- 无标题文档
查看论文信息

论文中文题名:

 安阳煤矿孤岛工作面矿山压力显现规 律与巷道支护技术研究    

姓名:

 周文凯    

学号:

 G2015191    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0819    

学科名称:

 工学 - 矿业工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 矿业工程    

研究方向:

 矿山安全与岩层控制    

第一导师姓名:

 伍永平    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-01-12    

论文答辩日期:

 2023-12-03    

论文外文题名:

 Research on the Pressure Display Law and Roadway Control Technology of the Isolated Island Working Face of Anyang Coal Mine    

论文中文关键词:

 孤岛工作面 ; 矿压显现 ; 覆岩运移 ; 动压巷道 ; 围岩控制    

论文外文关键词:

 Isolated island working face ; Ground pressure appearance ; Overburden migration ; Dynamic pressure roadway ; Surrounding rock control    

论文中文摘要:

复杂地质条件下孤岛工作面覆岩活化程度高、采场应力集中程度大、围岩破坏程度高、巷道围岩变形量大,导致工作面推进效率低下、巷道维护困难、采场返修工作冗杂等问题愈发严重,时刻威胁着煤矿企业的安全高效生产以及井下作业人员的生命安全。为此,本文以安阳煤矿1506孤岛工作面为工程背景,结合现场监测、理论分析、室内试验、数值仿真计算和现场工程实践的研究方法,开展安阳煤矿孤岛工作面矿山压力显现规律与巷道支护技术的研究,结果表明:
(1)基于现场实测,随着1506孤岛工作面的推进,工作面项板初次来压步距约为25m, 周期来压步距约为 16m:来压时支架阻力为 3554kN-3865kN,平均为 3731kN:来压时动载系数为1.07-1.26,平均为1.15;上覆岩层出现裂隙、离层、破断等周期性规律,中高位基本顶不再发生破断,下位基本顶呈现出“断而不均”的周期性结构特征回采完毕后工作面顶板整体呈现采空区中部低、工作面两端高的马鞍形应力分布形态,围岩裂隙的发育呈现出采空区两侧竖向裂隙为主,中部横向裂隙为主的特征。
(2)总结出影响孤岛工作面回采巷道围岩稳定性的主要因素,包括围岩岩性、采矿活动以及巷道支护:孤岛工作面回采期间垂直应力分布呈现为马鞍形,护巷煤柱的应力峰值较大且集中,超前支承压力峰值均出现在距离煤壁前方约 8m 处,峰值大小约为14.8MPa.
(3)使用极限平衡法计算得需要的补强支护强度为 103kN/m2,采用了在巷道顶部与帮部每排补强 2 根 中18.9mm 锚索的补强措施。同时基于数值模拟与现场监测对巷道补强支护效果的评估结果,发现补强支护后,巷道稳定性得到提升,巷道所受应力降低变形量减少,整体离层量控制在可控范围内,表明补强支护方案可以有效增加巷道稳定性,控制围岩变形,保证孤岛工作面的正常回采。研究成果为孤岛工作面的安全高效生产提供了一定工程及借鉴意义。

论文外文摘要:

Complex geological conditions under the island face cover rock activation degree is high,the stope stress concentration degree, high rock damage degree, roadway surrounding rock deformation, this has led to increasingly serious problems such as low efficiency in advancing the working face, difficulty in roadway maintenance, and cumbersome repair work in the mining area, threatening the safety of coal mining enterprises and efficient production, the life
safety of underground workers. Therefore, based on the engineering background of the 1506 isolated island working face in Anyang Coal Mine. This paper uses research methods such as
on-site monitoring, theoretical analysis, laboratory tests, numerical simulation calculations, and on-site engineering practice to study the law of mining pressure manifestation and roadway support technology of the isolated island working face of Anyang Coal Mine. The results show:
(1) Based on the field measurement, with the advancement of the 1506 island working face, the initial weighting step of the working face roof is about 25 m, and the periodic weighting step is about 16 m. The support resistance is 3554kN-3865kN, with an average of 3731kN, and the dynamic load coefficient is 1.07-1.26, with an average of 1.15. There are periodic laws such as cracks, separation and breaking in the overlying strata. The middle and high basic roofs are no longer broken, and the lower basic roofs show the periodic structural characteristics of' breaking but not collapsing'. After the mining is completed, the roof of the working face shows a saddle-shaped stress distribution pattern with low in the middle of the goaf and high at both ends of the working face. The development of surrounding rock cracks shows the characteristics of vertical cracks on both sides of the goaf and horizontal cracks in
the middle.
(2) The main factors affecting the stability of the rock mass surrounding the mining roadway of the island working face are summarized, including the rock properties of the surrounding rock mass, mining activities, and roadway support. During the backfilling period of the island workface, the vertical stress distribution presented an saddle shape, and the stress peak of the protective roadway coal pillar was relatively large and concentrated. The peak value of the overlying pressure occurred at a distance of about 8m in front of the coal wall. with a peak value of about 14.8MPa.
(3) The limit equilibrium method is used to calculate the required reinforcement support strength of 103 kN/m?, and two p18.9mm anchor rods were installed in each row of reinforcement at the top and side of the roadway.Based on numerical simulation and on-site
monitoring, the effect of roadway reinforcement and support was evaluated, and it was found that the stability of roadway was greatly improved after roadway reinforcement and support.
The overall separation amount was within the controllable range. It shows that the reinforcement support scheme could effectively increase the stability of roadway, control the deformation of surrounding rock of roadway and ensure the normal mining advance of working face.The research results provide some engineering and reference significance for the safe and efficient production of the island working face.

参考文献:

[1]赵红亮.当前煤炭资源勒查中尚需解决的关键问题研究[J].山东工业技术,2013(15):

110-162.

[2]部敏珠.煤炭资源的现状及利用前景分析J. 科技传播, 2013, 5(24): 85-86.

[3]李新红浅析煤炭资源开发与生态资源保护[J内蒙古煤炭经济,2013(12): 178.

[4]段文婷.煤炭资源利用现状及可持续发展[J].矿业装备, 2022(02): 134-135.

[5]从敏,我国能源结构正由煤炭为主向多元化转变[J.热能动力工程,2018, 33(04):75.

[6]朱广安,窦林名,丁自伟,等.孤岛工作面采前冲击危险性预评估研究[J].岩土工程

学报, 2018, 40(05): 819-827.

[7] Syd S. Peng. Topical areas of research needs in ground control: astate of the art review on coal mine ground control[J]. International Joumal of Mining Science and Technology,

2015, 25(01): 1-6.

[8]孙超.孤岛工作面采场结构特征及其对巷道的影响[D]. 淮南:安徽理工大学, 2013.

[9]刘正春,李伟利.孤岛工作面顶板破断的薄板模型分析[J].矿业安全与环保, 2014,41(02): 104-110.

[10]侯朝炯,李学华.综放沿空掘巷围岩大、小结构的稳定性原理[J].煤炭学报, 2001(01):2-8.

[11]张源,万志军,李付臣,等,不稳定覆岩下沿空掘巷围岩大变形机理[J].采矿与安全工程学报, 2012, 29(04): 451-458.

[12]王锦山,孤岛工作面上覆岩层变形破坏规律相似试验研究[J]. 山东科技大学学报:自然科学版,2011,030(05):6-11,21.

[13]于斌,朱卫兵,高瑞,等.特厚煤层综放开采大空间采场覆岩结构及作用机制[]].煤炭学报, 2016, v.41; No.258(03): 47-56.

[14]张恒.孤岛工作面覆岩运动破坏规律研究[D].青岛:山东科技大学, 2004.

[15]于元林,大采高孤岛采场覆岩运动破坏特征和矿压显现研究[D].淮南:安徽理工大学,2007.

[16]刘臻保,夏店矿35煤柱回收工作面覆岩运动破断特征及矿压显现研究[D].太原:太原理工大学,2005.

[17]李佃平.煤矿边角孤岛工作面诱冲机理及其控制研究[D].徐州:中国矿业大学,

2012.

[18]周舟.厚煤层孤岛采场小煤柱回采巷道围岩控制技术研究[D].太原:太原理工大学,2014.

[19]魏红.孤岛采场内错尾巷加强支护技术研究[D].太原:太原理工大学,2015.

[20]潘立友,张立俊,刘先贵.冲击地压预测与防治实用技术[M].中国矿业大学出版社,2006.

[21]Am Milev, Steve Spottiswoode, Rorke, et al. Seismic monitoring of a simulated rockburst on a wall of an underground tunnel[J]. Journal of South African Institute of Mining and Metallurgy, 2001(08): 253-260.

[22]Uszko Marek. Monitoring of methane and rockburst hazards as a condition of safe coal exploitation in the mines of Kompania Weglowa SA[J]. Procedia Earth and Planetary Science, 2009(01): 54-59.

[23]Linming Dou, Caiping Lu, Zonglong Mu, et al. Prevention and forecasting of rock burst hazards in coal mines[J]. Mining Science and Technology(China), 2009, 19(05).

[24]Yujun Zuo, Xibing Li, Zilong Zhou. Determination of ejection velocity of rock fragments during rock burst in consideration of damage [J]. Journal of Central South University of Technology, 2005, 12(05): 618-622.

[25]Wenxing Wang, Changliang Pan, Tao Feng. Fountain rockburst and inductive rockburstJ]. Joumal of Central South University of Technology, 2000, 7(03): 129-132.

[26]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报, 2010, 29(04): 649-664.

[27]Song Guo, Stanus J. Control mechanism of a tensioned bolt system in the laminated roof with a large horizontal stress[C]The 16th Int. Conf. on Ground Control in Mining

Morgantown,West Virginia:[s. n.],1997:167-172.

[28]赵本钧,徐成勤.我国煤矿长壁工作面的端头支护[J].矿山压力与顶板管理,

1990(04): 49-52.

[29]柴令.深部综采面超前支护体-锚固围岩耦合机理与应用[D].徐州:中国矿业大学,2018.

[30]孙超.煤矿顶板事故的发生因素与防治对策分析[J].科技创新导报,2011(31): 77.

[31]王亮亮,巷道超前支护液压支架的研究[D]. 邯郸:河北工程大学,2014.

[32]Jiyun Zhao, Bingwen Li, Yunjiang Miao. Computer-aided rapid variant design system for hydraulic support[J]. Joumal of China University of Mining & Technology,1998 (08):2-9.

[33]孙振平.特厚煤层软弱底板沿空巷道超前支护段稳定性研究[D]淮南:安徽理工大

学,2015.

[34]杨敬轩,刘长友,于斌,等,工作面端头三角区沿空巷道强矿压显现与应力转移分析四采矿与安全工程学报,2016,33(01): 88-95.

[35]郝建新,胡旭东,陈雷.大采高综放工作面覆岩运动规律及支护技术[J].煤炭科技, 2019, 40(06): 110-113.

[36]季登洲.近距离煤层回采巷道支护技术研究[J].煤炭科技, 2020, 41(01): 73-75,78.

[37]秦昊,巷道围岩失稳机制及冲击矿压机理研究[D],徐州:中国矿业大学,2008.

[38]王恒斌.软煤孤岛面大倾角仰采矿压显现规律及煤壁加固技术研究[D].北京:中国矿业大学,2014.

[39]申晓东.屯兰矿孤岛综采面矿压观测及显现特征研究[J].煤炭工程, 2012(02): 58-60.

[40]蒋凌强,沈建波,王友席,等.阳城煤矿 1304 孤岛工作面矿压显现规律研究[]. 煤矿现代化,2013,117(06):21-25.

[41]王沉,屠洪盛,白庆升.孤岛短壁煤柱综放工作面矿压显现规律[J].煤矿安全,

2013(10): 27-33.

[42]张科学,冯江兵,路希伟,等.孤岛工作面回采巷道锚杆控制技术[J].煤矿安全,2011(01): 60-63.

[43]邹敏锋,樊宇,乔素雷.深部软岩巷道锚网不对称支护技术分析[J].基础与结构工程2010, 5(09): 117-120.

[44]W. Jansze. Strengthening of reinforced concreted members inbending by extenally bonded steel plates[M].Delft universitypress, 1997:8-9.

[45]翟文立,王其杰,李涛,等.高强高預紧力锚网支护技术在深部矿井沿空掘巷中的应用[J].煤矿安全, v.49; No.534(12); 79-82.

[46]邓康宇,武腾飞.孤岛工作面回采巷道的破坏机理及端头超前支护技术[J].矿业安全与环保,2016,43(03):67-70.

[47]陈晓祥,王雷超,付东辉.孤岛工作面动压回采巷道平移变形力学机制及控制技术

研究[J].采矿与安全工程学报, 2015, 32(04): 552-558.

[48]张鹏鹏,郝兵元,王凯,等,综放开采沿空掘卷小煤柱宽度留设及支护技术研究[J].煤炭科学技术, 2018, 46(05): 40-46.

[49]万威,大倾角孤岛面回采巷道支护技术研究及应用[J].煤炭科技, 2020, 41(06);63-67.

[50]邱守强,董庆伟.“三软"煤层煤巷支护研究与应用[J.内蒙古煤炭经济,2021(09):34-35.

[51]Tao Yang, Jie Zhang. Gob-Side entry retaining technology with advanced empty hole

butterfly-shaped weakening in three-soft coal seam in china[J]. Advances in Materials

Science and Engineering, 2020: 1-17

[52]都峰.孤岛工作面回采期间冲击地压防治设计[J].煤炭科技, 2021, 42(02): 96-99.

[53]张茂微,鲁健,孤岛工作面过上覆采空区采场及顶板应力演化规律研究[J.煤炭工

程, 2020, 52(12): 108-112.

中图分类号:

 TD322    

开放日期:

 2024-01-13    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式