- 无标题文档
查看论文信息

论文中文题名:

 水泥稳定镁渣基层材料组成设计及路用研究    

姓名:

 高萌    

学号:

 19204053013    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 081401    

学科名称:

 工学 - 土木工程 - 岩土工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 建筑与土木工程学院    

专业:

 岩土工程    

研究方向:

 道路工程    

第一导师姓名:

 景宏君    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-15    

论文答辩日期:

 2022-06-05    

论文外文题名:

 Material Composition Design and Road Application Research of Cement Stabilized Magnesium Slag Base    

论文中文关键词:

 道路工程 ; 理化特性 ; 组成设计 ; 路用性能 ; 镁渣    

论文外文关键词:

 Road Engineering ; Physicochemical Characterization ; Composition Design ; Road Performance ; Magnesium Slag    

论文中文摘要:

随着我国公路的大规模建设,砂石资源的供需矛盾愈发突显,这已然成为制约公路行业健康发展的重大隐患。镁渣作为工业固体废料,具有潜在的水化活性和胶凝特性,具备替代路用地材的潜力,但关于其作为道路基层材料的研究应用却鲜有涉及。为此,本文提出将镁渣材料应用于道路基层,对水泥稳定镁渣基层材料组成设计、综合路用性能及路用效果等方面展开研究,以期提高工业镁废渣的固废资源化利用水平,避免由于镁废渣不当处置与堆存所带来的环境污染和安全隐患,实现经济、社会效益双增收。具体研究内容如下:

(1)以某镁业公司所生产的优化镁渣作为研究对象,研究了镁渣材料的压碎值、密度、吸水率、粒径分布、含泥量、针片状含量、自由膨胀率、化学成分及矿物组成等技术特性,结果表明镁渣材料除存在表面孔隙多、强度较低等缺陷外,其余工程特性均较为良好。

(2)结合现行规范、级配设计理论以及常用级配类型,提出采用N法设计悬浮密实型级配,采用贝雷法和SAC级配设计方法联合设计骨架密实型级配。针对镁渣材料易碎的特性,提出采用室内击实试验对设计级配进行修正,利用压密试验对混合料级配类型进行合理性验证,结果表明设计级配经优化调整后符合预设级配类型。

(3)以合成级配为基础,研究了各配合比的无侧限抗压强度、间接抗拉强度、抗压回弹模量、弹性模量、水稳定性能和抗冻性能,同时基于光学仪器分析了各配比的强度形成机理,结果表明水泥稳定镁渣基层材料具有优良的力学性能、水稳定性和抗冻性能。对比分析各性能指标,得出影响混合料性能的主要因素有水泥掺比、结构类型和养护龄期,综合分析指明所设计的骨架密实型级配性能更优。

(4)结合府谷县道路翻修改造工程,铺筑了全长200m的水泥稳定镁渣试验段,分析了水泥稳定镁渣基层材料的主要施工工艺,并采集了试验路段的现场数据,结果表明水泥稳定镁渣基层材料路用性能良好,能够满足二级及二级以下公路基层、底基层技术要求,而且可节约集料成本约25%~35%。

论文外文摘要:

With the large-scale construction of highways in China, the contradiction between supply and demand of sand and gravel resources has become more and more prominent, which has become a major hidden problem restricting the healthy development of the road industry. As an industrial solid waste, magnesium slag has potential hydration activity and cementation properties, and has the potential to replace road surface materials, but little research has been done on its application as a road subgrade material. To this end, this study proposes the application of magnesium slag materials to road subgrade, the design of cement stabilised magnesium slag subgrade material composition, comprehensive road performance and road effect, in order to improve the level of solid waste resource utilisation of industrial magnesium slag, to avoid environmental pollution and safety hazards caused by improper disposal and stockpiling of magnesium slag, and to achieve economic and social benefits. The specific research content is as follows.

(1) Taking the optimized magnesium slag produced by a magnesium industry company as the research object, the crushing value, density, water absorption, particle size distribution, mud content, needle-like content, free swelling ratio, chemical composition and mineral composition of the magnesium slag material were studied. The results show that the engineering characteristics of the magnesium slag material are good except for the defects of large surface pores and low strength.

(2) Combined with the current criterion, grading design theory and common grading types, the N method is proposed to design the suspended dense grading, and the Bailey method and SAC grading design method are used to jointly design the skeleton dense grading. In view of the fragile characteristics of magnesium slag material, the indoor compaction test is proposed to correct the design gradation, and the compaction test is used to verify the rationality of the mixture gradation type. The results show that the design gradation conforms to the preset gradation type after optimization and adjustment.

(3) Based on the synthetic gradation, the unconfined compression strength, indirect tensile strength, compressive rebound modulus, elastic modulus, water stability and frost resistance of each ratio were investigated, and the strength formation mechanism of each ratio was analysed based on optical instruments. The results show that the cement-stabilised magnesia base material has excellent mechanical properties, water stability and frost resistance. By comparing various performance indexes, it is concluded that the main factors affecting the performance of the mixture are cement mixing ratio, structure type and curing age. Comprehensive analysis indicates that the designed skeleton dense gradation has better performance.

(4) Combined with the Fugu County road renovation and transformation project, paving a total length of 200 meters of cement stabilized magnesia test section, analysis of the main construction process of cement stabilized magnesia grass-roots materials, and collected the test section of field data, the results show that the cement stabilized magnesia grass-roots materials road performance is good, can meet the two levels and two levels of road grass-roots, sub-base technical requirements, and can save aggregate costs of about 25% ~ 35%.

参考文献:

[1]中华人民共和国交通运输部. 2021年交通运输行业发展统计公报[R/OL]. (2022-05-19.)

https://xxgk.mot.gov.cn/2020/jigou/zhghs/202205/t20220524_3656659.html.

[2]毛新亚. 有色金属冶炼废渣在道路基层材料中的应用研究[D]. 大连: 大连交通大学, 2017.

[3]冯霞. 固体废物综合处理技术的现状及对策[J]. 中国资源综合利用, 2019, 37(10): 50-52.

[4]Wu L, Han F L, Liu G Q. Comprehensive Utilization of Magnesium Slag by Pidgeon Process[M]. Springer: Springer Nature Singapore Pte Ltd, 2021: 1.

[5]Du J D, Han W J, Peng Y H. Life Cycle Greenhouse Gases, Energy and Cost Assessment of Automobiles Using Magnesium from Chinese Pidgeon Process[J]. Journal of Cleaner Production, 2010, 18(2): 112-119.

[6]邓军平, 郭一萍. 镁还原渣资源化利用研究进展[J]. 中国有色冶金, 2012, 41(04): 59-62.

[7]章启军, 刘育鑫, 吴玉锋. 金属镁渣的回收利用现状[J]. 再生资源与循环经济, 2011, 4(06): 30-32.

[8]李咏玲, 梁鹏翔, 范远, 等. 镁渣的资源利用特性与重金属污染风险[J]. 环境化学, 2015, 34(11): 2077-2084.

[9]段再明. 金属镁生产中氟化物污染的防治[J]. 节能与环保, 2009, (07): 48-49.

[10]Wang X B, Yan X, Li X Y. Environmental Risks for Application of Magnesium Slag to Soils in China[J]. Journal of Integrative Agriculture, 2020, 19(7): 1671-1679.

[11]Wang S Y, Xiao L G, Zhou Q, et al. Research and Application on Magnesium Slag[J]. Advanced Materials Research, 2011, 280: 208-211.

[12]韩伟, 尤文军, 马少华. 镁渣作为混合材配料的试验研究[J]. 水泥, 2019(S1): 24-25.

[13]张鹏飞. 镁渣用作水泥混合材的实践[J]. 新世纪水泥导报, 2020, 26(03): 36-38.

[14]Guo C, Ma J X, Dai Y H, et al. Experimental Study on Performance of Foamed Magnesium Slag Cement[J]. E3S Web of Conferences, 2020, 198: 01008.

[15]Dai Y H, Ma J X, Guo C, et al. Experimental Study on Carbonization of Magnesium Slag Cement[J]. E3S Web of Conferences, 2020, 198(1): 01022.

[16]Li H X, Hang Y Y, Yang X J, et al. Approach to the Management of Magnesium Slag Via the Production of Portland Cement Clinker[J]. Journal of Material Cycles and Waste Management, 2018, 20(3): 1701-1709.

[17]Courtial M, Cabrillac R, Duval R. Feasibility of the Manufacturing of Building Materials from Magnesium Slag[J]. Studies in Environmental Science, 1991, 48: 491-498.

[18]Courtial M, Cabrillac R, Duval R. Recycling of Magnesium Slags in Construction Block Form[J]. Studies in Environmental Science, 1994, 60: 599-604.

[19]Ji G X, Peng X Q, Wang S P, et al. Influence of Magnesium Slag as a Mineral Admixture on the Performance of Concrete[J]. Construction and Building Materials, 2021, 295(2): 123619.

[20]肖力光, 雒锋, 王思宇, 等. 镁渣节能墙体材料的研究[J]. 新型建筑材料, 2011, 38(07): 21-23.

[21]高利宁. 硅热法镁冶炼过程镁渣的应用研究[J]. 工业加热, 2019, 48(05): 27-29.

[22]Liu L, Ruan S S, Qi C C, et al. Co-disposal of Magnesium Slag and High-Calcium Fly Ash as Cementitious Materials in Backfill[J]. Journal of Cleaner Production, 2021, 279: 123684.

[23]张习贤, 赵永义, 梁全富. 工业废料镁矿渣的路用研究[J]. 中南公路工程, 1997, 22(02): 36-41.

[24]Amini O, Ghasemi M. Laboratory Study of the Effects of Using Magnesium Slag on the Geotechnical Properties of Cement Stabilized Soil[J]. Construction and Building Materials, 2019, 223(Oct.30): 409-420.

[25]Xia D H, Ren L, Chen L G. Study of Ca-Mg-S-Si Fertilizer Produced by Magnesium Slag[J]. Advanced Materials Research, 2012, 5(6): 3166-3170.

[26]Fan Y, Li Y L, Li H, et al. Evaluating Heavy Metal Accumulation and Potential Risks in Soil-Plant Systems Applied with Magnesium Slag-Based Fertilizer[J]. Chemosphere, 2018, 197: 382-388.

[27]Fan Y, Qin W F, Chen Z L, et al. A Silicon-Potash Fertilizer Prepared from Magnesium Slag and how It Can Improve Soil Fertility and Agronomic Performance[J]. Soil Science and Plant Nutrition, 2019, 65(3): 274-280.

[28]毛嘉. 镁还原渣制备硅钙镁复合肥工艺应用基础研究[D]. 太原: 太原理工大学, 2016.

[29]Zhang Y J, Tan X, Duan G L, et al. Magnesium Slag for Remediation of Cadmium and Arsenic Contaminated Paddy Soil: A Field Study[J]. Soil Use and Management, 2021.

[30]Li Y L, Cheng F Q. Synthesis of a Novel Slow-Release Potassium Fertilizer from Modified Pidgeon Magnesium Slag by Potassium Carbonate[J]. Journal of the Air & Waste Management Association, 2016, 66(8): 758-767.

[31]Li Y L, Fan Y, Chen Z L, et al. Chemical, Mineralogical, and Morphological Characteristics of Pidgeon Magnesium Slag[J]. Environmental Engineering Science, 2016, 33(4): 290-297.

[32]杨靖. 镁还原渣水合制备脱硫剂的试验研究[D]. 太原: 太原理工大学, 2013.

[33]肖勇强, 高亚萍, 杨洋, 等. 新型含镁渣环保脱硫剂的制备及其性能测试[J]. 环境工程, 2018, 36(11): 133-136.

[34]Fan B G, Jin Y, Zheng X R, et al. New Investigation of Magnesium Slag as Desulfurizier[J]. Advanced Materials Research, 2012, 356-360: 1853-1859.

[35]Fan B G, Jia L, Han F, et al. Study on Magnesium Slag Desulfurizer Modified by Additives in Quenching Hydration[J]. Journal of Material Cycles and Waste Management, 2019, 21(5): 1211-1223.

[36]杨富刚, 刘永军, 刘喆, 等. 碱性活化剂对镁渣基复合脱硫剂脱硫效果的影响[J]. 环境工程, 2021, 39(01): 106-110+160.

[37]Jia L, Fan B G, Huo R P, et al. Study on Quenching Hydration Reaction Kinetics and Desulfurization Characteristics of Magnesium Slag[J]. Journal of Cleaner Production, 2018, 190(JUL.20): 12-23.

[38]秦彦军. 钡渣在路面基层中的应用[J]. 科技创新导报, 2008, (24): 69-69.

[39]GÖKALP İ, Uz V E, Saltan M, et al. Technical and Environmental Evaluation of Metallurgical Slags as Aggregate for Sustainable Pavement Layer Applications[J]. Transportation Geotechnics, 2018, 14: 61-69.

[40]Liu J Z, Yu B, Wang Q. Application of Steel Slag in Cement Treated Aggregate Base Course[J]. Journal of Cleaner Production, 2020, 269: 121733.

[41]郑武西. 钢渣在水泥稳定碎石基层中的应用研究[D]. 西安: 长安大学, 2018.

[42]Wang T, Tao Q L, Xie Z X. Performance and Environmental Evaluation of Stabilized Base Material with Strontium Slag in Low-Volume Road in China[J]. Advances in Civil Engineering, 2019, 2019(PT.3): 1-11.

[43]冯彦华. 水泥稳定镍铬矿渣路用性能研究[D]. 呼和浩特: 内蒙古工业大学, 2018.

[44]Huang D, Chen S H, Mon H H. The Preliminary Study on Re-Utilization of Ferrous-Nickel Slag to Replace Conventional Construction Material for Road Construction (Sub-Grade Layer Improvement)[J]. Advanced Materials Research, 2013, 723: 694-702.

[45]盛燕萍, 冀欣, 徐刚, 等. 煤气化渣水泥稳定碎石基层材料性能研究[J]. 应用化工, 2020, 49(06): 1407-1412+1417.

[46]雷彤. 掺煤气化粗渣水泥稳定基层材料组成及路用性能研究[D]. 西安: 长安大学, 2017.

[47]孟庆余, 李伟男, 唐志前, 等. 钒渣道路基层材料的试验研究[J]. 武汉理工大学学报, 2007, 29(9): 91-94.

[48]Al-Massaid A M, Khedaywi T S, Smadi M. Properties of Asphalt-Oil Shale Ash Bituminous Mixtures under Normal and Freeze-Thaw Conditions[J]. Transportation Research Record Journal of the Transportation Research Board, 1989, 1228(1228): 54-62.

[49]魏功槐. 油页岩废渣在公路路基及基层中的应用研究[D]. 长春: 吉林大学, 2016.

[50]Du Y J, Jiang N J, Liu S Y, et al. Field Evaluation of Soft Highway Subgrade Soil Stabilized with Calcium Carbide Residue[J]. Soils and Foundations, 2016, 56(2): 301-314.

[51]栗培龙, 朱德健, 裴仪, 等.电石渣稳定土强度特性影响因素分析[J]. 科学技术与工程, 2022, 22(06): 2485-2490.

[52]刘族东, 李剑秋, 刘涛华, 等. 水泥磷渣粉稳定磷尾矿-废石路面基层材料的研究[J]. 武汉理工大学学报, 2021, 43(04): 6-12+19.

[53]Qian G P, Liu W, Gong X B, et al. Property Evaluation of Cement-Stabilized Macadam Modified via Phosphorus Slag Materials[J]. Frontiers in Materials, 2022, 8: 570.

[54]Zhang Y L, Liu X M, Xu Y T, et al. Preparation and Characterization of Cement Treated Road Base Material Utilizing Electrolytic Manganese Residue[J]. Journal of Cleaner Production, 2019, 232(ESP.20): 980-992.

[55]梁文玉, 孙晓林, 李凤善, 等. 金属镁冶炼工艺研究进展[J]. 中国有色冶金, 2020, 49(04): 36-44+53.

[56]Halmann M, Frei A, Steinfeld A. Magnesium Production by the Pidgeon Process Involving Dolomite Calcination and MgO Silicothermic Reduction: Thermodynamic and Environmental Analyses[J]. Industrial & Engineering Chemistry Research, 2008, 47(7): 2146-2154.

[57]唐洋洋, 李林波, 王超, 等. 镁渣资源化利用新进展[J]. 现代化工, 2020, 40(12): 63-67.

[58]Jia L, Han F, Li Z P, et al. Influence Mechanism of Additives on the Crystal Structure and Desulfurization Performance of Magnesium Slag[J]. Journal of Material Cycles and Waste Management, 2021, 23(3): 1114-1125.

[59]Jia L, Han F, Li Z P, et al. Crystal Structure of a New High-Performance Magnesium Slag Desulfurizer Modified by Quenching Hydration[J]. 2022, 24(1): 210-223.

[60]刘浪, 阮仕山, 方治余, 等. 镁渣的改性及其在矿山充填领域的应用探索[J]. 煤炭学报, 2021, 46(12): 3833-3845.

[61]JTG E42-2005. 公路工程集料试验规程 [S]. 北京: 人民交通出版社, 2005.

[62]JTG 3430-2020. 公路土工试验规程 [S]. 北京: 人民交通出版社, 2020.

[63]JTG E51-2009. 公路工程无机结合料稳定材料试验规程 [S]. 北京: 人民交通出版社, 2009.

[64]严艳文, 刘燕, 毛帅东, 等. 硅热还原炼镁中固体废渣的氨浸提钙[J]. 材料与冶金学报, 2021, 20(03): 192-197.

[65]彭波. 基于变i法理论的级配组成设计方法[J]. 武汉理工大学学报(交通科学与工程版), 2005(05): 751-754.

[66]Deng J X, Zhou X D, Huang Y T, et al. Discrete Element Simulation and Analysis for Max Density Curve Theory of Mineral Aggregate Mixtures[J]. Applied Mechanics & Materials, 2014, 668-669: 12-16.

[67]沙庆林. 新水泥碎石基层[J]. 铁道建筑技术, 2009(10): 1-5+9.

[68]Vavrik W R, Pine W J, Carpenter S H. Aggregate Blending for Asphalt Mix Design: Bailey Method[J]. Transportation Research Record, 2002, 1789(1): 146-153.

[69]Yan T H, Marasteanu M O, Le J L. Mechanism-Based Evaluation of Compactability of Asphalt Mixtures[J]. Road Materials and Pavement Design, 2021, 22(sup1): S482-S497.

[70]JTG/T F20-2015. 公路路面基层施工技术细则 [S]. 北京: 人民交通出版社, 2015.

[71]何昌轩. 骨架密实型水泥稳定碎石合理级配范围优化研究[J]. 公路, 2012, (06): 228-232.

[72]肖海健, 于渊卓. 罗阳高速公路水泥稳定碎石基层级配优化调整[J]. 公路交通科技(应用技术版), 2018, 14(08): 83-84.

[73]李涛, 邹静蓉, 汤显平, 等. 贝雷法在半刚性基层中的应用[J]. 公路, 2018, 63(12): 19-23.

[74]贾敬立, 张渊龙, 杨玉庆, 等. 水泥就地冷再生基层的级配优化设计[J]. 人民黄河, 2019, 41(12): 97-102.

[75]沙爱民, 胡力群. 半刚性基层材料的结构特征[J]. 中国公路学报, 2008, (04): 1-5+42.

[76]JTG 3450-2019. 公路路基路面现场测试规程 [S]. 北京: 人民交通出版社, 2019.

中图分类号:

 U416.2    

开放日期:

 2023-06-15    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式