论文中文题名: | 液冷服仿真优化以及人体舒适性研究 |
姓名: | |
学号: | 20203053005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 081404 |
学科名称: | 工学 - 土木工程 - 供热、供燃气、通风及空调工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 可再生能源利用 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-10 |
论文答辩日期: | 2023-06-05 |
论文外文题名: | Simulation and Optimization of Liquid Cooling Garment and Research on Human Comfort |
论文中文关键词: | |
论文外文关键词: | liquid cooling garment ; thermal comfort ; thermal sensation ; numerical simulation ; nanofluid |
论文中文摘要: |
建筑、消防及矿井等许多行业的劳动者往往暴露在高温环境中,长期处在高温环境中会产生热应激,严重危害身心健康,降低工作效率。但由于工作场所与运行成本的限制,空调等全局制冷措施无法实现。液冷服能够通过冷却管路对人体进行局部冷却,是一种有效缓解劳动者的热应激、提高舒适性的热防护措施。本文围绕液冷服的热舒适性以及性能优化进行研究,主要研究内容如下: (1)建立了人体—液冷服—环境传热模型,对液冷服的传热路径进行具体分析。并基于人体热平衡方程与热舒适理论,确定了实验所需的相关生理参数。 (2)基于液冷服系统,提出使用高吸水树脂作为冷源介质,以延长液冷服的有效工作时长。并依靠人工微气候实验室,在高温环境(35±1 ℃、60±5% RH)中,研究液冷服对热环境下人体相关生理参数与主观评价的影响,并探究主观评价与生理参数之间的关联。结果表明,高吸水性树脂的比工作时长与冰袋相比增长了37.5%,具有更优的蓄冷能力。同时,与无防护措施相比,液冷服能有效抑制住受试者皮肤温度、核心温度和心率的升高,显著改善了受试者的热感觉评价(TSV)、热舒适评价(TCV)和自用力程度(RPE)。穿着液冷服时,皮肤温度与主观评价呈正相关;得出了局部热感觉与整体热感觉的关系,胸部与背部的局部热感觉对整体热感觉影响最大。此外,液冷服能够显著影响受试者的生理应激指数(PSI)与感知应激指数(PeSI);并对PSI与PeSI进行线性拟合,得出了两者的拟合关系,可以通过PeSI值对生理应激水平进行预测。 (3)通过三维模拟仿真对液冷服的冷却性能以及影响规律进行探究,并对比分析了纵向蛇形(L-S)与横向蛇形(T-S)管路两种管路模型。结果表明,在一定范围内,两种模型的皮肤平均温度与流量分别为线性相关和二次函数曲线关系、与进口温度和代谢率均为线性相关;出口温度均与流量呈二次函数曲线关系,与进口温度和环境温度呈线性相关,并得到相应的拟合关系式。与T-S模型相比,L-S模型的皮肤平均温度增长率降低了7.7%,出口水温最高相差了0.38 ℃,冷却量最多增加了16.7 W/m2。 (4)为了提高液冷服系统的换热性能,对纳米流体在液冷服管道中对流换热进行模拟研究,并应用在液冷服系统中。结果表明,在一定范围内,Cu-水纳米流体的换热性能优于CuO-水和Al2O3-水纳米流体;体积浓度为2.0%的Cu-水纳米流体对液冷服散热性能的提升效果最好,与工质水相比,冷却量最多增长了11.4%。 |
论文外文摘要: |
Workers in many industries, such as construction, fire protection and mine, are often exposed to high temperature environment, which will produce heat stress, seriously harm physical and mental health and reduce work efficiency. However, due to the limitations of the workplace and operating costs, air conditioning and other global cooling measures can not be achieved. The liquid-cooled suit can cool the human body locally through the cooling pipeline, which is an effective thermal protection measure to relieve the heat stress and improve the comfort of workers. In this paper, the thermal comfort and performance optimization of liquid-cooled clothing are studied: The heat transfer model of human-liquid cooling garment-environment was established to analyze the heat transfer path of liquid cooling garment. Based on the heat balance equation of human body and thermal comfort theory, the physiological parameters needed in the experiment were determined. (2)Based on the liquid-cooled suit system, the use of super absorbent resin as a cold source medium to extend the effective working time of LCG. Rely on the artificial microclimate laboratory, in the high temperature environment (35±1℃, 60±5%RH), the effects of LCG on human physiological parameters and subjective evaluation in thermal environment were studied, and the relationship between subjective evaluation and physiological parameters was explored. The results show that the super absorbent resin has better cold storage capacity, the specific working time of super absorbent resin increased by 37.5% compared with that of ice pack. At the same time, compared with no protective measures, the liquid cooling garment can effectively inhibit the increase of skin temperature, core temperature and heart rate of the subject, and significantly improve the thermal sensation evaluation (TSV), thermal comfort evaluation (TCV) and degree of self-exertion (RPE) of the subject.The skin temperature was positively correlated with subjective evaluation when wearing LCG. The relationship between the local thermal sensation and the whole thermal sensation was obtained, and the local thermal sensation of the chest and back had the greatest influence on the whole thermal sensation.In addition, the physiological stress index (PSI) and perceived stress index (PeSI) of the subjects were significantly affected by the liquid-cooled suit, and the fitting relationship between PSI and PeSI was obtained by linear fitting, pesi value can be used to predict physiological stress level. (3)Through three-dimensional simulation, the cooling performance and influence law of liquid cooling garment were explored, and two pipeline models of longitudinal serpentine (L-S) and transverse serpentine (T-S) were compared and analyzed. The results show that the average skin temperature of the two models was linearly correlated with the flow rate, linearly correlated with the inlet temperature and linearly correlated with the metabolic rate. The relationship between outlet temperature and flow rate is quadratic function curve, and the relationship between outlet temperature and inlet temperature and ambient temperature is linear.Compared with T-S model, the average skin temperature increase rate of L-S model decreased by 7.7%, the maximum difference of outlet water temperature was 0.38 ℃, and the cooling capacity increased by 16.7 W/m2 at most. (4)In order to improve the heat transfer performance of the liquid-cooled suit system, the convection heat transfer of nano-fluid in the liquid-cooled suit pipeline was simulated and studied, and applied in the liquid-cooled suit system. The results show that the heat transfer performance of Cu-water nanofluids is better than that of CuO-water and Al2O3-water nanofluids. Cu-water nanofluid with a volume concentration of 2.0% has the best effect on improving the heat dissipation performance of the liquid cooling garment, and the cooling capacity is increased by 11.4% compared with the working fluid water. |
参考文献: |
[1]罗澜. 世界气象组织发布《2021年全球气候状况》[N]. 中国气象报, 2022-05-23(003). [2]朱宁波. 体温调节中产热和散热的分析[J]. 生物学教学, 2016, 41(08): 69. [3]杨杰. 基于人体-服装-环境的高温人体热反应模拟与实验研究[D]. 清华大学, 2016. [4]蔡美峰, 薛鼎龙, 任奋华. 金属矿深部开采现状与发展战略[J]. 工程科学学报, 2019, 41(4): 417-426. [7]陈孜虎. 高温作业环境下人体热平衡与热应激反应及应对措施研究[J]. 制冷与空调(四川), 2020, 34(05):527-531. [8]冯小凯. 高温矿井降温技术研究及其经济性分析[D]. 西安科技大学, 2009. [9]郑海坤. 深矿井热环境下人体降温机理及空调方法研究[D]. 河南理工大学, 2014. [10]邱义芬, 袁修干, 梅志光, 等. 舱外航天液冷服传热分析[J]. 航天医学与医学工程, 2001, 14(5): 364-367. [11]范福军, 钟建英. 人—环境—服装[J]. 四川丝绸, 2001, (04):35-38. [12]邓军, 何骞, 刘长春, 等. 相变冷却服发展趋势[J]. 科技导报, 2017, 35(21):107-114. [13]曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007(06):100-105. [15]高阳, 王维. 纳米流体在圆管中的流动与换热实验研究[J]. 热能动力工程, 2020, 35(11):67-73. [16]陈培东, 王飞, 蔡德华, 等. 液冷服数值模拟及舒适性实验研究[J]. 低温与超导, 2021, 49(03):91-98. [17]韦帆汝, 王发明. 基于相变材料与微型通风风扇的新型个体混合冷却服在温热环境下的制冷效果研究[J]. 丝绸, 2016, 53(03):1-8. [18]崔志英, 张佳欢, 金华文, 等. 新型降温服织物系统的设计与性能评价[J]. 上海纺织科技, 2019, 47(08):9-12. [20]周润康. 高温环境中防护服对人体热生理和心理影响的研究[D]. 西安科技大学, 2020. [22]顾心清. 美海军舰艇被动式降温背心的研究现状[J]. 海军医学杂志, 2004, (02):191-193. [23]刘长明, 房瑞华. 液冷头盔[J]. 中国劳动防护用品, 1999, (06):21-23. [26]Nunnery S A. Water Cooled Garments:A Review[J]. Space Life Science, 1970, 2(3):335-360. [27]朱铮, 刘长明. 航天服-飞行员和宇航员个体防护装备系列介绍[J]. 中国个体防护装备, 2010, 101(04):51-56. [28]朱仁璋, 王鸿芳, 王晓光, 等. 苏/俄舱外航天服技术的进展[J]. 载人航天, 2009, (01):25-45. [30]韩增旺, 唐世君, 赖军. 国内外冷却服的发展现状及关键技术[J]. 中国个体防护装备,2009(04):11-14. [31]张行周, 钟晓辉, 吴玉庭, 等. 单兵空调系统研究[J]. 兵工学报, 2007, 28(6):749-752. [37]志原. 空调外套让日本工人保持凉爽[J]. 中国纤检, 2011(17):14-14. [48]刘长明. 我国飞行员第一代通风服研制回忆[J]. 航空史研究, 1997, (04):10-12. [49]孟云余, 葛申然, 杜国杰, 等. 便携式局部液冷服系统[J]. 航天医学与医学工程, 1988, 1( 2):122-126. [50]关平, 周翔, 李俊等. 医用相变降温服人体热舒适性实验研究[C]. 中国建筑学会暖通空调专业委员会、中国制冷学会空调热泵专业委员会. 全国暖通空调制冷2004年学术文集, 2004, 6. [51]王亮, 王涛, 林贵平. 应用潜热型功能热流体的液冷服散热性能分析[J]. 航天医学与医学工程, 2011, 24(03):186-190. [52]王云仪, 赵萌萌. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5):101-105. [53]董明元. 神奇软甲:“蓝冰降温避火服”[J]. 中国纤检, 2013(22):48-49. [54]邓全龙, 邓钦. 关于“冷却式消防员灭火服”的研究[J]. 消防技术与产品信息, 2014, (9):25-26. [55]马砺, 张李荣, 李贝, 等. 矿井高温热害防治个体降温装置研究[J]. 煤炭技术, 2014, 33(11):278-281. [56]柳源, 陈宁, 王磊, 徐宁. 矿井热害气冷式个体防护服设计及研制[J]. 煤炭工程, 2011, (07):120 -121. [57]王棋生. 相变材料分布对相变调温热防护效果的影响分析[D]. 苏州大学, 2016. [58]文虎, 丁喜梅, 刘长春, 李贝. 半导体降温服交盖效应的实验研究[J]. 制冷学报, 2017, 38(02):40-44. [59]赵蒙蒙, 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10):94-97. [60]何骞. 基于相变材料的个体冷却服及其降温性能研究[D]. 西安科技大学, 2018. [62]蒋鲁鸣, 张华, 黄震. 3D打印液冷型医用冰帽冷却特性实验研究[J]. 制冷技术, 2021, 04:70-74+93. [66]王涛, 王亮, 林贵平, 等. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016,5 0(04):681-690. [70]舒伟程. 便携式液冷服系统设计及其热舒适性研究[D]. 华中科技大学, 2021. [71]和智殷, 张亚平, 屈方方, 等. 涡流管复合冷却服降温性能实验研究[J]. 低温与超导, 2021, 49(11):36-40+65. [74]童力. 基于局部换热影响的低压人体热调节模型研究[D]. 青岛理工大学, 2014. [75]范路. 人体热调节模型综述及其发展讨论[J] .节能, 2020, 39(04):172-176. [82]季泰, 袁伟琪, 王坤, 等.热环境下运动人体热感觉研究进展[J]. 中国体育科技,2002, 58(04):73-80. [84]刘冰冰, 王海英, 李建凯, 等. 腿部辐射加热板改善人体热舒适的实验研究[J]. 建筑科学, 2022, 38(08):127-133. [88]吴华杰, 张善文, 张燕军.纳米流体微通道流动换热数值模拟研究[J].低温与超导,2021, 49(11):66-72. [89]殷泽, 戴秋敏, 赵颖杰, 秦利宇.微通道内磁流体流动与换热特性数值模拟[J]. 流体机械, 2022, 50(04):43-50. [90]王翠华, 张文权, 荣铎, 等.圆管内纳米流体层流流动及强化传热的数值研究[J]. 辽宁化工, 2022, 51(08):1037-1039+1097. [91]段炼, 韩吉田, 霍冲, 等. 热电制冷液冷服内纳米流体自然循环换热特性[J]. 东南大学学报(自然科学版), 2018, 48(02):220-225. [92]郭庭辉. 液冷服中的流动与传热及其系统研制[D]. 华中科技大学, 2015. [93]商博锋, 郭庭辉, 罗小兵. 液冷服性能参数的数值模拟研究[J]. 工程热物理学报,2015, 336(08):1760-1763. [94]李杰. 舱外航天服—人体热耦合数值模拟[D]. 南京航空航天大学, 2017. [95]许鹏飞, 唐豪. 气冷服近体调温性能的数值分析[J]. 低温与超导, 2017, 45(08):68-72. [96]米立华. 气冷服与体表空间内流动传热模拟研究[D]. 湖南科技大学, 2019. [97]贺帅. 供气式安全头盔呼吸微环境特性研究[D]. 北京科技大学, 2020. [98]林家泉, 连美如, 吴垌. 基于IPMV-PPD的飞机客舱热舒适性数值模拟研究[J]. 机床与液压, 2019, 47(09):139-143+165. [99]朱文兵, 阚安康, 曹丹, 等. 基于数值模拟的船舶空调舱室热舒适性分析[J]. 船舶工程, 2020, 42(11):79-86. [100]林家泉, 迟骋. 基于加权PMV和EQT的改舱客机地面空调最佳送风温度[J]. 流体机械, 2021, 49(02):97-104. [101]林家泉, 梁小贝. 基于CFD的飞机客舱热舒适性和污染物浓度分布的数值模拟[J]. 液压与气动, 2015, (12):59-63. [102]林家泉, 王瑞婷. A320飞机客舱热舒适性及PM-10浓度分布的数值模拟[J]. 系统仿真学报, 2018, 30(01):164-170. [103]苏楚奇, 江玥, 汪怡平, 等. 驾驶舱热舒适性与空调经济性分析研究[J]. 机械设计与制造, 2022, (01):228-232+236. [104]赵朝义, 袁修干, 孙金镖. 人体热调节系统数学模型[J]. 北京航空航天大学学报, 1999, (04):84-87. [105]赵荣义, 范存养. 空气调节[M]. 中国建筑工业出版社. 2009. [107]胡咏梅, 王雨若. 关于中国人体表面积公式的研究[J]. 生理学报, 1999, (01):45-48. [108]Mcintyre. Indoor Climate[M].London: Applied Science Publisher, 1980. [111]徐文华, 钱锋. 人体与环境对流换热系数的理论计算[C].第一届全国人-机-环境系统工程学术会议论文集, 1993:320-324. [112]彼.奥.范格著, 李天麟编译.舒适[M]. 北京:北京科学技术出版社, 1992. [113]P.O. Fanger. Thermal comfort [M]. Robert E. Krieger, Malabar, FL, 1982. [116]Stolwijk J A, Hardy J D. Control of body temperature [J]. Comprehensive Physiology, 2011:45-68. [117]刘晶. 夏热冬冷地区自然通风建筑室内热环境与人体热舒适的研究[D]. 重庆大学, 2007. [118]郑国忠. 高温高湿环境下相关人群的生理应激响应研究[D]. 天津大学, 2013. [121]冯立品, 周孟颖, 张奋奋. 高分子吸水树脂作为蓄冷材料的性能研究[J]. 化工新型材料, 2012, 40(07):55-56. [122]谭爱龄, 陈璐, 柳建良. 高吸水性树脂复合相变材料的冻融特性[J]. 化工进展, 2011, 30(10):2262-2265. [123]黄晨, 龙惟定. 建筑环境学[M]. 北京:机械工业出版社, 2005. [124]国家质量技术监督局. GB-10000-88中国成年人人体尺寸. 1989. [125]林清宇, 刘鹏辉, 冯振飞, 等. 纳米流体在螺旋通道中数值模拟的研究进展[J]. 热科学与技术, 2017, 16(02):87-95. [127]白国军, 王刚, 马兵善, 等.变物参数对微通道内纳米流体强制对流换热的影响[J].工热物理学报, 2018, 39(02):389-394. [128]何伯述, 应兆平, 苏良彬, 等.熔盐基纳米流体管内流动换热特性模拟[J]. 华南理工大学学报(自然科学版), 2021, 49(02):33-39. [129]林清宇,刘鹏辉,石卫军等.纳米流体浓度对内置扭带螺旋管传热特性的影响[J]. 化工科技, 2017, 25(03):36-40. [130]邓匡汉, 武俊梅, 王云, 等. 颗粒沉积对纳米流体流动及换热影响实验研究[J]. 核动力工程,2017,38(03):164-167. [131]孙恩博, 陈今茂, 熊春华, 等. 舰船纳米流体冷却液在间冷器中的应用[J]. 船舶工程, 2021, 43(07):87-93. [132]李超, 官燕玲, 高海仁, 等. 纳米流体对U型深埋管换热特性影响的研究[J]. 太阳能学报, 2021, 42(01):392-399. [134]彭小飞, 俞小莉, 夏立峰, 钟勋. 低浓度纳米流体粘度变化规律试验[J]. 农业机械学报, 2007, (04):138-141+150. |
中图分类号: | TB657/TS941.731 |
开放日期: | 2023-06-21 |