- 无标题文档
查看论文信息

论文中文题名:

 CF3I/CO2抑制甲烷-空气爆炸实验研究    

姓名:

 南凡    

学号:

 18220214051    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 085224    

学科名称:

 工学 - 工程 - 安全工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全工程    

研究方向:

 气体与粉尘燃爆防控    

第一导师姓名:

 程方明    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-17    

论文答辩日期:

 2021-06-03    

论文外文题名:

 Experimental Study of Suppressing the Methane/Air Explosion by CF3I/CO2    

论文中文关键词:

 甲烷爆炸 ; 三氟碘甲烷 ; 气体抑爆 ; 二氧化碳 ; 抑爆机理    

论文外文关键词:

 methane explosion ; trifluoroiodomethane ; gas explosion suppression ; carbon dioxide ; explosion suppression mechanism    

论文中文摘要:

可燃气体爆炸威力大、破坏性强,过程难以控制,对煤矿安全开采以及工业安全生产造成了极大的威胁。因此,可燃气体爆炸灾害事故的防治工作一直被安全工作者所重视,对寻找与探索高效环保的新材料抑爆剂的工作从未停止。

本文应用20L球形爆炸装置,选取哈龙灭火剂的替代物之一三氟碘甲烷与惰性气体二氧化碳来抑制甲烷-空气爆炸。研究了甲烷浓度为7.8%、9.5%和11.3%的条件下,分别加入单组份抑爆剂与复合抑爆剂对甲烷爆炸抑制作用,对比分析了不同浓度抑爆剂对甲烷浓度为9.5%与甲烷-空气当量比为1两种情况下爆炸压力参数的影响,以及在特定条件下三氟碘甲烷对甲烷-空气爆炸初期火焰结构的影响,并结合实验结果分析了甲烷-空气爆炸抑制机理。

实验结果表明:纯甲烷-空气的爆炸极限为5.05%~16.35%,加入二氧化碳时甲烷爆炸的最大安全氧浓度是12.45%,加入三氟碘甲烷时甲烷爆炸的最大安全氧浓度是17.57%,对比发现三氟碘甲烷对甲烷的抑爆效果比二氧化碳好。相比单独使用单组份抑爆剂,复合使用三氟碘甲烷-二氧化碳可以同时发挥两种不同抑爆剂各自的优势,能显著降低最大爆炸压力、压力上升速率,且压力峰值时刻和压力上升速率峰值时刻被明显延迟,抑爆效果更好。加入不同浓度的复合抑爆剂时,与控制甲烷浓度为9.5%相比,控制甲烷-空气当量比为1时,最大爆炸压力与最大爆炸压力上升速率更小,且对其抑制效果更好。

当甲烷-空气发生爆炸时,火焰在容器内快速传播,并产生胞状化结构,且随着时间的推移胞状结构逐渐变小,火焰亮度逐渐变亮;当加入甲烷点火后不发生爆炸时,甲烷-空气爆炸初期的火焰上下对称扩散,随后上半部分逐渐增大,下半部分逐渐缩小,最后完全脱离点火源,呈“蘑菇”形,加入一定量的三氟碘甲烷后与纯甲烷不发生爆炸时的火焰形态相似,但火焰较纯甲烷明亮,这表明由于甲烷浓度较小或甲烷爆炸被抑制住时,虽然没有发生爆炸,但爆炸初期仍有火焰产生,而加入的三氟碘甲烷能抑制住甲烷爆炸火焰的传播。

论文外文摘要:

The explosion of combustible gas is powerful and destructive, and the process is difficult to control, which poses a great threat to the safety of coal mining and industrial production. Therefore, the prevention and treatment of combustible gas explosion accidents has always been valued by safety workers, and the work of searching for and exploring new materials with high efficiency and environmental protection has never stopped.

In this paper, a 20L spherical explosive device is used, and as one of the substitutes of halon fire extinguishing agent- trifluoroiodomethane and inert gas carbon dioxide are selected to suppress methane-air explosion. Under the conditions of methane concentration of 7.8%, 9.5% and 11.3%, the effects of adding a single-component explosion suppressor and a composite explosion suppressor on methane explosion suppression were studied respectively. The explosion pressure parameters were be compared and analyzed in two case of 9.5% methane concentration and methane-air equivalent ratio of 1 in different concentrations of explosion suppressor on. The effect of trifluoroiodomethane to the initial flame structure of methane-air explosion under certain conditions, and combined with the experimental results to analyze the methane-air explosion inhibition mechanism.

The experimental results show that the explosion limit of pure methane-air is 5.05%~16.35%. When carbon dioxide is added, the critical oxygen concentration of methane explosion is 12.45%, and when trifluoroiodomethane is added, the critical oxygen concentration of methane explosion is 17.57%. Compared with using a single-component explosion suppressor, the combined use of trifluoroiodomethane-carbon dioxide can simultaneously exert the respective advantages of two different explosion suppressor, and can significantly reduce the maximum explosion pressure, and the pressure peak moment is obviously delayed, and the explosion suppression effect is better. When adding different concentrations of composite explosion suppressor, compared with the control methane concentration of 9.5%, when control the methane-air equivalent ratio is 1, the maximum explosion pressure and the maximum explosion pressure rise rate are smaller, and the suppression effect is better.

When methane-air explodes, the flame spreads rapidly in the container and produces a cellular structure.When the cellular structure gradually becomes smaller over time, the flame brightness gradually becomes brighter. When there is no explosion after adding methane to ignite, the flame spreads symmetrically up and down at the initial stage of the methane-air explosion. And then the upper part gradually increases, and the lower part gradually shrinks. Finally, it completely separates from the ignition source and assumes a "mushroom" shape. The flame shape of a certain amount of trifluoroiodomethane is similar to pure methane when it does not explode, but the flame is brighter than pure methane. This indicates that because the methane concentration is small or the methane explosion is suppressed, although there is no explosion, the initial explosion flames are still produced, and the added trifluoroiodomethane can inhibit the spread of methane explosion flames.

参考文献:

[1]葛瑛, 傅贵. 特别重大瓦斯爆炸事故行为原因及预防策略研究[J]. 煤矿安全, 2018, 49(10): 234-236.

[2]李元超. 我国煤矿瓦斯事故的发生规律分析[J].煤矿现代化,2019(03):184-186.

[3]全球LNG接收站统计[J]. 国际石油经济, 2014, 22(06): 87-89.

[4]胡源, 宋磊等. 火灾化学导论[M]: 北京: 化学工业出版社, 2007, 1.

[5]田兰, 蒋永明. 化工安全技术[M]. 北京: 化学工业出版社, 1984.

[6]张景林. 气体/粉尘爆炸灾害及其安全技术[J]. 中国安全科学学报,2002,12(5):9-14.

[7]Coward H F, Jones G W. Limits of flammability of gases and vapors, Bulletin 503[R]. Washington D.C.: US B US Bureau of Mines, 1952.

[8]V. V. Azatyan, Yu. N. Shebeko, I. A. Bolod’yan, et al. Effect of diluents of various chemical nature on the flammability limits of gas mixtures[J]. Combustion, Explosion and Shock Waves, 2006, 42(6): 708-714.

[9]V. V. Azatyan, Yu. N. Shebeko, I. A. Bolod’yan, et al. Concentration limits of flammability of H2-N2-O2-inhibitor mixtures[J]. Russian Journal of Physical Chemistry B, Focus on Physics, 2008, 2(4): 568-574.

[10]V. V. Azatyana, Yu. N. Shebekob, A. Yu. Shebekob, et al.Promotion and inhibition of the combustion of methane in oxidative gases with various oxygen concentrations by fluorinated hydrocarbons[J]. Russian Journal of Physical Chemistry B, 2010, 4(5): 760-768.

[11]N. M. Rubtsov, B. S. Seplyarskii, K. Ya. Troshin, et al. Features of the propagation of laminar spherical flames initiated by a spark discharge in mixtures of methane, pentane, and hydrogen with air at atmospheric pressure[J]. Russian Journal of Physical Chemistry A, 2011, 85(10): 1707-1716.

[12]John L. Pagliaro, Gregory T. Linteris, Peter B. Sunderland, et al. Combustion inhibition and enhancement of premixed methane–air flames by halon replacements[J]. Combustion and Flame, 2015, 162(1): 41-49.

[13]邱雁, 高广伟, 罗海珠. 充注惰气抑制矿井火区瓦斯爆炸机理[J]. 煤矿安全, 2003, 34(2): 8-9.

[14]邓军, 程超, 吴晓春. 煤矿可燃性气体爆炸氧浓度的实验研究[J]. 煤矿安全, 2007, (6): 5-7.

[15]何昆. 二氧化碳抑爆性能实验研究[J]. 消防科学与技术, 2011, 30(6): 476-478.

[16]任韶然, 李海奎, 李磊兵, 等. 惰性及特种可燃气体对甲烷爆炸特性的影响实验及分析[J]. 天然气工业, 2013, 33(10): 110-115.

[17]张迎新, 吴强, 刘传海, 江丙友, 张保勇. 惰性气体N2/CO2抑制瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017, 37(05): 906-912.

[18]罗振敏, 康凯. CO2抑制甲烷-空气链式爆炸微观机理的仿真分析[J]. 中国安全科学学报, 2015, 25(05): 42-48.

[19]周福宝, 王德明, 等. 含氮气三相泡沫惰化火区的机理及应用研究[J]. 煤炭学报, 2005, 30(4): 443-446.

[20]祝钊, 贾振元, 罗海珠. 瓦斯输送管道内抑爆过程数值模拟研究[J]. 大连理工大学学报, 2014, 54(1): 37-42.

[21]陈晓坤, 丁园月, 程方明, 李珍宝. CO2对矿井多组分可燃性气体抑爆特性的影响[J]. 煤炭科学技术, 2015, 43(03): 43-47.

[22]罗振敏, 王涛, 程方明, 宋钰, 吴慷. 小尺寸管道内二氧化碳抑制甲烷爆炸效果的实验及数值模拟[J]. 爆炸与冲击, 2015, 35(03): 393-400.

[23]罗振敏, 康凯, 任军莹. NH3对甲烷链式爆炸的微观作用机理[J]. 煤炭学报, 2016, 41(04): 876-883.

[24]罗振敏. 活化水蒸气控制瓦斯爆炸的实验[J]. 煤田地质与勘探, 2008, 36(3): 23-26.

[25]李成兵, 吴国栋, 经福谦. 水蒸气抑制甲烷燃烧和爆炸实验研究与数值计算[J]. 中国安全科学学报, 2009, 19(1): 118-124.

[26]Braidech M. M, Neale J.A, Matson A. F, Dufour R.E. The Mechanisms of extinguishment of fire by finrly divided water [C]. Underwriters Laboratories lnc, for the National Board of Fire Underwriters New York, 1955, 73.

[27]Rasbash D.J. Rogowshi Z.W. Extinction of fires in liquids by cooling with water sprays[J]. Combustion and Flame, 1957, 1(4); 453-466.

[28]Thomas G.O, Jones A, Edwards D.H. Influence of water sprays on explosion development in fuel-air mixtures[J]. Combustion science and technology, 1991, 80 (1-3):47-61.

[29]Clive Catlin. Passive explosion suppression by blast-induced atomization from water containers[J]. Journal of hazardous materials, 2002, 94(2): 103-132.

[30]陆守香,何杰,于春红,秦友花.水抑制瓦斯爆炸的机理研究[J].煤炭学报,1998(04): 83-87.

[31]毕明树,李铮, 张鹏鹏. 细水雾抑制瓦斯煤炸的实验研究[J]. 采矿与安全工程学报. 2012, 29(3): 440-443.

[32]刘江虹,廖光煊. 含添加剂细水雾熄灭甲烷/空气火焰的研究[J]. 北京理工大学学报,2010,30(10):1240-1244.

[33]Pan, R., Z. Xiao and M. Yu, The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications[J]. Energies, 2017. 10(10): p. 1566.

[34]H.K.Chelliah, A.K.Lazzarini, P.C.Wanigarathne, G.T.Linteris. Inhibition of premixed and non-premixed flames with fine droplets of water and solutions[J]. Proceedings of the Combustion Institute, 2002, 29(1): 369-376.

[35]林滢. 瓦斯爆炸水系抑制剂的实验研究[D]. 西安: 西安科技大学, 2006.

[36]陈晓坤, 林滢, 罗振敏. 水系抑制剂控制瓦斯爆炸的实验研究[J]. 煤炭学报, 2006, 31(5):603-606.

[37]高旭亮. 超细水雾抑制甲烷爆炸实验与数值模拟[D].大连理工大学,2014.

[38]曹兴岩. 超细水雾抑制甲烷—空气爆炸机理研究[D].大连理工大学,2017.

[39]Zhang, T. et al. Application of thermal mechanism to evaluate the effectiveness of the extinguishment of CH4/air cup-burner flame by water mist with additives[J]. International Journal of Hydrogen Energy, 2016. 41(33): p. 15078-15088.

[40]Tianwei, Z. et al. Active substances study in fire extinguishing by water mist with potassium salt additives based on thermoanalysis and thermodynamics[J]. Applied Thermal Engineering, 2017. 122: p. 429-438.

[41]杨克,纪虹,邢志祥等.含草酸钾的超细水雾抑制甲烷爆炸的特性[J].化工学报,2018,69(12):5359-5369.

[42]P. Laffitte, R. Bouchet. Suppression of explosion waves in gaseous mixtures by means of fine powders[C]. Symposium (International) on Combustion, 1958, 7(1): 504-508.

[43]C. W. Kauffman, P. Wolanski, A. Arisoy, et al. Dust, hybrid and dusty detonations[C]. AIAA Progress in Astronautics and Aeronautics: Dynamics of shock waves, explosions and detonations, 1984, 94: 221-240.

[44]蔡周全, 张引合. 干粉灭火剂粒度对抑爆性能的影响[J]. 矿业安全与环保, 2001, 28(4):14-16.

[45]张宇明, 邹高万, 郜冶, 等. ABC 干粉对爆燃火焰传播抑制实验[J]. 哈尔滨工程大学学报, 2012, 33(4): 449-453.

[46]张宇明, 邹高万, 郜冶,等. ABC干粉对爆炸超压的抑制[J].燃烧科学与技术, 2012, 18(5): 456-460.

[47]文虎, 曹玮, 王开阔, 等. ABC 干粉抑制瓦斯爆炸的实验研究[J]. 中国安全生产科学技术, 2011, 7(6): 9-12.

[48]罗振敏, 张江, 任军莹等. NH4H2PO4粉体热分解产物在瓦斯爆炸中的作用[J].煤炭学报, 2017, 42(06): 1489-1495.

[49]郑立刚, 王亚磊, 于水军, 朱小超, 李刚, 杜德朋, 窦增果. NaHCO3抑制瓦斯爆炸火焰与压力的耦合分析[J]. 化工学报, 2018, 69(09): 4129-4136.

[50]王信群, 王婷, 徐海顺, 杨剑, P.Wolanski. BC粉体抑爆剂改性及抑制甲烷/空气混合物爆炸[J].化工学报,2015,66(12):5171-5178.

[51]王婷, 王信群, 吕岳, 苏登, 杨博, Pitor Wolanski. 超细活性及惰性粉体对甲烷/空气预混物层流火焰传播的影响[J]. 煤炭学报, 2016, 41(07): 1720-1727.

[52]罗振敏. 瓦斯爆炸抑制材料的特性及抑爆作用研究[D]. 西安: 西安科技大学, 2009.

[53]王秋红, 邓军, 罗振敏, 肖旸. 超细氢氧化镁粉体抑制甲烷-空气混合物爆炸效能研究[J]. 中国安全科学学报, 2014, 24(12): 33-37.

[54]文虎, 王秋红, 罗振敏, 马砺, 唐建军. 超细Al(OH)3粉体抑制甲烷爆炸的实验研究[J]. 西安科技大学学报, 2009, 29(04): 388-390+395.

[55]Yu M G, Zheng K, Zheng L G, et al. Experimental study on gas explosion suppression based on ferrocene[J]. Journal of Coal Science & Engineering, 2013, 19(3): 358-362.

[56]余明高, 孔杰, 王燕, 等. 改性赤泥粉体抑制瓦斯爆炸的实验研究[J]. 煤炭学报, 2014, 39(7): 1289-1295.

[57]Zheng, L. et al. Inhibition of the Premixed CH4/Air Deflagration by Powdered Extinguishing Agents[J]. Procedia Engineering, 2014. 71: p. 230-237.

[58]Wang, Y. et al. Methane explosion suppression characteristics based on the NaHCO3 /red-mud composite powders with core-shell structure[J]. Journal of Hazardous Materials, 2017. 335: p. 84-91.

[59]Sun, Y. et al. Suppression of methane/air explosion by kaolinite-based multi-component inhibitor[J]. Powder Technology, 2019. 343: p. 279-286.

[60]罗振敏, 葛岭梅, 邓军, 程方明. 纳米粉体对矿井瓦斯的抑爆作用[J]. 湖南科技大学学报(自然科学版), 2009, 24(02): 19-23.

[61]程方明, 邓军, 文虎, 罗振敏, 李士戎. SiO2纳米粉体抑制瓦斯爆炸的试验研究[J].煤炭科学技术, 2010, 38(08): 73-76.

[62]Pei, B. et al. Experimental Study on Suppression Effect of Inert Gas Two Fluid Water Mist System on Methane Explosion[J]. Procedia Engineering, 2018. 211: p. 565-574.

[63]余明高, 朱新娜, 裴蓓, 杨勇. 二氧化碳-超细水雾抑制甲烷爆炸实验研究[J]. 煤炭学报, 2015, 40(12): 2843-2848.

[64]裴蓓, 韦双明, 余明高, 陈立伟等. 气液两相介质抑制管道甲烷爆炸协同增效作用[J]. 煤炭学报, 2018, 43(11): 3130-3136.

[65]裴蓓, 余明高, 陈立伟等. CO2-双流体细水雾抑制管道甲烷爆炸实验[J]. 化工学报, 2016, 67(07): 3101-3108.

[66]裴蓓, 韦双明, 陈立伟等. CO2-超细水雾对CH4/Air初期爆炸特性的影响[J]. 爆炸与冲击, 2019, 39(02): 169-178.

[67]余明高, 杨勇, 裴蓓, 牛攀, 朱新娜. N2双流体细水雾抑制管道瓦斯爆炸实验研究[J]. 爆炸与冲击, 2017, 37(02): 194-200.

[68]王瑶. 气固复配灭火剂对瓦斯爆炸引燃初期火焰发展的影响[D]. 西安科技大学, 2017.

[69]计承杰. C3HF7和NaHCO3复配抑制CH4爆炸的实验研究[D]. 西安科技大学, 2017.

[70]R. R. Skaggs. Assessment of the fire suppression mechanics for HFC-227ea combined with NaHCO3[A]. 12th Proceedings of Halon Options Technical Working Conference. Albuquerque, New Mexico, 2002: 1-11.

[71]田志辉. 气—固混合抑制剂对矿井瓦斯的抑爆实验研究[D].西安科技大学,2013.

[72]Wang, Y. et al. The Inhibition Effect of Gas–Solid Two-Phase Inhibitors on Methane Explosion[J]. Energies, 2019. 12(3): p. 398.

[73]李一鸣. 七氟丙烷抑制甲烷-空气爆炸的实验研究[D]. 大连理工大学,2018.

[74]陶贤文, 李绯, 袁国清, 李金林. CF3I气体自动灭火系统在外浮顶油罐中的应用[J].油气田地面工程, 2016, 35(04): 1-3+7.

[75]肖登明. 环保型绝缘气体的发展前景[J]. 高电压技术, 2016, 42(04): 1035-1046.

[76]Lisochkin, Y.A. and V.I. Poznyak, Inerting of Methane-Air Mixtures by Compositions Based on Carbon Dioxide and Nitrogen with Addition of Halocarbons[J]. Combustion, Explosion, and Shock Waves, 2005. 41(5).

[77]O. Mathieu, J. Goulier, F. Gourmel, et al. Experimental study of the effect of CF3I addition on the ignition delay time and laminar flame speed of methane, ethylene, and propane[J]. Proceedings of the Combustion Institute, 2015, 35(3): 2731-2739.

[78]詹平, 钱华, 刘大斌, 潘峰, 江安峰. CF3I对R290的抑爆性能研究[J]. 工业安全与环保, 2018, 44(09): 49-51.

[79]Luo C , Dlugogorski B Z , Kennedy E M . Influence of CF3I and CBrF3 on Methanol-Air and Methane-Air Premixed Flames[J]. Fire Technology, 2008, 44(3): p.221-237.

[80]Babushok V , Noto T , Burgess D R F , et al. Influence of CF3I, CF3Br, and CF3H on the high-temperature combustion of methane[J]. Combustion & Flame, 1996, 107( 4): 351–367.

[81]Luo C , Dlugogorski B , Kennedy E , et al. Inhibition of Premixed Methane-Air Flames with CF3I[J]. Chemical Product and Process Modeling, 2009, 4(3).

[82]Luo C .Study on the Inhibition Mechanisms of CBrF3, CF3I and C3F7H in Methane Fuelled Premixed Flames[D]. The University of Newcastle Australia,2010.

[83]Sun Z Y, Li G X , Li H M, et al. Buoyant Unstable Behavior of Initially Spherical Lean Hydrogen-Air Premixed Flames[J]. Energies, 2014, 7, 4938-4956.

[84]邢其毅, 裴伟伟. 基础有机化学(上册)(第四版)[M]. 北京:北京大学出版社 ,2016-07 .

中图分类号:

 X932    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式