论文中文题名: |
基于粒子分解的SPH并行算法研究与应用
|
姓名: |
王斯棋
|
学号: |
19208207029
|
保密级别: |
公开
|
论文语种: |
chi
|
学科代码: |
085400
|
学科名称: |
工学 - 电子信息
|
学生类型: |
硕士
|
学位级别: |
工程硕士
|
学位年度: |
2022
|
培养单位: |
西安科技大学
|
院系: |
计算机科学与技术学院
|
专业: |
计算机技术
|
研究方向: |
高性能计算
|
第一导师姓名: |
许晓阳
|
第一导师单位: |
西安科技大学
|
论文提交日期: |
2022-06-22
|
论文答辩日期: |
2022-06-07
|
论文外文题名: |
Research and application of SPH parallel algorithm based on particle decomposition
|
论文中文关键词: |
光滑粒子流体动力学 ; 并行算法 ; 粒子分解 ; 自由表面流 ; 数值模拟
|
论文外文关键词: |
Smoothed particle hydrodynamics ; Parallel algorithm ; Particle decomposition ; Free surface flow ; Numerical simulation
|
论文中文摘要: |
︿
光滑粒子流体动力学(Smoothed Particle Hydrodynamics,简称为 SPH)方法是一种拉格朗日型无网格方法,此方法由 Lucy 和 Gingold 等人在 1977 年首次提出。与基于网格的数值方法相比,SPH 方法完全不依赖于网格,并且具有 Lagrangian 特性、质点特性和自适应特性等优点,因此非常适合大变形、自由表面流动等复杂界面问题的数值模拟。 但 SPH 方法在处理自由表面流问题时存在计算量大、耗时长的问题,因此有必要对其进行并行化处理。本论文主要工作如下:
(1)针对 SPH 方法处理自由表面流问题时计算效率低的问题,比较与改进了 SPH方法的某些数值处理技术。首先,发展了链表搜索算法,用于搜索最近相邻粒子。通过 对二维液滴撞击固壁面问题进行数值模拟,结果表明基于链表搜索法的 SPH 方法效率更高。其次,提出了一种由固壁粒子和固壁边界外虚粒子耦合的加强型边界处理方法。结果表明该方法不仅可以阻止临近固壁边界的流体粒子穿透固壁面,而且还能够显著减少 SPH 数值模拟所消耗的计算时间。
(2)针对 SPH 方法存在的计算量大、耗时长的问题,提出了基于粒子分解的 SPH并行算法。该并行算法的基本思想是将所有粒子平均分配到各个进程进行计算,每个时间步通信仅调用一次发送、接收和广播函数,因此编程易于实现,且可扩展性良好。应 用该并行算法数值模拟二维溃坝问题和二维液滴撞击固壁面问题,结果表明本论文提出的基于粒子分解的 SPH 并行算法不仅能够有效模拟自由表面流问题,而且还能大范围缩减 SPH 方法数值模拟的计算时间。
(3)针对 SPH 方法数值模拟局限于二维空间的问题,本论文将第三章提出的加强 型边界处理方法和第四章提出的并行算法推广应用到三维问题的数值模拟中。分别对三维溃坝问题以及三维液滴冲击液膜问题进行数值计算,分析了进程数、粒子数、并行效 率和加速比之间的关系,结果表明本论文提出的加强型边界处理方法和基于粒子分解的并行算法对于 SPH 方法在处理大规模自由表面流问题时,能够大幅度减少数值模拟所消耗的计算时间。
本论文基于消息传递接口(Message Passing Interface,简称为 MPI)并行程序设计平台,以 C++语言作为算法实现的编程语言,设计了基于粒子分解的 SPH 并行算法。 应用该并行算法对典型二维、三维溃坝以及液滴问题进行数值模拟,分析了进程数、粒子数、并行效率和加速比之间的关系。结果表明,当粒子数大于百万时,最大加速比可达 30 以上。因此,本论文提出的基于粒子分解的 SPH 并行算法可以为大规模三维问题的数值模拟提供一种高效、准确的计算工具。
﹀
|
论文外文摘要: |
︿
The Smoothed Particle Hydrodynamics (SPH) method is a Lagrangian meshless method, which was first proposed by Lucy and Gingold et al. in 1977. Compared with grid-based numerical methods, the SPH method is completely grid-independent and has the advantages of Lagrangian properties, mass point properties and adaptive properties. Therefore, it is very suitable for numerical simulation of complex interface problems such as large deformation and free surface flow. However, the SPH method suffers from the problems of large computational volume and time consuming when dealing with free surface flow problems, so it is necessary to parallelize it. The details in this thesis are as follows:
(1) In this thesis, certain numerical techniques of the SPH method are compared and improved to resolve the problem of low computational efficiency of the SPH method when dealing with free surface flow problems. First, a linked list search algorithm is developed to search the neighboring particles. Through numerical simulations of the two-dimension aldroplet impinging on the solid wall surface problem, the results indicate that the SPH method based on the chain table search method is more efficient. Second, an enhanced boundary treatment method coupled by solid wall particles and imaginary particles outside the solid wall boundary is proposed. The results indicate that this method can not only prevent the fluid particles near the solid wall boundary from penetrating the solid wall surface, but also significantly reduce the computational time consumed by the SPH numerical simulation.
(2) In this thesis, the SPH parallel algorithm based on particle decomposition is proposed to resolve the problems of large computation and time consuming of SPH method. The basic idea of this parallel algorithm is to distribute all particles equally to each process for computation, and each time-step communication only calls the send, receive and broadcast functions once. Therefore, the programming is easy to implement and has a good scalability. The parallel algorithm is applied to simulate the two-dimensional dam-break problem and the two-dimensional droplet-impacting solid wall surface problem, and the results indicate that the particle decomposition-based SPH parallel algorithm proposed in this thesis can not only effectively simulate the free surface flow problems, but also reduce the computational time of
the SPH simulation on a large scale.
(3) In this thesis, the enhanced boundary treatment method proposed in Chapter 3 and the parallel algorithm proposed in Chapter 4 are extended and applied to the numerical simulation of three-dimensional problems to solve the problem that the numerical simulation of SPH method is limited to two-dimensional space. The relationships between the number of processes, the number of particles, the parallel efficiency and the acceleration ratio are analyzed for the three-dimensional dam-break problem and the three-dimensional droplet impact liquid film problem, respectively. The results indicate that the enhanced boundary treatment method and the particle decomposition-based parallel algorithm proposed in this thesis for the SPH method can significantly reduce the computational time consumed by the numerical simulation when dealing with large-scale free surface flow problems.
This thesis is based on the Message Passing Interface (MPI) parallel programming platform. The SPH parallel algorithm based on particle decomposition is designed using C++ as the programming language for algorithm implementation. The parallel algorithm is applied to numerical simulations of typical two-dimensional and three-dimensional dam-break and droplet problems, and the relationship between the number of processes, the number of particles, the parallel efficiency and the acceleration ratio is analyzed. The results reveal that the maximum acceleration ratio can be more than 30 when the number of particles is greater than one million. Therefore, the SPH parallel algorithm based on particle decomposition proposed in this thesis can provide an efficient and accurate computational tool for the numerical simulation of large-scale three-dimensional problems.
﹀
|
参考文献: |
︿
[1] 林毅. 自由表面流动问题数值方法的理论研究及应用[D]. 天津: 天津大学, 2010. [2] 徐永浩. 无网格 SPH 方法在粘性不可压缩流体中的应用研究[D]. 哈尔滨: 哈尔滨工业大学, 2008. [3] 何鲜峰, 汪自力, 张健锋, 等. 基于 SPH 的大坝泄流过程仿真分析[J]. 中国科学:技 术科学, 2019, 49(01): 109-114. [4] 张雄, 刘岩. 无网格法[M]. 北京: 清华大学出版社, 2004. [5] Lucy L B. A numerical approach to the testing of the fission hypothesis[J]. The astronomical journal, 1977, 82: 1013-1024. [6] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly notices of the royal astronomical society, 1977, 181(3): 375-389. [7] Monaghan J J. Smoothed particle hydrodynamics[J]. Reports on progress in physics, 2005, 68(8): 1703. [8] Monaghan J J. Smoothed particle hydrodynamics and its diverse applications[J]. Annual Review of Fluid Mechanics, 2012(44): 323-346. [9] 许晓阳, 彭严, 邓方安. 三维 PTT 黏弹性液滴撞击固壁面问题的改进 SPH 模拟[J].应用数学和力学, 2015, 36(06): 616-627. [10]Liu G R, Liu M B. Smoothed particle hydrodynamics: a meshfree particle method[M]. World scientific, 2003. [11]杨建, 谢伟, 张志伟. 基于多面体单元的三维 ES-FEM 理论研究[J]. 西北工业大学学报, 2021, 39(04): 747-752. [12]Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly notices of the royal astronomical society, 1977, 181(3): 375-389. [13]Monaghan J J. Simulating free surface flows with SPH[J]. Journal of computational physics, 1994, 110(2): 399-406. [14]Shao S, Lo E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free Surface[J]. Advances in water resources, 2003, 26(7): 787-800. [15]Jiang T, Ouyang J, Yang B, et al. The SPH method for simulating a viscoelastic drop impact and spreading on an inclined plate[J]. Computational Mechanics, 2010, 45(6): 573-583. [16]Marrone S, Antuono M, Colagrossi A, et al. δ-SPH model for simulating violent impact flows[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(13-16): 1526-1542. [17]Monaghan J J, Rafiee A. A simple SPH algorithm for multi‐fluid flow with high density ratios[J]. International Journal for Numerical Methods in Fluids, 2013, 71(5): 537-561. [18]Ni X, Sheng J, Feng W. Simulation of Free-Surface Flow Using the Smoothed Particle Hydrodynamics (SPH) Method with Radiation Open Boundary Conditions[J]. Journal of Atmospheric & Oceanic Technology, 2016, 33(11): 2435-2460. [19]Liu M B, Zhang Z L, Feng D L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding[J]. Computational Mechanics, 2017, 60(3): 513-529. [20]Sun P N, Colagrossi A, Marrone S, et al. The δplus-SPH model: Simple procedures for a further improvement of the SPH scheme[J]. Computer Methods in Applied Mechanics and Engineering, 2017, 315: 25-49. [21]Altomare C, Domínguez J M, Crespo A J C, et al. Long-crested wave generation and absorption for SPH-based DualSPHysics model[J]. Coastal Engineering, 2017, 127: 37-54. [22]Feng L, Liu G R, Li Z, et al. Study on the effects of abrasive particle shape on the cutting performance of Ti-6Al-4V materials based on the SPH method[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(9): 3167-3182. [23]Sarfaraz M, Pak A. Weakly compressible SPH simulation of cnoidal waves with strong plunging breakers[J]. Ocean Dynamics, 2019, 69(6): 657-678. [24]Malamud U, Perets H B. Tidal disruption of planetary bodies by white dwarfs I: A hybrid SPH-analytical approach[J]. Monthly Notices of the Royal Astronomical Society, 2020, 492(4): 5561-5581. [25]Khayyer A, Shimizu Y, Gotoh H, et al. A coupled incompressible SPH-Hamiltonian SPH solver for hydroelastic FSI corresponding to composite structures[J]. Applied Mathematical Modelling, 2021, 94: 242-271. [26]任选其, 徐绯, 张显鹏, 等. 基于 SPH/FEM 方法的浅水冲击喷溅及其抑制结构研究[J]. 计算力学学报, 2018, 35(06): 769-776. [27]金阿芳, 马小晶, 热依汗古丽·木沙. 基于 SPH 方法的风沙流结构动力学特性研究——评《高等结构动力学》[J].岩土工程学报, 2019, 41(12): 2404. [28]李建军, 朱文峰. 基于 SPH 的平面曲线铝合金薄板滚压成形数值仿真与试验研究[J]. 机械工报, 2020, 56(24): 61-71. [29]闻腾腾, 金阿芳, 热依汗古丽·木沙. 基于 SPH 方法的风沙流运动特性研究[J]. 干旱区资源与环境, 2021, 35(03): 109-117. [30]于强, 王天舒. 充液航天器变质量液体大幅晃动的 SPH 分析方法[J]. 宇航学报, 2021, 42(01): 22-30. [31]王东坡, 瞿华南, 沈伟, 何思明. 考虑坝后淤积的泥石流冲击拦挡坝动力响应研究[J]. 工程科学与技术, 2021, 53(02): 1-9. [32]张显鹏, 徐绯, 吴京泽, 等. 基于光滑粒子流体动力学的滑油泵数值仿真[J]. 计算力学学报, 2021. [33]周新超, 马小晶, 廖翔云, 等. 磨料水射流冲击孔隙岩体的 SPH 模拟研究[J]. 岩土工 程学报, 2022, 44(04): 731-739. [34]Marrone S, Bouscasse B, Colagrossi A, et al. Study of ship wave breaking patterns using 3D parallel SPH simulations [J]. Computers & Fluids, 2012, 69: 54-66. [35]Rustico E, Bilotta G, Herault A, et al. Advances in multi-GPU smoothed particle hydrodynamics simulations[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 25(1): 43-52. [36]Vanaverbeke S, Keppens R, Poedts S. GRADSPMHD: A parallel MHD code based on the SPH formalism[J]. Computer Physics Communications, 2014, 185(3): 1053-1073. [37]Nishiura D, Furuichi M, Sakaguchi H. Computational performance of a smoothed particle hydrodynamics simulation for shared-memory parallel computing[J]. Computer Physics Communications, 2015, 194: 18-32. [38]Nakata S, Sakamoto Y. Particle-based parallel fluid simulation in three-dimensional scene with implicit surfaces[J]. The Journal of Supercomputing, 2015, 71(5): 1766-1775. [39]Ren J, Jiang T, Lu W, et al. An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows[J]. Computer Physics Communications, 2016, 205: 87-105. [40]Fan H, Li S. Parallel peridynamics–SPH simulation of explosion induced soil fragmentation by using OpenMP[J]. Computational Particle Mechanics, 2017, 4(2): 199-211. [41]Chow A D, Rogers B D, Lind S J, et al. Incompressible SPH (ISPH) with fast Poisson solver on a GPU[J]. Computer Physics Communications, 2018, 226: 81-103. [42]Egorova M S, Dyachkov S A, Parshikov A N, et al. Parallel SPH modeling using dynamic domain decomposition and load balancing displacement of Voronoi subdomains[J]. Computer Physics Communications, 2019, 234: 112-125. [43]Ji Z, Fu L, Hu X Y, et al. A new multi-resolution parallel framework for SPH[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 346: 1156-1178. [44]Chen J Y, Feng D L, Deng S X, et al. GPU-accelerated smoothed particle hydrodynamics modeling of jet formation and penetration capability of shaped charges[J]. Journal of Fluids and Structures, 2020, 99: 103171. [45]Yang E, Bui H H, De Sterck H, et al. A scalable parallel computing SPH framework for predictions of geophysical granular flows[J]. Computers and Geotechnics, 2020, 121: 103474. [46]王裴, 洪滔. 三维光滑粒子流体动力学并行计算程序[J]. 计算物理, 2006, 23(4): 431-435. [47]王栋栋, 庄雷. CPU 和 GPU 并行计算的火焰模拟[J]. 计算机应用, 2009, 29(6): 1703-1706. [48]王珏, 邱流潮. 应用基于 GPU 的 SPH 方法模拟二维楔形体入水砰击问题[J]. 计算力学学报, 2013, 30(S1): 174-177. [49]胡鹏飞,袁志勇,廖祥云,等. 基于 CPU-GPU 混合加速的 SPH 流体仿真方法[J]. 计算机 工程与科学, 2014, 36(07): 1231-1237. [50]周浩, 徐志宏, 邹顺, 等. SPH 并行计算方案及其在自由表面流动模拟中的应用[J]. 国防科技大学学报, 2015, 37(4): 71-76. [51]吴建松, 李娜, 刘文雨, 等. 基于 SPH 方法与 GPU 并行计算的复杂阶梯流数值模拟[J]. 安全与环境学报, 2019, 19(3): 774-779. [52]梁岚博, 金阿芳, 闻腾腾. SPH-GPU并行计算在风沙流中的应用[J]. 计算机工程与应用, 2020. [53]Liu M B, Liu G R, Zong Z, et al. Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology[J]. Computers & Fluids, 2003, 32(3): 305-322. [54]Dalrymple R A, Rogers B D. Numerical modeling of water waves with the SPH method[J]. Coastal engineering, 2006, 53(2-3): 141-147. [55]Monghan J J. Particle methods for hydrodynamics[R]. Computer Physics Report, 1985(3): 71-124. [56]Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997(136): 214–226. [57]Monaghan J J. Simulating free surface flows with SPH[J]. Journal of Computational Physics, 1994(110): 399~406. [58]Ellero M, Tanner R I. SPH simulations of transient viscoelastic flows at low Reynolds number[J]. Journal of Non-Newtonian Fluid Mechanics, 2005(132): 61–72. [59]Fang J, Owens R G, Tacher L. A numerical study of the SPH method for simulating transient viscoelastic free surface Flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2006(139): 68–84. [60]Monaghan J J. Smoothed particle hydrodynamics[J]. Annual Review of Astronomical and Astrophysics, 1992(30): 543-574. [61]Lattanzio J C, Monaghan J J, Pongracic H, et al. Controlling penetration[J]. SIAM Journal on Scientific and Statistical Computing, 1986, 7(2): 591-598. [62]Cummins S J, Rudman M. An SPH projection method[J]. Journal of Computational Physics, 1999(152): 584–607. [63]Monaghan J J, Gingold R A. Shock simulation by the particle method SPH[J]. Journal of Computational Physics, 1983, 52(2): 374-389. [64]A. Colagrossi, M. Landrini. Numerical simulation of interfacial flows by smoothed particle hydrodynamics[J]. Journal of Computational Physics, 2003, 191: 448-475. [65]Xu X, Yu P. Extension of SPH to simulate non-isothermal free surface flows during the injection molding process[J]. Applied Mathematical Modelling, 2019, 73: 715-731. [66]Morris J P, Fox P J, Zhu Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226. [67]Fang J N, Owens R G, Tacher L, Parriaux A. A numerical study of the SPH method for simulating transient viscoelastic free surface flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2006, 139(1/2): 68-84. [68]陈鸿, 黄洁, 李毅, 等. 一种基于动态区域分解的 SPH 并行算法研究及应用[J]. 系统仿真学报, 2018, 30(10): 3717-3723. [69]C. Moulinec, R. Issa, J.C. Marongiu, et al. Parallel 3-D SPH simulations[J]. CMES: Computing Modeling Engineering Science, 2008(25): 133-148. [70]陈国良, 安虹, 陈崚, 等. 并行算法实践[M]. 北京: 高等教育出版社, 2004. [71]杨秀峰, 彭世镠. 溃坝流的光滑粒子法模拟[J]. 计算物理, 2010, 27(02): 173-180. [72]邵家儒, 杨瑜. 三维洪水流动的 SPH 数值模型[J]. 河海大学学报(自然科学版), 2017,45(06): 515-521. [73]马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟[J]. 物理学 报, 2012, 61: 054701. [74]强洪夫,石超,陈福振,等. 基于大密度差多相流 SPH 方法的二维液滴碰撞数值模拟[J]. 物理学报, 2013, 62(21): 245-259.
﹀
|
中图分类号: |
TP38
|
开放日期: |
2022-06-23
|