J].采矿与安全工程学报,2018,35(2):360-367.

[83] Changfang Guo, Zhen Yang, Shen Li, et al. Predicting the Water-Conducting Fracture Zone (WCFZ) Height Using an MPGA-SVR Approach[J].Sustainability 2020, 12,1809-1825.

[84] 施龙青,吴洪斌,李永雷,等.导水裂隙带发育高度预测的PCA-GA-Elman 优化模型[J]河南理工大学学报(自然科学版),2021,40(4) : 10-18..

[85] Xiang He, Yixin Zhao, Cun Zhang, et al. A Model to Estimate the Height of the Water-conducting Fracture Zone for Longwall Panels in Western China[J]. Mine Water and the Environment,2020,39:823-838.

[86] 袁峰,申涛,谢晓深,等.基于深度学习的地震多属性融合技术在导水裂隙带探测中的应用[J].煤炭学报,2021,46(10):3234-3244.

[87] 钱鸣高,刘听成.矿山压力及其控制[M].北京:煤炭工业出版社,1991.

[88] A.A.鲍里索夫.矿山压力原理与计算[M].北京:煤炭工业出版社,1986.

[89] 钱鸣高,缪协兴,徐家林等.石平五.岩层控制的关键层理论[M].徐州:中国矿业大学出版.

[90] 宋振骐.实用矿山压力控制[M].中国矿业大学出版社,1988.

[91] 郑建伟,鞠文君,赵曦等.采场全生命周期及其应力的时空演化特征分析[J].煤炭学报,2019,44(4):995-1002.

[92] 来兴平,许慧聪,康延雷.综放面覆岩运动“时-空-强”演化规律分析[J].西安科技大学学报,2018,6(38):871-878.

[93] 王新丰,高明中,李隆钦.深部采场采动应力、覆岩运移以及裂隙场分布的时空耦合规律[J].采矿与安全工程学报,2016,33(4):604-610.

[94] 霍丙杰,荆雪冬,于斌,等.坚硬顶板厚煤层采场来压强度分级预测方法研究[J].岩石力学与工程学报,2019,38(9):1828-1835.

[95] 尹希文,徐刚,刘前进,等.基于支架载荷的矿压双周期分析预测方法[J].煤炭学报,2021,46(10):3116-3126.

[96] 金宝圣,王爱午,黄志栋,等.朔南矿区特厚煤层超长综放工作面矿压显现规律研究[J].煤矿安全,2019,50(12):203-206+211.

[97] Tan T, Yang Z, Chang F, et al. Prediction of the first weighting from the working face roof in a coal mine based on a GA-BP neural network[J]. Applied Sciences, 2019, 9(19): 4159-4169.

[98] 程海星,朱磊,宋立平,等.基于逆向传播神经网络的工作面顶板矿压数据预测[J].煤矿安全,2021,52(5):216-220.

[99] 张洋,马云东,崔铁生.基于小波和混沌优化LSSVM的周期来压预测[J].安全与环境学报,2014,14(4):63-67.

[100] Wang K, Zhuang X, Zhao X, et al. Roof Pressure Prediction in Coal Mine Based on Grey Neural Network[J]. IEEE Access,2020,8:117051-117061.

[101] 赵毅鑫,杨志良,马斌杰,等.基于深度学习的大采高工作面矿压预测分析及模型泛化[J]. 煤炭学报,2020,45(01):54-65.

[102] 曾庆田,吕珍珍,石永奎,等.基于Prophet+LSTM模型的煤矿井下工作面矿压预测研究[J].煤炭科学技术,2021,49(7):16-23.

[103] 庞义辉,巩师鑫,刘庆波,等. 深部采场覆岩断裂失稳过程及支架载荷预测分析[J]. 采矿与安全工程学报,2021,38(2):305-317.

[104] 杨科,刘文杰,焦彪,等.深部厚硬顶板综放开采覆岩运移三维物理模拟试验研究[J].岩土工程学报,2021,43(01):85-93.

[105] 张诚成,施斌,朱鸿鹄,等.地面沉降分布式光纤监测土-缆耦合性分析[J].岩土工程学报,2019,41(9):1670-1679.

[106] 柴敬,王润沛,杜文刚,等.基于XGBoost的光纤监测矿压时序预测研究[J].采矿与岩层控制工程学报,2020,2(4):64-71.

[107] 柴敬,张锐新,欧阳一博等.基于贝叶斯算法优化的CatBoost矿压显现预测[J].工矿自动化,2023,49(07):83-91.

[108] 冀汶莉,刘艺欣,柴敬,等.基于随机森林的矿压预测方法[J].采矿与岩层控制工程学报,2021,3(3):3-11.

[109] YAO B Z, YANG C Y, YAO J B, et al. Tunnel surrounding rock displacement prediction using support vector machine[J]. International Journal of Computational Intelligence Systems,2010,3(6):843-852.

[110] YAO B, YAO J, ZHANG M, et al. Improved support vector machine regression in multi-step-ahead prediction for rock displacement surrounding a tunnel[J]. Scientia Iranica,2014,21(4):1309-1316.

[111] 张志强,李化云,阚呈,等. 大相岭隧道断层破碎带围岩变形的GA-BP神经网络预测技术[J].现代隧道技术,2014,51(2):83-89.

[112] 周冠南,孙玉永,贾蓬. 基于遗传算法的 BP 神经网络在隧道围岩参数反演和变形预测中的应用[J].现代隧道技术,2018,55(1):107-113.

[113] 卜庆为.基于ARMA 时序分析模型的巷道围岩变形预测[J].采矿技术,2014, 14(1):56-58.

[114] 文明,张顶立,房倩,等. 隧道围岩变形的非线性自回归时间序列预测方法研究[J]. 北京交通大学学报,2017, 41(4): 1-7.

[115] 蔡舒凌,李二兵,陈 亮, 等. 基于FA-NAR 动态神经网络的隧洞围岩变形时序预测研究[J]. 岩石力学与工程学报,2019,38(S2):3346-3354.

[116] 郗刘涛,基于LSTM的采动覆岩变形监测数据预测方法研究[D].西安:西安科技大学,2019.

[117] Liu W, Piao C, Zhou Y, et al. Predictive model of overburden deformation: based on machine learning and distributed optical fiber sensing technology[J]. Engineering Computations, 2021, 38(5):2207-2227.

[118] Khalil R A,Jones E,Babar M I,et al. Speech emotion recognition using deep learning techniques:A review[J].IEEE Access,2019,7:117327-117345.

[119] 赵京胜,宋梦雪,高祥,朱巧明.自然语言处理中的文本表示研究[J].软件学报,2022,33(1):102-128.

[120] GUO Y, XU Y, LI S. Dense construction vehicle detection based on orientation-aware feature fusion convolutional neural network[J]. Automation in Construction, 2020, 112:103124

[121] NATH N D, BEHZADAN A H, PAAL S G. Deep learning for site safety: real-time detection of personal protective equipment[J]. Automation in Construction, 2020, 112:103085.

[122] 农元君,王俊杰,陈红,等.基于注意力机制和编码-解码架构的施工场景图像描述方法[J].浙江大学学报,2022,56(2):237-246.

[123] 李潇睿,班晓娟,袁兆麟,等.工业场景下基于深度学习的时序预测方法及应用[J].工程科学学报,2022,44(4)757-766.

[124] Wang K, Gopaluni R B, Chen J, et al. Deep learning of complex batch process data and its application on quality prediction[J]. IEEE Transactions on Industrial Informatics, 2018, 16(12):7233-7242.

[125] Yiyuan Yang, Haifeng Zhang, Yi Li. Pipeline Safety Early Warning by Multifeature-Fusion CNN and LightGBM Analysis of Signals from Distributed Optical Fiber Sensors [J]. IEEE Transaction on Instrumentation and Measurement,2021, Vol 70: 2514213-2514227.

[126] Yiyuan Yang, Yi Li, Taojia Zhang, et al. Early Safety Warnings for Long-Distance Pipelines: A Distributed Optical Fiber Sensor Machine Learning Approach[J]. IAAI-21, EAAI-21, AAAI-21 Special Programs and Special Track, 35(17):14991-14999.

[127] Hyder Z, Siau K, Nah F. Artificial intelligence, machine learning, and autonomous technologies in mining industry[J]. Journal of Database Management (JDM), 2019, 30(2): 67-79.

[128] Ali D, Frimpong S. Artificial intelligence, machine learning and process automation: existing knowledge frontier and way forward for mining sector[J]. Artificial Intelligence Review, 2020, 53(8): 6025-6042.

[129] Jung D, Choi Y. Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation[J]. Minerals, 2021, 11(2):148-158.

[130] Mohammad Jooshaki, Alona Nad, Simon Michaux. A Systematic Review on the Application of Machine Learning in Exploiting Mineralogical Data in Mining and Mineral Industry[J]. Minerals, 2021,11,816.

[131] Xiong Y, Zuo R. Recognizing multivariate geochemical anomalies for mineral exploration by combining deep learning and one-class support vector machine[J]. Computers & Geosciences, 2020, 140: 104484.

[132] Bérubé C L, Olivo G R, Chouteau M, et al. Predicting rock type and detecting hydrothermal alteration using machine learning and petrophysical properties of the Canadian Malartic ore and host rocks, Pontiac Subprovince, Québec, Canada[J]. Ore Geology Reviews, 2018, 96: 130-145.

[133] Avalos S, Kracht W, Ortiz J M. Machine learning and deep learning methods in mining operations: A data-driven SAG mill energy consumption prediction application[J]. Mining, Metallurgy & Exploration, 2020, 37(4): 1197-1212.

[134] Inapakurthi R K, Miriyala S S, Mitra K. Recurrent neural networks-based modelling of industrial grinding operation[J]. Chemical engineering science, 2020, 219: 115585.

[135] Jo B W, Khan R M A. An internet of things system for underground mine air quality pollutant prediction based on azure machine learning[J]. Sensors, 2018, 18(4): 930-940.

[136] Bui X N, Lee C W, Nguyen H, et al. Estimating PM10 concentration from drilling operations in open-pit mines using an assembly of SVR and PSO[J]. Applied Sciences, 2019, 9(14): 2806-2829.

[137] Zhang X, Nguyen H, Bui X N, et al. Novel soft computing model for predicting blast-induced ground vibration in open-pit mines based on particle swarm optimization and XGBoost [J]. Natural Resources Research, 2020, 29(2): 711-721.

[138] Bui X N, Nguyen H, Choi Y, et al. Prediction of slope failure in open-pit mines using a novel hybrid artificial intelligence model based on decision tree and evolution algorithm[J]. Scientific reports, 2020, 10(1): 1-17.

[139] D’Angelo T, Mendes M, Keller B, et al. Deep Learning-Based Object Detection for Digital Inspection in the Mining Industry[C]. In Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA, 16–19 December 2019; pp. 633-640.

[140] Baek J, Choi Y. Deep neural network for predicting ore production by truck-haulage systems in open-pit mines[J]. Applied Sciences, 2020, 10(5): 1657-1682.

[141] Guo H, Zhou J, Koopialipoor M, et al. Deep neural network and whale optimization algorithm to assess fly rock induced by blasting[J]. Engineering with Computers, 2021, 37(1): 173-186.

[142] 张强,孙绍安,张坤,等.基于主动红外激励的煤岩界面识别[J].煤炭学报, 2020,45(9):3363-3370.

[143] 司垒,王忠宾,熊祥祥,等.基于改进U-Net网络模型的综采工作面煤岩识别方法[J].煤炭学报,2021,46(S1):578-589.

[144] Guoxin Zhang, Zengcai Wang, Lei Zhao, et al. Coal-Rock Recognition in Top Coal Caving Using Bimodal Deep Learning and Hilbert-Huang Transform[J]. Shock and Vibration,2017,7:1-14.

[145] 曹玉超,范伟强.基于不同深度识别算法的矿井水位标尺刻度识别性能分析与研[J].煤炭学报,2019,44(11):3529-3538.

[146] Zhang Y, Yang L. A novel dynamic predictive method of water inrush from coal floor based on gated recurrent unit model[J]. Natural Hazards,2021,105(2):2027-2043.

[147] 乔伟,靳德武,王皓,等.基于云服务的煤矿水害监测大数据智能预警平台构建[J].煤炭学报,2020,45(07):2619-2627.

[148] 靳德武,赵春虎,段建华,等.煤层底板水害三维监测与智能预警系统研究[J].煤炭学报,2020,45(6):2256-2264.

[149] Jia P, Liu H, Wang S, et al. Research on a mine gas concentration forecasting model based on a GRU network[J]. IEEE Access,2020,8:38023-38031.

[150] Meng X, Chang H, Wang X. Methane Concentration Prediction Method Based on Deep Learning and Classical Time Series Analysis[J]. Energies, 2022, 15(6): 2262-2277.

[151] Zhang T, Song S, Li S, et al. Research on gas concentration prediction models based on LSTM multidimensional time series[J]. Energies, 2019, 12(1): 161-176.

[152] 蒋磊,马六章,杨克虎,等.基于MFCC和FD-CNN卷积神经网络的综放工作面煤矸智能识别[J].煤炭学报,2020,45(S2):1109-1117.

[153] 陈伟华,南鹏飞,闫孝姮,等.基于深度学习的采煤机截割轨迹预测及模型优化[J].煤炭学报,2020,45(12):4209-4215.

[154] 田睿,孟海东,陈世江,等.基于深度神经网络的岩爆烈度分级预测[J].煤炭学报, 2020,45(S1):191-201.

[155] 向阳,赵银娣,董霁红.基于改进UNet孪生网络的遥感影像矿区变化检测[J].煤炭学报,2019,44(12):3773-3780.

[156] 王绍清,常方哲,陈昊,等.高变质煤HRTEM图像中芳香晶格条纹的MASK R-CNN识别[J].煤炭学报,2021,46(2):591-601.

[157] 钟国强,王浩,李莉,等.基于SFLA-GRNN模型的基坑地表最大沉降预测[J].岩土力学,2019,40(2):792-780.

[158] 邵勇,陈从新,鲁祖德,等.基于机器学习的深基坑人字形支护变形预测分析[J].岩土力学, 2020,40(S1):2-11.

[159] 刘靖阳,王涛,张倩等.BOTDA系统温度应变双参量传感技术研究进展[J].激光与光电子学进展,2021,58(13):1306021.1-10.

[160] Zhao Z G, Zhang Y J, Li C, et al. Monitoring of coal mine roadway roof separation based on fiber Bragg grating displacement sensors[J]. International Journal of Rock Mechanics and Mining Sciences,2015,74:128-132.

[161] 柴敬,雷武林,杜文刚,等.分布式光纤监测的采场巨厚复合关键层变形试验研究[J].煤炭学报,2020,45(1):44-53.

[162] Rényi A. On measure of dependence[J]. Acta Mathematica Academiae Scientiarum Hungarica, 1959, 10(3/4):441-451.

[163] 朱磊. 基于光纤频移变化度的采动覆岩变形表征试验研究[D]. 西安:西安科技大学,2018.

[164] Shannon C E. A mathematical theory of communication[J]. The Bell system technical journal, 1948, 27(3): 379-423.

[165] BAO Yue, TANG Zhiyi, LI Hui, et al. computer vision and deep learning-based anomaly detection method for structural health and monitoring[J]. Structural HealthMonitoring, 2019, 18(2):401-421.

[166] 杨娜,付颖煜,李天昊. 基于局部离群因子的数据异常识别方法及其在古建结构监测中的应用[J]. 建筑结构学报,2022,43(10):7-16.

[167] 吴永斌,张建忠,袁正舾, 等. 风电场风功率异常数据识别与清洗研究综述[J] 电网技术,2023,47(6):2368-2372.

[168] 杨旭,朱振峰,徐美香等.多视角数据缺失补全[J].软件学报,2018,29(4):945-956.

[169] R.J.A.Little, D.B.Rubin. Statistical Analysis With Missing Data [M]. Hoboken,NJ,John Wiley&Sons,2002.

[170] 袁强.采动覆岩变形的分布式光纤检测与表征模拟试验研究[D]. 西安:西安科技大学,2017年.

[171] 龚尚红,潘庭龙,吴定会等.基于 MCMC 的微网光伏数据缺失填补方法的研究[J].可再生能源,2018, 36 (3):346-351.

[172] 庞新生.缺失数据处理方法的比较[J].统计与决策,2010(24):152-155.

[173] Chandola, V., Banerjee, A., and Kumar. Anomaly detection: A survey[J]. ACM Computer, 2009,41(3):15-68.

[174] Madasamy K, Ramaswami M. Data imbalance and classifiers: Impact and solutions from a big data perspective[J]. International Journal of Computational Intelligence Research, 2017, 13(9): 2267-2281.

[175] Khan Md.Hasib, Md.Sadiq Iqbal ,Faisal Muhammad Shah, et al. A Survey of Methods for Managing the Classification and Solution of Data Imbalance Problem[J]. Journal of Computer Science 2020,16(11):1546-1557.

[176] Mahmudah K R, Indriani F, Takemori-Sakai Y, et al. Classification of Imbalanced Data Represented as Binary Features[J]. Applied Sciences, 2021, 11(17): 7825-7838.

[177] Jorayeva M, Akbulut A, Catal C, et al. Machine learning-based software defect prediction for mobile applications: A systematic literature review[J]. Sensors, 2022, 22(7): 2551-2568.

[178] Haibo He,Edwardo A.Garcia. Learning from Imbalanced Data[C]. IEEE Transactions On Knowledge and Data Engineering,2009,9(21):1284-1306.

[179] 李艳霞,柴毅,胡友强,等.不平衡数据分类方法综述[J].控制与决策, 2019, 34(5):673-689.

[180] Breiman L. Random Forest[J]. Machine Learning,2001,45(1):5-32.

[181] 余嘉茵,何玉林,崔来中, 等. 针对大规模数据的分布一致缺失值插补算法[J].清华大学学报(自然科学版), 2023,63(5):740-753.

[182] Xie Wei, Wang Yan-Chun, Liu XueQing, et,al. Nonlinear joint PP–PS AVO inversion based on improved Bayesian inference and LSSVM[J].APPLIED GEOPHYSICS ,2019, 16(1):64-76.

[183] Ogunleye A, Wang Q G. XGBoost model for chronic kidney disease diagnosis[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2019, 17(6): 2131-2140.

[184] Torlay L, Perrone-Bertolotti M, Thomas E, et al. Machine learning-XGBoost analysis of language networks to classify patients with epilepsy[J]. Brain informatics, 2017, 4(3):159-169.

[185] 舒宗运,黎灵,李宏杰.特厚煤层综放开采覆岩“两带”高度研究[J].煤炭科学技术,2016,44(s):52-54.

[186] 徐峰,范春菊,徐勋建,等.基于变分模态分解和AMPSO-SVM耦合模型的滑坡位移预测[J].上海交通大学学报,2018,52(10):1388-1395+1416.

[187] 谢丽蓉,王斌,包洪印,等.基于EEMD-WOA-LSSVM的超短期风电功率预测[J].太阳能学报,2021,42(7):290-297.

[188] Liu H,Mei X W,Li Y F,et al. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network[J].Energy Conversion&Management,2018,156(JAN):498-514.

[189] Lecun Y, Bengio Y, Hinton G. Deep learning[J]Nature,2015,521(7553):436-444.

[190] Cai Yin, Mei-Ling Shyu, Tu Yue-Xuan, et al.Anomaly detection of earthquake precursor data using long short-term memory networks[J].Applied Geophysics,2019,16(3):257-266.

[191] KINGMA D P, BA J.Adam: A method for stochastic optimization[C]// Proceedings of the 3rd Conference for Learning Representation ICLR2014, OpenReview.net ,2015: 1-15.

[192] 薛建坤,王皓, 赵春虎,等. 鄂尔多斯盆地侏罗系煤田导水裂隙带高度预测及顶板充水模式[J].采矿与安全工程学报,2020,37(6):1223-1231.

[193] 许家林,朱卫兵,鞠金峰.浅埋煤层开采压架类型[J]煤炭学报,2014, 39(8):1625-1634.

[194] 蒋力帅,武泉森,李小裕,等. 采动应力与采空区压实承载耦合分析方法研究[J]. 煤炭学报,2017,42(8):1 951-1 959.

[195] Yonghui Xu, Xi Zhao, Yinsheng Chen, et al. Research on a Mixed Gas Classification Algorithm Based on Extreme Random Tree[J]. Applied Sciences, 2019,9(9).

[196] Kalchbrenner N, Blunsom,P. Recurrent continuous translation models[C].In Proceedings of the ACL Conference on Empirical Methods in Natural Language Processing(EMNLP),Association for Computational Linguistics,2013,1700-1709.

[197] 陈珂,梁斌,柯文德,等. 基于多通道卷积神经网络的中文微博情感分析[J]. 计算机研究与发展,2018,55(5):945-957.

[198] LI Y, LU Y, CHEN J. A deep learning approach for real-time rebar counting on the construction site based on YOLOv3 detector[J]. Automation in Construction, 2021, 124:103602.

[199] 刘帅,张旭含,李笑迎,等. 基于双分支卷积网络的高光谱与多光谱图像协同土地利用分类.[J]农业工程学报,2020,36(14):253-263.

[200] 于健洋,李元辉,于适维等.初次来压前综采工作面前方应力影响区范围[J],东北大学学报(自然科学版),2018,39(4):559-565.

[201] 冀汶莉,田忠,张丁丁,等. 基于遗传-深度神经网络的分布式光纤监测工作面矿压预测[J].科学技术与工程,2022,22(24):135-143.

[202] DELUCA A, TERMINI S.A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972(20): 201-312.

[203] 刘志慧,徐兴平,牛怀磊等. 基于 BBKC 的立管涡激振动响应最优降噪光滑模型参数识别研究[J].振动与冲击,2022,41(12):254-261.

[204] Liu Tao,Lu Chao,Liu Qingyun,Zha Yiwen. Coal and Rock Hardness Identification Based on EEMD and Multi-Scale Permutation Entropy[J]. Entropy,2021, 23(9): 1113.

[205] 熊波,李肖霖,王宇晴等.基于长短时记忆神经网络的中国地区电离层TEC预测[J].地球物理学报,2022,65(07):2365-2377.

[206] 向玲,刘佳宁,苏浩.基于CEEMDAN二次分解和LSTM的风速多步预测研究[J].太阳能学报,2022,43(8):334-350.

[207] Li Bing, Wang Enyuan, Shang Zheng, et al. Deep learning approach to coal and gas outburst recognition employing modified AE and EMR signal from empirical mode decomposition and time-frequency analysis[J]. Journal of Natural Gas Science and Engineering,2021, 90: 103942.

中图分类号:

 TD325    

开放日期:

 2024-07-02    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式