- 无标题文档
查看论文信息

论文中文题名:

 万州侏罗系地层泥岩湿-热疲劳损伤研究    

姓名:

 党晨    

学号:

 19209212048    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085217    

学科名称:

 工学 - 工程 - 地质工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 地质与环境学院    

专业:

 地质工程    

研究方向:

 岩土力学    

第一导师姓名:

 孙强    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-21    

论文答辩日期:

 2022-05-29    

论文外文题名:

 Wet-thermal fatigue damage of Jurassic mudstone in Wanzhou Formation    

论文中文关键词:

 泥岩 ; 湿-热循环 ; 声发射 ; 矿物成分    

论文外文关键词:

 Mudstone ; Wet and heat cycle ; Acoustic emission ; Mineral composition    

论文中文摘要:

以岩石风化损伤影响斜坡稳定性为研究背景,采用万州侏罗系地层的软弱层泥岩为例,研究了温度和循环次数对岩石损伤过程中物理和声发射性质的影响。本文重点分析了泥岩损伤时声发射信号变化特征,并从微-宏观角度对岩石风化损伤机理做出了细致分析。本文的研究成果为岩石风化损伤提供理论和试验支撑,论文得到了以下主要成果。

(1)均匀和模拟自然条件加热试验条件下,泥岩质量损失率和质量损失速率总体呈增长趋势。泥岩在损伤过程中多为断裂式贯穿破坏,随循环次数的增加损伤越强,且靠近热源一侧裂纹发育比远离热源方向强烈;含水率越高,裂纹发育更快且崩落物体积更大。

(2)随着循环次数的增加,含水率低的泥岩(0%-0.1%)振铃计数无明显变化。含水率高(0.4%-0.9%)的声发射振铃计数分为两个阶段,先增大再减小。累计振铃计数分为两个阶段,先增大再降低。lgn值呈指数函数上升,且含水率越高R2越大。随着温度的上升振铃计数分为平静期、高峰期、活跃期三个阶段。累计振铃计数呈指数增长后逐渐平稳;模拟自然条件加热试验条件下,循环次数增加振铃计数总体幅度经历先降低再增加后减小三个阶段。累计振铃计数经历先升高后降低再骤升三个阶段。lgn值呈指数函数上升,且越靠近热源部位R2越大。随着温度的上升振铃计数经历高峰期、平静期、小高峰期三个阶段。累计振铃计数呈指数增长后趋于平稳。

(3)模拟自然条件试验条件下加热循环0-30次时,小尺度微观的拉张裂纹所占比例较高。随后剪切裂纹所占比例增加。当循环了30-50次时,大尺度宏观的剪切裂纹所占比例增加。随着升温速率的提高,小尺度微观的拉张裂纹明显减少,大尺度宏观的拉张裂纹增多。

(4)万州泥岩b值的变化可分为三个阶段,加热初期,万州泥岩声发射b值呈快速下降趋势。第二阶段b值开始小范围内波动,此阶段对应于岩体的缓慢微破坏。第三阶段当温度即将达到阈值时,b值出现较快速的下降。

(5)湿-热疲劳作用机理主要是泥岩内部水分运移造成的粘土矿物变化、方解石膨胀收缩、水的蒸腾和水压升高引起的粘聚力和内摩擦角减小,导致岩体风化损伤。

论文外文摘要:

Taking the influence of rock weathering damage on slope stability as the research background, the influence of temperature and number of cycles on the physical and acoustic emission properties of the soft mudstone of Jurassic strata in Wanzhou was studied. In this paper, the variation characteristics of acoustic emission signal during mudstone damage are analyzed, and the mechanism of rock weathering damage is analyzed in detail from micro-macro Angle. The research results of this paper provide theoretical and experimental support for rock weathering damage, and the main results are as follows.

(1) The mass loss rate and mass loss rate of mudstone increase under uniform and simulated natural conditions. In the damage process, the mudstone is mostly fracture through failure, and the damage becomes stronger with the increase of the number of cycles, and the crack development is stronger near the heat source than away from the heat source. The higher the water content is, the faster the crack develops and the larger the volume of the caved material is.

(2) With the increase of the number of cycles, the ring count of mudstone with low water content (0-0.1%) has no obvious change. The acoustic emission ringing count with high water content (0.4-0.9%) is divided into two stages, first increasing and then decreasing. The cumulative ring count is divided into two stages, increasing first and then decreasing. lgn value increases exponentially, and R2 increases with higher water content. With the rise of temperature, the ringing count can be divided into three stages: quiet period, peak period and active period. The cumulative ringing number increases exponentially and then gradually stabilizes. Under the simulated heating test under natural conditions, the overall range of ringing count goes through three stages: first decrease, then increase, then decrease. The cumulative ring number goes through three stages: first rise, then fall, and then rise sharply. lgn increases exponentially, and R2 increases as you get closer to the heat source. With the rise of temperature, the ring count experiences three stages: peak period, quiet period and small peak period. The cumulative ring number increases exponentially and then tends to be stable.

(3) When the heating cycle is 0-30 times under simulated natural conditions, the proportion of small-scale microscopic tensile cracks is higher. Then the proportion of shear cracks increases. When the cycle is 30-50 times, the proportion of large-scale and macroscopic shear cracks increases. With the increase of heating rate, the tensile cracks of small scale and micro scale decrease obviously, while the tensile cracks of large scale and macro scale increase.

(4) The variation of b value of wanzhou mudstone can be divided into three stages. At the initial stage of heating, the AE b value of Wanzhou mudstone shows a rapid downward trend. In the second stage, b value starts to fluctuate in a small range, which corresponds to the slow micro-failure of rock mass. In the third stage, when the temperature is about to reach the threshold, b value decreases rapidly.

(5) The main mechanism of wet-thermal fatigue is the change of clay minerals caused by water transport in mudstone, the expansion and contraction of calcite, the decrease of cohesion and internal friction Angle caused by water transpiration and the increase of water pressure, which leads to the weathering damage of rock mass.

参考文献:

[1] 曾静, 盛谦. 《灾害环境下重大工程安全性的基础研究》专著由科学出版社出版 [J]. 岩土力学, 2009, 30(02): 451.

[2] 梁卫, 卢书强, 张巷生. 库水位下降对八字门滑坡稳定性分析 [J]. 三峡大学学报(自然科学版), 2020, 42(03): 45-50.

[3] 魏雄. 水位变化对库岸边坡稳定性影响研究 [D]; 重庆大学, 2020.

[4] YAO W, LI C, ZHAN H, et al. Multiscale Study of Physical and Mechanical Properties of Sandstone in Three Gorges Reservoir Region Subjected to Cyclic Wetting–Drying of Yangtze River Water [J]. Rock Mechanics and Rock Engineering, 2020, 53(1).

[5] 黄金勇. 三峡库区堆积层滑坡活动性及地表位移预测 [D]; 安徽理工大学, 2020.

[6] 曾静, 盛谦. 973项目《灾害环境下重大工程安全性的基础研究》圆满结题 [J]. 岩土力学, 2009, 30(01): 269.

[7] 崔政权. 关于川东地区山地灾害典型实例暨综合治理的必要性与迫切性; proceedings of the 自然边坡稳定性分析暨华蓥山边坡变形趋势研讨会, 中国重庆, F, 1991 [C].

[8] 颜天佑, 李同春, 赵兰浩, et al. 三维边坡稳定分析的有限元弹塑性迭代解法 [J]. 岩土力学, 2009, 30(10): 3102-8.

[9] 刘才华, 陈从新, 冯夏庭. 库水位上升诱发边坡失稳机理研究 [J]. 岩土力学, 2005, (05): 769-73.

[10] 陈国华, 何维彬, 朱志刚. 滑坡稳定性评价方法对比研究; proceedings of the 第三届全国岩土与工程学术大会, 中国四川成都, F, 2009 [C].

[11] 薛万峰. 基于高精度监测信息的黑方台典型黄土滑坡稳定性分析 [D]; 长安大学, 2021.

[12] 石恒, 王志亮, 石高扬, et al. 实时温度下花岗岩动态压缩破坏特性试验与数值研究 [J]. 岩土工程学报, 2019, (5): 10.

[13] 万璋, 范立峰, 王林, et al. SHPB试验过程中岩石变形破坏的实时物像同步分析 [J]. 试验力学, 2017, 32(6): 10.

[14] TAPPONNIER P, BRACE W F. Development of stress-induced microcracks in Westerly Granite [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1976, 13(4): 103-12.

[15] 卢再华, 陈正汉, 蒲毅彬. 膨胀土干湿循环胀缩裂隙演化的CT试验研究 [J]. 岩土力学, 2002, (04): 417-22.

[16] 唐朝生, 施斌, 王宝军. 基于SEM土体微观结构研究中的影响因素分析 [J]. 岩土工程学报, 2008, (04): 560-5.

[17] 齐吉琳, 马巍. 冻融作用对超固结土强度的影响 [J]. 岩土工程学报, 2006, (12): 2082-6.

[18] 叶为民, 许利波, 王琼, et al. 考虑侧壁摩阻的围岩裂隙中膨润土-砂混合物侵入过程及其模型 [J]. 岩土工程学报: 1-9.

[19] 张先伟, 孔令伟, 郭爱国, et al. 基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律 [J]. 岩石力学与工程学报, 2012, 31(02): 406-12.

[20] 张英, 邴慧, 杨成松. 基于SEM和MIP的冻融循环对粉质黏土强度影响机制研究 [J]. 岩石力学与工程学报, 2015, 34(S1): 3597-603.

[21] 谭洵, 何星星, 陈亿军, et al. 陈化污泥理化特性对泥饼渗透性的影响研究 [J]. 岩土力学, 2022, 43(02): 479-88.

[22] 李楠, 王天亮, 徐昌, et al. 反复冻融作用下粉质黏土的微观分形特征研究 [J]. 铁道标准设计, 2017, 61(10): 48-52.

[23] DANG C, SUI Z, YANG X, et al. Pore Changes in Purple Mudstone Based on the Analysis of Dry-Wet Cycles Using Nuclear Magnetic Resonance [J]. Shock and Vibration, 2022, 2022: 5578401.

[24] 丁梧秀, 冯夏庭. 灰岩细观结构的化学损伤效应及化学损伤定量化研究方法探讨 [J]. 岩石力学与工程学报, 2005, 24(8): 6.

[25] WILLIAMS R, ROBINSON D A. Experimental frost weathering of sandstone by various combinations of salts [J]. Earth Surface Processes & Landforms, 2010, 26(8): 811-8.

[26] GHOBADI M H, BABAZADEH R. An investigation on the effect of accelerated weathering on strength and durability of Tertiary sandstones (Qazvin province, Iran) [J]. Environmental Earth Sciences, 2015, 73(8): 4237-50.

[27] PACHECO-TORGAL F, JALALI S. Compressive strength and durability properties of ceramic wastes based concrete [J]. Materials & Structures, 2011, 44(1): 155-67.

[28] NOOR-E-KHUDA S, ALBERMANI F. Mechanical properties of clay masonry units: Destructive and ultrasonic testing [J]. Construction and Building Materials, 2019, 219(SEP.20): 111-20.

[29] HIME W G, MATHER B. Reply to the discussion of the paper "Sulfate attack," or is it? [J]. 2000, 30(1): 163-4.

[30] TSUI N, FLATT R J, SCHERER G W. Crystallization damage by sodium sulfate [J]. Journal of Cultural Heritage, 2003, 4(2): 109-15.

[31] LI X, ZHAO S, SHI C. Sulfate-ion Diffusion Regularity And Reaction Mechanism Of Sodium Sulfate Attack On Carbonized Concrete [J]. Key Engineering Materials, 2009, 400-402: p.211-4.

[32] STEIGER M, CHAROLA A E, STERFLINGER K. Weathering and Deterioration [J]. 2011.

[33] AKIN M, OEZSAN A. Evaluation of the long-term durability of yellow travertine using accelerated weathering tests [J]. Bulletin of Engineering Geology and the Environment, 2011, 70(1): 101-14.

[34] ALONSO F J, V ZQUEZ P, ESBERT R M, et al. Ornamental granite durability: evaluation of damage caused by salt crystallization [J]. Materiales De Construccion, 2008, 58(289).

[35] PATRICIA, V ZQUEZ, ANA, et al. Surface changes on crystalline stones due to salt crystallisation [J]. Environmental Earth Sciences, 2013.

[36] GEORGE, W., SCHERER. Stress from crystallization of salt [J]. Cement & Concrete Research, 2004.

[37] URBAN, KESSON, AND, et al. The influence of foliation on the fragility of granitic rocks, image analysis and quantitative microscopy [J]. Engineering Geology, 2003, 68(3-4): 275-88.

[38] NOOR-E-KHUDA S, ALBERMANI F, VEIDT M. Flexural strength of weathered granites: Influence of freeze and thaw cycles [J]. Construction & Building Materials, 2017, 156(dec.15): 891-901.

[39] ZEHNDER K, ARNOLD A. Crystal growth in salt efflorescence [J]. Journal of Crystal Growth, 1989, 97(2): 513-21.

[40] DONG Z, SUN Q, RANJITH P G. Surface properties of grayish-yellow sandstone after thermal shock [J]. Environmental Earth Sciences, 2019.

[41] 徐小丽, 高峰, 沈晓明, et al. 高温后花岗岩力学性质及微孔隙结构特征研究 [J]. 岩土力学, 2010, 31(06): 1752-8.

[42] 何爱林. 花岗岩热损伤机理及其力学特性试验研究 [D]; 合肥工业大学, 2018.

[43] 朱合华, 闫治国, 邓涛, et al. 3种岩石高温后力学性质的试验研究 [J]. 岩石力学与工程学报, 2006, (10): 1945-50.

[44] 熊良宵, 虞利军. 高温作用下和高温后岩石力学特性的研究进展 [J]. 地质灾害与环境保护, 2018, 29(01): 76-82.

[45] CHEN Y L, NI J, SHAO W, et al. Experimental study on the influence of temperature on the mechanical properties of granite under uni-axial compression and fatigue loading [J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 56(Complete): 62-6.

[46] ALM O, JAKTLUND L L, SHAOQUAN K. The influence of microcrack density on the elastic and fracture mechanical properties of Stripa granite [J]. Physics of The Earth and Planetary Interiors, 1985, 40(3): 161-79.

[47] 林建伟. 高温作用后鲁灰花岗岩断裂模型及断裂预测研究 [D]; 中北大学, 2020.

[48] 林睦曾. 岩石热物理学及其工程应用 [M]. 岩石热物理学及其工程应用, 1991.

[49] LAU J, GORSKI B, JACKSON R. The Effects of Temperature And Water-saturation On Mechanical Properties of Lac Du Bonnet Pink Granite [J]. International Society for Rock Mechanics, 1995.

[50] 孙天泽. 高围压条件下岩石力学性质的温度效应 [J]. 地球物理学进展, 1996, (04): 63-70.

[51] 骆正山, 段远哲, 王小完, et al. 高温环境下气藏型储气库泥岩盖层密封性评价 [J]. 中国安全科学学报, 2022, 32(02): 74-82.

[52] 曹丽丽, 浦海, 仇陪涛, et al. 基于函数阶微积分的泥岩高温蠕变特性分析 [J]. 采矿与安全工程学报, 2017, 34(01): 148-54.

[53] LIU X, LI D, WANG Z, et al. The effect of dry-wet cycles with acidic wetting fluid on strength deterioration of shaly sandstone [J]. Chinese Journal of Rock Mechanics and Engineering, 2016.

[54] 董世明, 淦志强, 华文. 干湿交替对砂岩断裂特性影响试验研究 [J]. 西南石油大学学报(自然科学版), 2021, 43(06): 12-21.

[55] 韩铁林, 师俊平, 陈蕴生. 冻融循环和干湿循环作用下砂岩断裂韧度及其与强度特征相关性的试验研究 [J]. 固体力学学报, 2016, 37(04): 348-59.

[56] 梁冰, 谭晓引, 姜利国, et al. 冻–融及干–湿循环对泥质岩崩解特性影响的试验研究 [J]. 岩土工程学报, 2016, 38(04): 705-11.

[57] 刘新荣, 王子娟, 傅晏, et al. 考虑干湿循环作用泥质砂岩的强度与破坏准则研究 [J]. 岩土力学, 2017, 38(12): 3395-401.

[58] AYTEKIN M, AKCANCA F. Impact of wetting-drying cycles on the hydraulic conductivity of liners made of lime-stabilized sand-bentonite mixtures for sanitary landfills [J]. Environmental Earth Sciences, 2013.

[59] MA C, ZHAN H, ZHANG T, et al. Investigation on shear behavior of soft interlayers by ring shear tests [J]. Engineering Geology, 2019, 254: 34-42.

[60] ZHANG Z, JIANG Q, ZHOU C, et al. Strength and failure characteristics of Jurassic Red-Bed sandstone under cyclic wetting-drying conditions [J]. Geophysical Journal International, 2014, (2): 1034-44.

[61] 秦四清, 李造鼎. 声发射技术在岩石断裂力学研究中的应用 [J]. 应用声学, 1993, (06): 7-11.

[62] 王得友, 朱润祥, 王森林, et al. 单轴压力下岩石声发射试验研究 [J]. 无损检测, 1980, 2(05): 11-6.

[63] 包春燕, 姜谙男, 唐春安, et al. 单轴加卸载扰动下石灰岩声发射特性研究 [J]. 岩石力学与工程学报, 2011, 30(S2): 3871-7.

[64] 李达朗, 杨根兰, 鲁鲲鹏, et al. 干湿循环脆性红砂岩的孔隙及声发射特征研究 [J]. 贵州大学学报(自然科学版), 2020, 37(02): 79-85.

[65] 程爱平, 舒鹏飞, 张玉山, et al. 充填体-围岩组合体声发射特征与损伤本构研究 [J]. 采矿与安全工程学报, 2020, 37(06): 1238-45.

[66] MORADIAN Z, EINSTEIN H H, BALLIVY G. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals [J]. Rock Mechanics & Rock Engineering, 2016, 49(3): 785-800.

[67] 杨永杰, 王德超, 郭明福, et al. 基于三轴压缩声发射试验的岩石损伤特征研究 [J]. 岩石力学与工程学报, 2014, 33(01): 98-104.

[68] 魏嘉磊, 刘善军, 吴立新, et al. 含孔岩石双轴加载过程声发射多参数特征对比分析 [J]. 采矿与安全工程学报, 2015, 32(06): 1017-25.

[69] 刘希灵, 刘周, 李夕兵, et al. 单轴压缩与劈裂荷载下灰岩声发射b值特性研究 [J]. 岩土力学, 2019, 40(S1): 267-74.

[70] 何满潮, 赵菲, 张昱, et al. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析 [J]. 岩土力学, 2015, 36(01): 1-8+33.

[71] 赵菲, 王洪建, 何满潮, et al. 不同高度花岗岩岩爆试验的声发射特征 [J]. 岩土力学, 2019, 40(01): 135-46.

[72] 曾鹏, 刘阳军, 纪洪广, et al. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征 [J]. 岩土工程学报, 2017, 39(03): 509-17.

[73] 张艳博, 梁鹏, 刘祥鑫, et al. 基于声发射信号主频和熵值的岩石破裂前兆试验研究 [J]. 岩石力学与工程学报, 2015, 34(S1): 2959-67.

[74] 刘利斌, 段东, 郑朝阳. 基于岩石声发射Kaiser效应的地应力测试研究 [J]. 煤炭科学技术, 2020, 48(12): 45-50.

[75] 赵奎, 项威斌, 曾鹏, et al. 岩石声发射Kaiser效应研究现状及展望 [J]. 金属矿山, 2021, (01): 94-105.

[76] 李竹, 冯国瑞, 崔家庆. 掘进应力扰动下细砂岩破裂规律及其强度损伤的试验研究 [J]. 太原理工大学学报, 2021, 52(03): 327-34.

[77] 张志博, 李树杰, 王恩元, et al. 基于声发射事件时–空维度聚类分析的煤体损伤演化特征研究 [J]. 岩石力学与工程学报, 2020, 39(S2): 3338-47.

[78] 唐胡丹, 朱明礼, 朱珍德. 不等幅循环荷载下石灰岩局部微裂隙三维扩展及劣变非线性机制 [J]. 岩石力学与工程学报, 2021, 40(06): 1170-85.

[79] SOUSA L, SIEGESMUND S, WEDEKIND W. Salt weathering in granitoids: an overview on the controlling factors [J]. Environmental Earth Sciences, 2018, 77(13).

[80] ROBINSON D A, WILLIAMS R. Experimental weathering of sandstone by combinations of salts [J]. Earth Surface Processes and Landforms, 2000, 25(12): 1309-15.

[81] MEN NDEZ B, PETR ŇOV V. Effect of mixed vs single brine composition on salt weathering in porous carbonate building stones for different environmental conditions [J]. Engineering Geology, 2016, 210: 124-39.

[82] ANGELI M, H BERT R, MEN NDEZ B, et al. Influence of temperature and salt concentration on the salt weathering of a sedimentary stone with sodium sulphate [J]. Geological Society London Special Publications, 2010, 115(3): 193-9.

[83] BALBONI E, ESPINOSA-MARZAL R M, DOEHNE E, et al. Can drying and re-wetting of magnesium sulfate salts lead to damage of stone? [J]. Environmental Geology, 2011.

[84] DERLUYN H, MOONEN P, CARMELIET J. Deformation and damage due to drying-induced salt crystallization in porous limestone [J]. Journal of the Mechanics and Physics of Solids, 2014, 63(1): 242-55.

[85] 刘慧, 蔺江昊, 杨更社, et al. 冻融循环作用下砂岩受拉损伤特性的声发射试验 [J]. 采矿与安全工程学报, 2021.

[86] GUTENBERG B, RICHTER C. Earthquake magnitude, intensity, energy, and acceleration (Second paper) [J]. Bullseismsocam, 1942, 32(2): 105-45.

[87] GUTENBERG B, RICHTER C F. The Seismicity of the Earth [J]. Nature, 1954, 34(1).

[88] AGGELIS D G. Classification of cracking mode in concrete by acoustic emission parameters [J]. Mechanics Research Communications, 2011, 38(3): 153-7.

[89] TSANGOURI E, AGGELIS D G, VAN T K, et al. Detecting the Activation of a Self-Healing Mechanism in Concrete by Acoustic Emission and Digital Image Correlation [J]. Scientificworldjournal, 2013, 2013: 424560.

[90] MIAO H, WANG Y, ZHAO S, et al. Geochemistry and Organic Petrology of Middle Permian Source Rocks in Taibei Sag, Turpan-Hami Basin, China: Implication for Organic Matter Enrichment [J]. 2021.

[91] 孙强, 王少飞, 葛振龙, et al. 基于热声发射技术的陕北火烧岩烧变温度识别 [J]. 煤田地质与勘探: 1-6.

[92] 韩振华, 张路青, 周剑, et al. 黏土矿物颗粒特征对含水合物的沉积物力学特性影响研究 [J]. 工程地质学报, 2021, 29(6): 11.

[93] 张汝藩. 扫描电镜在矿物变化研究中的应用——长石的粘土矿物转化 [J]. 地质科学, 1992.

[94] COATES, J. P. ChemInform Abstract: A Move Toward Standardization in Nuclear Magnetic Resonance Spectrometry [J]. ChemInform, 1988, 19(14).

[95] ZHAO Z, YANG J, ZHANG D, et al. Effects of Wetting and Cyclic Wetting–Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content [J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 485-91.

[96] JIA H, DING S, WANG Y, et al. An NMR-based investigation of pore water freezing process in sandstone [J]. Cold Regions Science and Technology, 2019, 168: 102893-.

[97] KAPLAN A R, BRADY M R, MACIEJEWSKI M W, et al. Nuclear Magnetic Resonance Structures of GCN4p Are Largely Conserved When Ion Pairs Are Disrupted at Acidic pH but Show a Relaxation of the Coiled Coil Superhelix [J]. Biochemistry, 2017, 56(11): 1604-19.

[98] ZLA B, DLA B, YCA B, et al. Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review [J]. International Journal of Coal Geology, 218.

[99] GHOBADI M H, MOUSAVI S. The effect of pH and salty solutions on durability of sandstones of the Aghajari Formation in Khouzestan province, southwest of Iran [J]. Arabian Journal of Geosciences, 2014, 7(2): 641-53.

[100] MATTESON A, TOMANIC J P, HERRON M M, et al. NMR Relaxation of Clay/Brine Mixtures [J]. Spe Reservoir Evaluation & Engineering, 2000, 3(05): 408-13.

[101] MARTINEZ, GABRIELA, TEXAS, et al. Petrophysical Measurements on Shales Using NMR [J]. Bulletin, 2000, 84.

[102] NORRISH, K. Crystalline Swelling of Montmorillonite: Manner of Swelling of Montmorillonite [J]. Nature, 1954, 173(4397): 256-7.

[103] PYE K, SPERLING C. Experimental investigation of silt formation by static breakage processes: the effect of temperature, moisture and salt on quartz dune sand and granitic regolith [J]. Sedimentology, 2010, 30(1): 49-62.

[104] 费鑫, 李晓月, 徐永福. 膨润土溶出性侵蚀分形模型的数值模拟研究 [J]. 工业建筑, 2019, 49(11): 82-7.

[105] EPPES M C, MAGI B, HALLET B, et al. Deciphering the role of solar-induced thermal stresses in rock weathering [J]. Geological Society of America Bulletin, 2016.

[106] FREIRE-LISTA D M, FORT R, VARAS-MURIEL M J. Thermal stress-induced microcracking in building granite [J]. Engineering Geology, 2016, 206.

[107] SALVATORE M R, MUSTARD J F, HEAD J W, et al. Development of alteration rinds by oxidative weathering processes in Beacon Valley, Antarctica, and implications for Mars [J]. Geochimica Et Cosmochimica Acta, 2013, 115(Complete): 137-61.

[108] FEI W, PING C B, YW D, et al. Combined effects of cyclic load and temperature fluctuation on the mechanical behavior of porous sandstones - ScienceDirect [J]. Engineering Geology, 266.

[109] WEISS T, SIEGESMUND S, KIRCHNER D, et al. Insolation weathering and hygric dilatation: Two competitive factors in stone degradation [J]. Environmental Geology, 2004, 46(3): 402-13.

[110] COLLINS B D, STOCK G M, EPPES M C, et al. Thermal influences on spontaneous rock dome exfoliation [J]. Nature Communications, 2018, 9(1): 762.

[111] KESSLER, PAUL. Geologische Beobachtungen im Reichslande [J]. Zeitschrift Der Deutschen Geologischen Gesellschaft, 1919.

[112] MALAGA-STARZEC K, LINDQVIST J E, SCHOUENBORG B. Experimental study on the variation in porosity of marble as a function of temperature [J]. 2002, 205(1): 81-8.

[113] VOGEL H J, HOFFMANN H, LEOPOLD A, et al. Studies of crack dynamics in clay soil. II. A physically based model for crack formation [J]. Geoderma, 2005, 125(3-4): 213-23.

[114] HALLETT P D, DEXTER A R, SEVILLE J. Identification of pre-existing cracks on soil fracture surfaces using dye [J]. Soil & Tillage Research, 1995, 33(3-4): 163-84.

[115] PAINTER S L. Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications [J]. Computational Geosciences, 2011, 15(1): 69-85.

[116] 邬斌, 王汝成, 刘晓东, et al. 辽宁赛马碱性岩体异性石化学成分特征及其蚀变组合对碱性岩浆-热液演化的指示意义 [J]. 2018.

[117] 胡粉娥, 魏生贤, 时有明, et al. 水的表面张力系数与温度的关系的对比研究 [J]. 曲靖师范学院学报, 2015, 34(3): 4.

[118] CNUDDE V, CWIRZEN A, MASSCHAELE B, et al. Porosity and microstructure characterization of building stones and concretes [J]. Engineering Geology, 2009, 103(3-4): 76-83.

[119] Mass exchanges among feldspar, kaolinite and illite and their influen ces on secondary porosity formation in clastic diagenesis——A case study on t he Upper Paleozoic,Ordos Basin and Xujiahe Formation, Western Sichuan Depression [J]. Geochimica, 2009.

[120] 王文卓. 试件尺寸及测试条件对多孔建筑材料毛细吸水系数的影响研究 [J].

[121] 寇苗苗. 卸荷渗流耦合作用下裂隙岩体破坏机理研究 [D]; 重庆大学, 2019.

[122] PENG S, JOHNSON A M. Crack growth and faulting in cylindrical specimens of chelmsford granite [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1972, 9(1): 37-42.

[123] 王元汉, 徐钺, 谭国焕, et al. 改进的翼形裂纹分析计算模型 [J]. 岩土工程学报, 2000, 022(005): 612-5.

中图分类号:

 TU458    

开放日期:

 2022-06-21    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式