- 无标题文档
查看论文信息

论文中文题名:

 运输机胶带火灾烟气逆流特性与影响研究    

姓名:

 欧霖峰    

学号:

 21220226125    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2024    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 矿井火灾防治    

第一导师姓名:

 李亚清    

第一导师单位:

 西安科技大学    

论文提交日期:

 2024-06-16    

论文答辩日期:

 2024-06-05    

论文外文题名:

 Study on the characteristies ofsmoke backflow andinfluencing factors in conveyor belt fires    

论文中文关键词:

 胶带火灾 ; 逆流特性 ; 止逆临界风速 ; 缩小比例相似实验 ; 数值模拟    

论文外文关键词:

 Conveyor belt fire ; Reversal characteristics ; Negative critical wind speed ; Redu-cing the scale of similarity experiments ; Numerical simulation.    

论文中文摘要:

随着我国煤炭开采深度的增加,矿用运输机使用的胶带长度也随之增长。在操作过程中,因为机械伤害和摩擦可能导致胶带燃烧,进而造成运输机的胶带发生火灾事故。如果运输机遭遇火灾,烟气有可能在巷道内迅速扩散,引发逆流现象,从而导致严重的后果。因此,深入探究矿用运输机胶带火灾在不同因素影响下的逆流现象,将为矿井火灾救援在灾变条件下提供关键的理论依据和决策建议。

本文针对井下矿用运输机胶带巷中发生的火灾,以目前最普遍应用的塑料整芯阻燃运输带(PVC运输机胶带)和橡胶面整芯阻燃运输带(PVG运输机胶带)为研究对象,研究了不同运输机胶带的燃烧特性,进而采用缩小比例相似试验台和数值模拟相结合的研究方法,探究了胶带火灾发生后的烟气逆流特性及影响烟气逆流的影响因素。取得以下结果:

基于锥形量热仪实验,探究了不同辐射热强度作用下,PVC、PVG运输机胶带的燃烧特性。研究结果显示运输机胶带热释放速率和烟生成速率随燃烧时间呈现先增大后减小的规律。两种胶带的总释放热量和总烟气产生量的变化趋势均是先快速增长,后缓慢增长。发现外加辐射热强度与热释放速率、总热释放量、烟生成速率和总烟气产量呈正比关系。同时,PVC胶带的总释热量和总烟气产量均大于PVG运输胶带。

基于矿井巷道实际尺寸,搭建了缩小比例相似试验台。结合锥形量热仪实验的燃烧特性,分析了巷道胶带火灾发生后的温度场分布,研究了烟气蔓延规律和形变过程,进而明确风速对胶带火灾烟气逆流层长度的影响。研究结果显示PVC与PVG运输机胶带在全巷道各位置上烟气温度变化趋势基本一致,都是先逐渐升高到最高点,之后慢慢降低。两种胶带燃烧时烟气逆流层长度均随风速的增加而线性减小。监测点温度和烟气层逆流长度实验结果显示当风速为1.67 m/s时,试验工况下PVC运输胶带的烟气逆流层长度为0,即PVC运输胶带的止逆临界风速为1.67 m/s,而PVG运输胶带的止逆临界风速为1.65 m/s。

采用FDS模拟软件搭建了一个与实际胶带运输通道尺寸一致的工况模型,基于缩小尺寸相似试验台的测试结果,构建了该模拟运输通道工况下的烟气层参数与运输通道风速、火源特性及巷道几何构造间的相关性模型。基于构建的模型,通过模拟计算的结果分析了不同风速、不同倾斜角度和不同火源功率的巷道中,胶带火灾产生的烟气逆流特性。模拟结果显示水平巷道内,风速与烟气逆流层长度呈反比。并且判断此条件下烟气止逆临界风速在1.4 m/s至1.8 m/s之间。通过对比不同倾斜角度巷道,发现倾斜角度越大,逆流层长度越小的规律。0°和10°倾斜的巷道烟气止逆临界风速低于1.4 m/s;20°巷道烟气逆流程度处于临界状态,可判断20°巷道的止逆临界风速约为1.4 m/s。在同一风速条件下,火源功率与烟气逆流层长度呈正比,且得到水平巷道内火源功率或风速作为变量时与烟气逆流长度存在对数关系。

论文外文摘要:

As the length of conveyor belts used in Chinese mines increases year by year, the risk of fire incidents due to mechanical damage and friction, leading to belt slippage, also increases. Improper handling of such incidents can endanger the safety of workers and trigger explosions or other safety issues. If a fire occurs on a conveyor, the smoke can rapidly spread within the tunnel, causing backflow, which can lead to severe consequences. Therefore, a deep investigation into the backflow phenomena of mine conveyor belt fires under various influencing factors is crucial for providing theoretical foundations and decision-making advice for mine fire rescue under disaster conditions.

This paper focuses on fires occurring in underground mine conveyor belts, specifically examining PVC and PVG conveyor belts, which are most commonly used. It combines scaled-down experimental setups and numerical simulations to study the combustion characteristics of different conveyor belts and the characteristics of smoke backflow following a fire, as well as the factors influencing this backflow. The findings are as follows:

Based on cone calorimeter experiments, the study examined the combustion characteristics of PVC and PVG conveyor belts under different radiant heat intensities. The results showed that both the heat release rate and the smoke production rate of the conveyor belts increased initially and then decreased over time. The overall heat release and total smoke production exhibited a trend of rapid growth followed by slower increases. It was found that the external radiant heat intensity was directly proportional to the heat release rate, total heat release, smoke production rate, and total smoke volume, with PVC belts generating more total heat and smoke than PVG belts.

A scaled-down experimental setup was constructed based on the actual dimensions of mine tunnels. Using the combustion characteristics from the cone calorimeter experiments, the temperature field distribution after a belt fire in a tunnel was analyzed, along with the spread and deformation process of the smoke. The impact of wind speed on the length of the smoke backflow layer was clarified. Results indicated that the smoke temperature trends at various positions along the entire tunnel were consistent for both PVC and PVG belts, rising to a peak before gradually decreasing. The length of the smoke backflow layer decreased linearly with increasing wind speed for both types of belts. Experimental results of the temperature at monitoring points and the smoke layer backflow length showed that at a wind speed of 1.67m/s, the smoke backflow layer length for the PVC belt was zero, indicating a critical wind speed of 1.67m/s for PVC, and 1.65m/s for PVG.

Using the FDS simulation software, a scenario model matching the actual size of the conveyor belt passage was constructed based on the scaled-down experimental results. A correlation model between the smoke layer parameters in this simulated transportation channel and the wind speed, fire characteristics, and tunnel geometry was developed. Simulation results analyzed the characteristics of smoke backflow in the tunnel under different wind speeds, inclinations, and fire powers. The results showed that in a horizontal tunnel, wind speed is inversely related to the length of the smoke backflow layer. The critical wind speed to stop the backflow in horizontal and 10°inclined tunnels was found to be below 1.4m/s, while in a 20°inclined tunnel, the critical state was reached at approximately 1.4m/s. Under the same wind speed, the fire power was directly proportional to the length of the smoke backflow layer, indicating a logarithmic relationship between fire power or wind speed and smoke backflow length in a horizontal tunnel.

参考文献:

[1]Thielemann, Thomas, Schmidt, Sandro, Peter Gerling, J. Lignite and hard coal:Energy suppliers for world needs until the year 2100 — An outlook. International Journal of Coal Geology, 72, (1), 1-14.

[2]王双明. 对我国煤炭主体能源地位与绿色开采的思考[J]. 中国煤炭, 2020, 46(02): 11-16. DOI: 10. 19880/j. cnki. ccm. 2020. 02. 002.

[3]赵平. 新时代煤炭地质勘查技术及发展方向思考[J]. 中国煤炭地质, 2018, 30(04): 1-4. data. stats. gov. cn.

[4]张洪. 我国露天煤矿发展现状及前景探析[J]. 中国煤炭工业, 2022(09): 78-79.

[5]J. Pandey, N. K. Mohalik, RKMishra. Investigation of the Role of Fire Retardants in Preventing Spontaneous Heating of Coal and Controlling Coal Mine Fires[J]. FireTechnology, 2015, 51: 227-245.

[6]安敬鱼, 牛会永, 邓军, 邓湘陵, 乔晨露. 矿井火灾原因综合分析及防治技术[J]. 矿业工程研究, 2015, 30(03): 40-44. DOI: 10. 13582/j. cnki. 1674-5876. 2015. 03. 009.

[7]张海峰, 郭焘. 探究矿井火灾及其防治策略[J]. 山东工业技术, 2015(19): 264-265. DOI: 10. 16640/j. cnki. 37-1222/t. 2015. 19. 032.

[8]汪卫东, 嵇坚. 从胶带输送机火灾事故分析探讨胶带运输管理[J]. 煤炭科技, 2001(03): 49-50. DOI: 10. 19896/j. cnki. mtkj. 2001. 03. 025.

[9]Timm Gudehus, Herbert Kotzab. Transport Systems [J] . Comprehensive Logistics, 2011: 623-691.

[10]侯欣然. 矿井胶带巷火灾风流动态模拟及避灾路线分析[D]. 河北联合大学, 2012.

[11]宋彤菊. 矿用带式输送机常见故障分析及预防措施[J]. 机械管理开发, 2009, 24(03): 68-69. DOI: 10. 16525/j. cnki. cn14-1134/th. 2009. 03. 023.

[12]Sheng-zhu Zhang , Wei-min Cheng, Qiu-jin Li. Simulation and analysis of airflow stability during fire in mine belt roadway[J] . Journal of Coal Science and Engineering2010. 16(4): 375-380.

[13]卫德俊. 复杂矿井火灾烟气蔓延三维仿真研究[J]. 能源与环保, 2020, 42(08): 55-59. DOI: 10. 19389/j. cnki. 1003-0506. 2020. 08. 013.

[14]Komai W, Takehiro I, Shicai J. Study on the combustion characteristics ofconveyor belt in mine roadway[J]. Coal Engineer, 1990, 20(2): 45-50.

[15]Perera IE, Litton CD, Impact of air velocity on the detection of fires inconveyor belt haulageways[J]. Fire Technology, 2012, 48(2).

[16]uan L, Mainiero RJ, Rowland JH, et al. Numerical and experimental study onflame spread over conveyor belts in a large-scale tunnel. Journal of LossPrevention in the Process Industries, 2014, 30.

[17]程远平, 季经纬, 李增华. 矿用输送带与木材燃烧性能的对比实验研究[J]煤炭学报, 2000, 25(6): 624-627.

[18]周浩生, 周琥, 陆继东, 弱氧条件下橡胶的燃烧机理[J]. 燃烧科学与技术(2): 186-190.

[19]王德明, 程远平, 周福宝, 等. 矿井火灾火源燃烧特性的实验研究[J]. 中国矿业大学学报, 2002, 31(1): 30-33.

[20]王玉怀, 马尚权, 潘德祥. 煤矿井下可燃材料燃烧特性的试验研究[J] 华北科技学院学报, 2006, (01): 1-4.

[21]季经纬, 程远平. PVC输送带点燃温度判据及应用[J]. 燃烧科学与技术2006, (05): 438-441

[22]肖国强, 张鹏宇, 马砺, 等. 矿用胶带火灾燃烧特性预测模型[J]. 2021, 36(3): 9-15.

[23]Truwin W. Use of digital computers for the study of non-steady states and automatic control problems in mine ventilation networks [J] . International Journal of Rock Mechanics and Mining Sciences &Geomechanics Abstracts. 1972, 9(02): 289-323.

[24]邓权龙. 矿井巷道火灾烟流数值模拟及安全区域划分[D]. 江西理工大学, 2015.

[25]苑金秒, 张芳芳. 巷道火灾中烟气流动规律研究[J]. 山西大同大学学报(自然科学版), 2016, 32(05): 61-63.

[26]邓惠英. 釆区上山火灾烟气运动规律及对通风系统影响的数值模拟[D]. 广西大学, 2015.

[27]王文才, 公维刚, 姜宇鸿等. 水平巷道火灾时烟气逆流临界风速的研究[J]. 中国煤炭, 2013, 39(07): 101-104. DOI: 10. 19880/j. cnki. ccm. 2013. 07. 026.

[28]邱长河, 周延. 水平巷道火灾时期烟气逆流发生条件的研究[J]. 矿业安全与环保, 2003, (06): 14-16+1.

[29]刘剑, 王银辉, 李静等. 倾斜巷道内火灾逆流层变化规律数值模拟[J]. 安全与环境学报, 2015, 15(04): 94-97. DOI: 10. 13637/j. issn. 1009-6094. 2015. 04. 020.

[30]李静. 下行通风巷道火灾烟流逆流层形成及阻力效应数值模拟研究[D]. 辽宁工程技术大学, 2013.

[31]李玉福. 矿井火灾过程中烟流参数变化规律数值模拟研究[D]. 辽宁工程技术大学, 2012.

[32]刘经纬, 李玉福. 水平巷道烟流逆流层长度CFD数值模拟[J]. 辽宁工程技术大学学报(自然科学版), 2014, 33(08): 1053-1057.

[33]刘晗, 许秦坤, 黄涛. 纵向风条件下障碍物对矿井巷道火灾烟气流动的影响[J]. 西南科技大学学报, 2016, 31(03): 55-58.

[34]Li Y Z, Lei B, Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires[J]. Fire safety journal, 2010, 45(6-8): 361-370.

[35]Wang Y F, Sun X F, Liu S, et al. Simulation of back-layering length in tunnel fire with vertical shafts[J]. Applied Thermal Engineering, 2016, 109: 344-350.

[36]赵望达, 李洪, 徐志胜等. 铁路隧道火灾中烟气逆流层长度的研究[J]. 防灾减灾工程学报, 2010, 30(03): 246-251. DOI: 10. 13409/j. cnki. jdpme. 2010. 03. 004.

[37]姜学鹏, 胡杰, 徐志胜等. 铁路隧道火灾烟气逆流的计算模型[J]. 中南大学学报(自然科学版), 2011, 42(09): 2837-2842.

[38]Fan C G, Yang J. Experimental study on thermal smoke backlayering length with an impinging flame under the tunnel ceiling[J]. Experimental Thermal and Fluid Science, 2017, 82: 262-268.

[39]周福宝, 王德明. 矿井火灾烟流滚退距离的数值模拟[J]. 中国矿业大学学报, 2004, 33(5) 499-502.

[40]Niu Hui-yong. Qiao Chen-lu, AN Jing-yu. Experimental study and numerical simulation of spread law for fire on tunnel [J] . Journal of Central South University. 2015(02): 701-706.

[41]张晓涛. 矿井下行通风巷道火灾模拟研究[D]. 武汉: 中国地质大学. 2014.

[42]李坤, 全加, 由长福等. 火灾位置对掘进巷道通风及继发性灾害的影响[J]. 清华大学学报, 2010, 50(2): 270-273.

[43]张辛亥, 邢震, 马砺等. 矿井外因火灾局部反风 FDS 数值模拟[J]. 煤矿安全, 2013. 44(11): 185-190.

[44]Zhou Gang, Cheng Wei-min, Zhang RuiNumerical simulation and disaster prevention for catastrophic fire airflow of main air-intake belt roadway in coal mine-Acase study[J]. Journal of Central South University, 2015(06): 2359-2368.

[45]杨瑞波. 矿山井巷火灾时期烟气毒性评价及其流动时变规律研究[D]. 长沙: 中南大学, 2010.

[46]SFPE handbook of fire protection engineering[M]. Springer, 2015.

[47]Quintiere J G. Fundamentals of fire phenomena[J]. 2006.

[48]Quintiere J G. A theoretical basis for flammability properties[J]. Fire and Materials: An International Journal, 2006, 30(3): 175-214.

[49]曲芳, 吴鹏, 王志. 环氧树脂复合材料的热解特性及动力学研究[J]. 消防科学与技术, 2018, 37(11): 1506-1509.

[50]郭春, 王明年, 周仁强. 公路隧道火灾中火区节流效应理论及试验研究[J]. 四川建筑科学研究, 2009, 35(02): 258-261.

[51]刘军军, 李风, 张智强等. 火灾烟气毒性评价和预测技术研究[J]. 中国安全科学学报, 2006, (01): 76-82+0-1. DOI: 10. 16265/j. cnki. issn1003-3033. 2006. 01. 015.

[52]王烨. 矿井胶带火灾烟流蔓延特性与监测方法研究[D].西安科技大学, 2021. DOI: 10. 27397 / d. cnki.gxaku. 2021.000231.

[53]王甘雨. 纵向通风条件下大跨度隧道火灾烟气多维运动特性研究[D]. 浙江大学, 2022. DOI: 10. 27461/d. cnki. gzjdx. 2022. 001371.

[54]李立明. 隧道火灾烟气的温度特征与纵向通风控制研究[D]. 中国科学技术大学, 2012.

[55]刘克锋. 运用火灾模拟软件优化消防设计[J]. 铁道运营技术, 2010, 16(04): 22-23+26. DOI: 10. 13572/j. cnki. tdyy. 2010. 04. 009.

[56]张玉涛, 陈晓坤, 张喜臣等. 矿井火灾烟气蔓延特性的多维混合模拟研究[J]. 煤矿安全, 2015, 46(08): 15-18. DOI: 10. 13347/j. cnki. mkaq. 2015. 08. 005.

[57]康泉胜, 周海龙, 阮继峰等. CFD技术在安全工程专业通风工程教学中的应用[C]//浙江省安全工程学会. 事故预防与风险管理的理论与实践为2018安全科学与工程技术研讨会论文集. 浙江工业大学教育科学与技术学院;, 2018: 4.

[58]赵强, 岳海玲. 火灾及烟气计算机模拟模型综述[J]. 安防科技, 2008, (01): 9-11+22.

[59]谭波. 基于物理场模型的矿井火灾动态仿真技术研究[D]. 中国矿业大学(北京), 2010.

[60]Smith R, Laval S, Handley J. Communication nodes and sensor devices configured to use power line communication signals, and related methods of operation: U. S. Patent 9, 407, 324[P]. 2016-8-2.

[61]徐浩祯, 赵威风, 吕思嘉. 隧道双火源火灾燃烧特性的实验研究[J]. 工程热物理学报, 2020, 41(05): 1254-1260.

[62]铁勇. 地下高大空间火灾烟气自由填充试验研究[J]. 热科学与技术, 2019, 18(03): 234-242. DOI: 10. 13738/j. issn. 1671-8097. 019025.

[63]Wu Y, Bakar M Z A. Control of smoke flow in tunnel fires using longitudinal ventilationsystems - a study ofthe critical velocity [J]. Fire Safety Journal, 2000, 35(4): 363-90.

中图分类号:

 TD752    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式