- 无标题文档
查看论文信息

论文中文题名:

 含改性LDHs/EG的硅橡胶泡沫阻燃性能研究    

姓名:

 刘西西    

学号:

 18220089006    

保密级别:

 保密(2年后开放)    

论文语种:

 chi    

学科代码:

 083700    

学科名称:

 工学 - 安全科学与工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 安全科学与工程学院    

专业:

 安全科学与工程    

研究方向:

 消防科学与工程    

第一导师姓名:

 马砺    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-18    

论文答辩日期:

 2021-05-31    

论文外文题名:

 Study on the Flame Retardant Performance of Silicone Rubber Foam Containing Modified LDHs/EG    

论文中文关键词:

 硅橡胶泡沫 ; 共沉淀法 ; 硅凝胶 ; 水滑石 ; 阻燃性能 ; 燃烧性能    

论文外文关键词:

 silicone rubber foam ; co-precipitation method ; silicone gel ; hydrotalcite ; flame retardant performance ; combustion performance    

论文中文摘要:

硅橡胶泡沫(SRF)作为一种新型高分子泡沫材料,因同时兼具硅橡胶和泡沫的特性而被广泛应用在国防军工、航空航天、交通运输、电子工业、农业、动力电池。由于SRF材料有机硅侧链存在大量的碳氢基团,发泡后内部产生孔洞结构具有较高的空气流通性,增加了比表面积,在高温或遇火条件下会发生燃烧分解,导致阻燃性能差。为此,本文将改性LDHs与可膨胀石墨(EG)阻燃剂添加到SRF材料研究其阻燃性能。

采用共沉淀法制备水滑石(LDHs),并对其进行改性,制备含不同添加量稀土Ce3+的LDHs、硅凝胶包覆含不同添加量稀土Ce3+LDHs。利用XRD、SEM-EDS、FT-IR、TG等对制备的阻燃剂的结构、微观形貌进行表征测试。通过LOI仪、垂直燃烧测试仪、万能拉力试验机、锥形量热仪、热重红外分析仪等考察改性LDHs与EG复配的添加对所制备的SRF材料燃烧性能以及力学性能的影响。

成功制备了LDHs、含不同添加量稀土Ce3+的LDHs、硅凝胶包覆含不同添加量稀土Ce3+的LDHs。含稀土Ce3+LDHs的加入,可明显提高SRF材料的极限氧指数(LOI),力学性能也有所提升。添加0.3 mol Ce3+改性LDHs(LDHs-2)且含量为3wt%时,SRF材料的阻燃性能较好,样品的LOI值达到31.2%。随着硅凝胶包覆LDHs-2(SiLDHs-2)添加量的增加,SRF材料的LOI逐渐增大。添加量为5wt%SiLDHs-2具有较好的阻燃性能,添加量为1wt% SiLDHs-2表现出较好的抑烟性能。随着复配体系中EG添加量的增加,SRF材料的LOI值呈增加趋势,但力学性能有所降低;含3.3 wt%SiLDHs-2/6.7wt%EG SRF材料的LOI值、热释放率峰值、总热释放量均比纯SRF材料分别降低了43.21%、66.60%、52.76%;含6.7 wt%SiLDHs-2/3.3wt%EG SRF材料的产烟率峰值相比原样降低了71.43%,具有良好的抑烟性能,说明SiLDHs-2与EG具有协效阻燃抑烟作用。含LDHs-2、SiLDHs-2以及EG/SiLDHs-2复配阻燃剂的加入,初期均促进了SRF材料的热解,后期有效的延缓了SRF材料主链的破坏,残炭率均有提高,其中含SiLDHs-2的SRF材料热稳定性较好,其残炭率相比原样降低了14.98%。这说明EG/SiLDHs-2的加入,显著提高了SRF材料的阻燃性能以及热稳定性能。

论文外文摘要:

Silicone rubber foam (SRF), as a new type of polymer foam material, is widely used in national defense and military industry, aerospace, transportation, electronics industry, agriculture, and power batteries because of the characteristics of both silicone rubber and foam. Due to the large number of hydrocarbon groups in the silicone side chain of the SRF material, the internal pore structure after foaming has high air circulation and increases the specific surface area. It will burn and decompose under high temperature or fire conditions, resulting in flame retardancy. Poor performance. For this reason, this article adds modified LDHs and expandable graphite (EG) flame retardant to the SRF material to study its flame retardant properties.

The hydrotalcite (LDHs) was prepared by co-precipitation method and modified to prepare LDHs containing different amounts of rare earth Ce3+, and silica gel coated with different amounts of rare earth Ce3+LDHs. XRD, SEM-EDS, FT-IR, TG, etc. were used to characterize and test the structure and microscopic morphology of the prepared flame retardant. The influence of the addition of modified LDHs and EG on the combustion performance and mechanical properties of the prepared SRF material was investigated by LOI instrument, vertical combustion tester, universal tensile testing machine, cone calorimeter, thermogravimetric infrared analyzer, etc.

LDHs, LDHs containing different amounts of rare earth Ce3+, and silicone gel coated LDHs containing different amounts of Ce3+ have been successfully prepared. The addition of Ce3+LDHs containing rare earths can significantly increase the limiting oxygen index (LOI) of SRF materials, and the mechanical properties are also improved. When 0.3 mol Ce3+ modified LDHs (LDHs-2) is added and the content is 3wt%, the flame retardant performance of the SRF material is better, and the LOI value of the sample reaches 31.2%. As the amount of silicone gel coated LDHs-2 (SiLDHs-2) increases, the LOI of SRF materials gradually increases. The addition of 5wt% SiLDHs-2 has better flame retardant properties, and the addition of 1wt% SiLDHs-2 shows better smoke suppression properties. With the increase in the amount of EG added in the compound system, the LOI value of the SRF material shows an increasing trend, but the mechanical properties are reduced; the LOI value, peak heat release rate, and total heat release of the SRF material containing 3.3 wt% SiLDHs-2/6.7 wt% EG are reduced by 43.21%, 66.60%, and 52.76%, respectively, compared with the pure SRF material; The peak smoke production rate of the SRF material containing 6.7 wt% SiLDHs-2/3.3 wt% EG is reduced by 71.43% compared with the original, and has good smoke suppression performance, indicating that SiLDHs-2 and EG have synergistic flame retardant and smoke suppression effects. The addition of LDHs-2, SiLDHs-2 and EG/SiLDHs-2 compound flame retardants advances the initial decomposition temperature of SRF materials, effectively delays the destruction of the main chain of SRF materials in the later stage, and improves the carbon residual rate of samples. Among them, the SRF material containing SiLDHs-2 has better thermal stability, and its carbon residue rate is reduced by 14.98% compared to the original. This shows that the addition of EG/SiLDHs-2 significantly improves the flame retardancy and thermal stability of SRF materials.

参考文献:

[1] 彭治汉. 聚合物阻燃新技术[M]. 北京: 化学工业出版社, 2015:9-10.

[2] Yang Q, Yu H, Song L, et al. Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide[J]. Journal of applied polymer science, 2017, 134(20).

[3] Liu B, Huang W, Ao Y Y, et al. Dose rate effects of gamma irradiation on silicone foam[J]. Polymer Degradation and Stability, 2018, 147:97-102.

[4] Kang F, Wang C, Deng J, et al. Effects of talc/hollow glass beads on the flame retardancy of silicone foams[J]. Materials Research Express, 2019, 6(9):095318.

[5] Chen D, Liu Y, Huang C. Synergistic effect between POSS and fumed silica on thermal stabilities and mechanical properties of room temperature vulcanized (RTV) silicone rubbers[J]. Polymer degradation and stability, 2012, 97(3):308-315.

[6] Zhao M, Feng Y, Li Y, et al. Preparation and performance of phenyl-vinyl-POSS/addition-type curable silicone rubber hybrid material[J]. Journal of Macromolecular Science, Part A, 2014, 51(8):639-645.

[7] Liu P, Liu D, Zou H, et al. Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber[J]. Journal of applied polymer science, 2009, 113(6):3590-3595.

[8] Hayashida K, Tsuge S, Ohtani H. Flame retardant mechanism of polydimethylsiloxane material containing platinum compound studied by analytical pyrolysis techniques and alkaline hydrolysis gas chromatography[J]. Polymer, 2003, 44(19):5611-5616.

[9] 邓军, 康付如, 吴长林. 环保型硅橡胶泡沫阻燃抑烟及热分解特性[J]. 高分子材料科学与工程, 2018, 34(12):90-94, 100.

[10] Gao J, Wang J, Xu H, et al. Preparation and properties of hollow glass bead filled silicone rubber foams with low thermal conductivity[J]. Materials & Design, 2013, 46:491-496.

[11] Matusinovic Z, Feng J, Wilkie C A. The role of dispersion of LDH in fire retardancy: The effect of different divalent metals in benzoic acid modified LDH on dispersion and fire retardant properties of polystyrene-and poly (methyl-methacrylate)-LDH-B nanocomposites[J]. Polymer degradation and stability, 2013, 98(8):1515-1525.

[12] Nejati K, Keypour H, Nezhad P D K, et a1. Experimental Design for the Optimization of the Synthesis Conditions of Zn-A1-Layered Double Hydroxides Nanoparticles Based on X-ray Diffraction Data[J]. Molecular Crystals, 2015, 608(1):177-189.

[13] Vulic T, Reitzmann A, Ranogajec J, et a1. The influence of synthesis method and Mg-AI-Fe content on the thermal stability of layered double hydroxides[J]. Journal of Thermal Analysis&Calorimetry, 2012, 110(1):227-233.

[14] Nejati K, Akbari A R, Davari S, et a1. Zn-Fe-layered double hydroxide intercalated with vanadate and molybdate anions for electrocatalytic water oxidation[J]. New Journal of Chemistry, 2018, 42:2889-2895.

[15] Li H, Chen Z, Wang Y, et al. Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni-Al layered double hydroxide[J]. Electrochimica Acta, 2016, 210:15-22.

[16] Wang X, Lin Y, Su Y, et al. Design and synthesis of ternary-component layered double hydroxides for high-performance supercapacitors: understanding the role of trivalent metal ions[J]. Electrochimica Acta, 2017, 225:263-271.

[17] 禹洪丽, 韩彩芸, 李鸿颖. 类水滑石的合成、表征及应用进展[J]. 材料导报, 2013, 37(5):59-66.

[18] 王洪莲, 秦军, 谢普, 等. EAA熔融接枝LDHs填充HDPE制备纳米复合材料[J]. 合成材料老化与应用, 2011, 40(4):31-36.

[19] 毛晓颖, 甄卫军, 申丹, 等. 溶液插层法制备聚乳酸/SDS改性镁铝水滑石纳米复合材料及其性能表征[J]. 塑料, 2012, 41(4):82-86.

[20] Zhang Z, Chen G, Xu K. Photoluminescence of Colloids of Pristine Zn Al Layered Double Hydroxides[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):11045-11049.

[21] Xu S L, Zhang L X, Lin Y J, et al. Layered double hydroxides used as flame retardant for engineering plastic acrylonitrile-butadiene-styrene (ABS) [J]. Journal of Physics and Chemistry of Solids, 2012, 73(12):1514-1517.

[22] 尚松川, 杨保俊, 张睿辰, 等. Sb2O3-ZnMgAl类水滑石的制备及其在软聚氯乙烯阻燃中的应用[J]. 复合材料学报, 2017, 34(8):1667-1673.

[23] 黄昱臻, 徐建平, 陆文文, 等. LDHs-MoO3复合粉体的制备及对聚氯乙烯阻燃抑烟性能的影响[J]. 高分子材料科学与工程, 2019, 35(9):74-81.

[24] 王松林, 董合贺, 邢仁卫, 等. 改性水滑石对聚丙烯阻燃和力学性能的影响[J]. 精细化工, 2019, 36(5):813-819, 827.

[25] 张红霞, 刘昌伟, 苏桂仙. 水滑石/硼酸锌对低密度聚乙烯热性能的影响[J]. 工程塑料应用, 2018, 46(10):128-131, 136.

[26] Qian Y, Li S, Chen X. Synthesis and characterization of LDHs using Bayer red mud and its flame-retardant properties in EVA/LDHs composites[J]. Journal of Material Cycles and Waste Management, 2015, 17(4):646-654.

[27] Hollingbery L A, Hull T R. The fire retardant behaviour of huntite and hydromagnesite-A review[J]. Polymer Degradation and Stability, 2010, 95(12):2213-2225.

[28] 任庆利, 张赞锋, 罗强. 纳米晶镁铝水滑石的制备及其热分解机理[J]. 物理化学学报, 2004(3):318-322.

[29] Manzi-Nshuti C, Wang D, Hossenlopp J M, et al. The role of the trivalent metal in an LDH: Synthesis, characterization and fire properties of thermally stable PMMA/LDH systems [J]. Polymer Degradation and Stability, 2009, 94(4):705-711.

[30] 刘博. Zn/Mg/Al-LDHs/神府煤复合材料结构与性能研究[D]. 西安: 西安科技大学, 2014.

[31] 葛瑞祥, 曹鸿璋, 于晓丽, 等. 微纳米稀土化合物在高分子材料中的应用[J]. 稀土, 2019, 40(1):139-146.

[32] 张宇. 纳米稀土层状双氢氧化物的可控制备及阻燃性能研究[D]. 黑龙江: 东北林业大学, 2011.

[33] 李毅恒. 稀土类水滑石的煤自燃阻化机理研究[D]. 西安: 西安科技大学, 2018.

[34] 孙会娟, 陈灵智, 吴瑞红. 稀土元素阻燃剂研究进展[J]. 塑料科技, 2018, 46(10):122-127.

[35] Qian Y, Qiao P, Li L, et al. Hydrothermal synthesis of lanthanum-doped MgAl-layered double hydroxide/graphene oxide hybrid and its application as flame retardant for thermoplastic polyurethane[J]. Advances in Polymer Technology, 2020, 24(4):178-189.

[36] Wang L, Li B, Zhao X, et al. Effect of rare earth ions on the properties of composites composed of ethylene vinyl acetate copolymer and layered double hydroxides[J]. PLoS One, 2012, 7(6): 37781.

[37] 马砺, 刘西西, 刘志超, 等. 改性水滑石的制备及在硅橡胶泡沫阻燃抑烟中的应用[J]. 高分子材料科学与工程, 2020, 36(10):55-62.

[38] Wen R, Zhan H, Hong Y, et al. Zn-Al-La hydrotalcite-like compounds as heating stabilizer in PVC resin[J]. Journal of Rare Earths, 2012, 30(9): 895-902.

[39] Wang B, Sheng H, Shi Y, et al. Recent advances for microencapsulation of flame retardant[J]. Polymer Degradation and Stability, 2015, 113:96-109.

[40] 李效军, 宋健, 陈磊. 微胶囊化技术及应用[M]. 北京: 化学工业出版社, 2001:406.

[41] 刘志超. DMMP阻燃微胶囊的制备及在硅橡胶泡沫中的应用[D]. 西安: 西安科技大学, 2019.

[42] 程家骥, 王旭, 王浩东. 聚脲材料包覆可膨胀石墨微胶囊阻燃天然橡胶[J]. 复合材料学报, 2021, 38(1):232-238.

[43] Wu K, Zhang Y, Hu W, et al. Influence of ammonium polyphosphate microencapsulation on flame retardancy thermal degradation and crystal structure of polypropylene composite[J]. Compos Sci Technol, 2013, 81:17-23.

[44] Chen W, Fu X, Ge W, et al. Microencapsulation of bisneopentyl glycol dithiopyrophosphate and its flame retardant effect on polyvinyl alcohol[J]. Polymer Degradation and Stability, 2014, 102:81-87.

[45] Chen Z, Jiang M, Chen Z. Preparation and characterization of a microencapsulated flame retardant and its flame-retardant mechanism in unsaturated polyester resins. [J]. Powder Technology, 2019, 354(1):71-81.

[46] 郭福全, 朱新军, 郭迎宾, 等. 微胶囊Mg(OH)2的合成及其对乙烯-乙酸乙烯酯共聚物的阻燃作用[J]. 复合材料学报, 2018, 35(7):1754-1761.

[47] Hu W, Wang B, Wang X, et al. Effect of ethyl cellulose microencapsulated ammonium polyphosphate on flame retardancy, mechanical and thermal properties of flame retardant poly (butylene succinate) composites[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1):27-38.

[48] 陈文, 盛旭敏, 杨朝龙, 等. 微胶囊化聚磷酸铵阻燃硅橡胶的研究[J]. 化工新型材料, 2015, 43(8):213-215.

[49] Yang Y, Chen W, Liu M, et al. Flame retarded rigid polyurethane foam composites based on gel-silica microencapsulated ammonium polyphosphate[J]. Journal of Sol-Gel Science and Technology, 2021:1-12.

[50] 汪碧波. 核-壳协同微胶囊化膨胀型阻燃剂的制备及其交联阻燃乙烯-醋酸乙烯酯共聚物性能的研究[D]. 合肥: 中国科学技术大学, 2012.

[51] Zhu J, Lu X, Yang H, et al. Vinyl polysiloxane microencapsulated ammonium polyphosphate and its application in flame retardant polypropylene[J]. Journal of Polymer Research, 2018, 25(4):1-7.

[52] Vroman I, Giraud S, Salaün F, et al. Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance[J]. Polymer degradation and Stability, 2010, 95(9):1716-1720.

[53] Ni J, Chen L, Zhao K, et al. Preparation of gel-silica/ammonium polyphosphate core-shell flame retardant and properties of polyurethane composites[J]. Polymers for Advanced Technologies, 2011, 22(12):1824-1831.

[54] 杨娜, 曾智, 王雪飞. 笼型倍半硅氧烷及其在阻燃聚合物中的应用[J]. 高分子通报, 2012(12):50-56.

[55] Wang G, Dai Z, Liu L, et al. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J]. ACS applied materials & interfaces, 2016, 8(34):22554-22562.

[56] Wang G, Dai Z, Liu L, et al. Tuning the interfacial mechanical behaviors of monolayer graphene/PMMA nanocomposites[J]. ACS applied materials & interfaces, 2016, 8(34):22554-22562.

[57] Liu L, Xu M, Hu Y, et al. Surface modification of magnesium hydroxide and its application in flame-retardant oil-extended styrene-ethylene-butadiene-styrene/polypropylene composites[J]. Journal of Applied Polymer Science, 2019, 136(9):47129.

[58] Ma Y, Chen M, Liu N, et al. Combustion characteristics and thermal properties of high-density polyethylene/ethylene vinyl-acetate copolymer blends containing magnesium hydroxide[J]. Journal of Thermoplastic Composite Materials, 2017, 30(10):1393-1413.

[59] 严玉, 段佳巍, 郑家青. 阻燃型硅橡胶泡沫的制备[J]. 有机硅材料, 2014, 28(3):153-156.

[60] 马砺, 刘志超, 肖旸, 等. 含无机阻燃剂硅橡胶泡沫的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11):1836-1841.

[61] 邓军, 张瓷, 康付如, 等. 含氢氧化铝铂金催化体系HTV阻燃抑烟硅橡胶的制备和性能[J]. 西安科技大学学报, 2019, 39(6): 928-933, 956.

[62] Zhuo J L, Dong J, Jiao C M, et al. Synergistic effects between red phosphorus and alumina trihydrate in flame retardant silicone rubber composites[J]. Plastics, rubber and composites, 2013, 42(6):239-243.

[63] 邓军, 李航, 康付如. 硼酸锌和镁铝水滑石对硅橡胶泡沫性能的影响[J]. 高分子材料科学与工程, 2020, 36(12):42-48.

[64] 张嬿妮, 陈少康, 康付如, 等. 含氢氧化铝RTV-2硅橡胶泡沫的阻燃抑烟性能研究[J].中国安全生产科学技术, 2018, 14(5):155-160.

[65] 黄庆. 无卤阻燃EPDM/EVA复合材料的研究 [D]. 北京: 北京化工大学, 2010.

[66] 宋远超, 陈国文, 姚慧玲. 硅系阻燃剂作用机理及应用进展[J]. 有机硅材料, 2018, 32(6):496-500.

[67] 张敏, 李如钢. 有机硅阻燃剂的研究进展[J]. 有机硅材料, 2009, 23(1):51-54.

[68] 易岚. 含硅阻燃剂的研究进展[J]. 广东公安科技, 2008, 37(1):51-54.

[69] 李兴建, 王安营, 孙道兴. MP/OMMT对脱醇型RTV阻燃硅橡胶性能的影响[J]. 有机硅材料, 2012, 26(3):137-142.

[70] 向斌. 纳米SiO2及蒙脱土对硅橡胶泡沫结构及性能的影响[D]. 成都: 成都理工大学, 2018.

[71] Hanu L G, Simon G P, Cheng Y B. Thermal stability and flammability of silicone polymer composites[J]. Polymer degradation and stability, 2006, 91(6): 1373-1379.

[72] Chattopadhyay D K, Webster D C. Thermal stability and flame retardancy of polyurethanes[J]. Progress in Polymer Science, 2009, 34(10):1068-1133.

[73] Guo C, Zhou L, Lv J. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites[J]. Polymers and Polymer Composites, 2013, 21(7):449-456.

[74] Chruściel J J, Leśniak E. Preparation of flexible, self-extinguishing silicone foams[J]. Journal of Applied Polymer Science, 2011, 119(3):1696-1703.

[75] 李洋, 翟文涛, 张利华. 氧化石墨烯增强有机硅橡胶复合泡沫材料的性能[J]. 合成橡胶工业, 2016, 39(2):125-128.

[76] Liu L, Zhuo J, Chen X, et al. Influence of ferric hydroxide on smoke suppression properties and combustion behavior of intumescent flame retardant silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(1):487-497.

[77] Chen X, Song W, Liu J, et al. Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites[J]. Journal of Thermal Analysis and Calorimetry, 2015, 120(3):1819-1826.

[78] 庞青涛, 邓军, 邵水源, 等. 可膨胀石墨阻燃多孔硅胶的制备与表征[J]. 化工新型材料, 2020, 48(8):185-189.

[79] 纪少思, 周万立, 刘鹏清. 硅凝胶包覆三聚氰胺焦磷酸盐阻燃改性聚乙烯醇薄膜[J].高校化学工程学报, 2016, 30(3):693-699.

[80] Prasanna S V, Kamath P V. Synthesis and characterization of arsenate-intercalated layered double hydroxides (LDHs): Prospects for arsenic mineralization[J]. Journal of Colloid and Interface Science, 2009, 331(2):439-445.

[81] Iwasaki T, Shimizu K, Nakamura H, et al. Novel mechanochemical process for facile and rapid synthesis of a Co-Fe layered double hydroxide[J]. Materials Letters, 2012, 68:406-408.

[82] Yi S, Yang Z H, Wang S W, et al. Effects of Mg Al Ce-CO3 layered double hydroxides on the thermal stability of PVC resin[J]. Journal of applied polymer science, 2011, 119(5):2620-2626.

[83] Valente J S, Sánchez-Cantú M, Lima E, et al. Method for large-scale production of multimetallic layered double hydroxides: formation mechanism discernment[J]. Chemistry of Materials, 2009, 21(24):5809-5818.

[84] 杨占红, 易师, 贺红梅. PVC用热稳定剂镁铝铈类水滑石的合成[J]. 中南大学学报, 2011, 42(4):897-902.

[85] Wang Z, Han E, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress in Organic Coatings, 2005, 53(1):29-37.

[86] 高莉, 张兴儒, 段国萍, 等. 镁铝水滑石的合成及其表征[J]. 青海大学学报, 2010, 28(4):22-26.

[87] Chiang M F, Wu T M. Intercalation of γ-PGA in Mg/Al layered double hydroxides: An in situ WAXD and FTIR investigation[J]. Applied clay science, 2011, 51(3):330-334.

[88] 屈亚松, 俞小花, 谢刚, 等. Zn-Al-Ce水滑石在Zn-Ni二次电池中的电化学性能[J]. 化工进展, 2021, 40(3):1558-1564.

[89] 邹瑜. 水滑石类功能材料的特性分析及其阻燃应用[J]. 硅酸盐通报, 2020, 39(12):4034-4042.

[90] 张军. 聚合物燃烧与阻燃技术[M]. 北京: 化学工业出版社, 2004, 392-397.

[91] Zhang Z, Chen G, Xu K. Photoluminescence of colloids of pristine ZnAl layered double hydroxides[J]. Industrial & Engineering Chemistry Research, 2013, 52(32):11045-11049.

[92] Qi F, Tang M, Wang N, et al. Efficient organic-inorganic intumescent interfacial flame retardants to prepare flame retarded polypropylene with excellent performance[J]. RSC advances, 2017, 7(50):31696-31706.

[93] 季辰焘, 王金合, 宋佳男, 等. 可瓷化阻燃耐火硅橡胶研究进展[J]. 功能材料, 2015, 46(4):4001-4008.

[94] Xu M J, Xu G R, Leng Y, et al. Synthesis of a novel flame retardant based on cyclotriphosphazene and DOPO groups and its application in epoxy resins[J]. Polymer Degradation and Stability, 2016, 123:105-114.

[95] Sut A, Greiser S, Jäger C, et al. Synergy in flame-retarded epoxy resin[J]. Journal of Thermal Analysis and Calorimetry, 2017, 128(1):141-153.

中图分类号:

 TQ333.93/X932    

开放日期:

 2023-06-24    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式