- 无标题文档
查看论文信息

论文中文题名:

 Fe-Cr-Ni-B合金组织及其耐冲蚀性能研究    

姓名:

 李冲    

学号:

 18211028012    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 080503    

学科名称:

 工学 - 材料科学与工程 - 材料加工工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2021    

培养单位:

 西安科技大学    

院系:

 材料科学与工程学院    

专业:

 材料加工工程    

研究方向:

 冲刷腐蚀    

第一导师姓名:

 易大伟    

第一导师单位:

 西安科技大学    

论文提交日期:

 2021-06-16    

论文答辩日期:

 2021-06-02    

论文外文题名:

 A study on microstructure and erosion-corrosion resistance of Fe-Cr-Ni-B alloy    

论文中文关键词:

 Fe-Cr-Ni-B合金 ; 组织结构 ; 硼碳化物 ; 力学性能 ; 冲刷腐蚀行为    

论文外文关键词:

 Fe-Cr-Ni-B alloy ; Microstructure ; Borocarbides ; Mechanical properties ; Erosion-corrosion behavior    

论文中文摘要:

摘  要

过流部件是工业生产过程中物料传输的关键部件,其性能直接影响工业生产效率与成本。目前,高铬铸铁是制造渣浆泵叶轮、护板等部件的主要材料,然而存在含铬量高,韧性低,耐冲蚀性能不足等问题。物料在传输的过程中对过流部件产生强烈的冲刷腐蚀作用,由此开发新型高性能耐冲蚀材料来提升过流部件的性能已成为亟待解决的关键问题。Fe-B合金作为一种新型耐磨材料,因其兼具优良耐磨性和韧性而得到广泛关注。

本研究以Fe-B合金为基础,通过添加Cr和Ni元素来制备Fe-Cr-Ni-B合金,并测试了该合金的硬度、冲击韧性和耐冲刷腐蚀性能,重点研究三种成分合金在不同冲击角度、搅拌速率条件下的冲刷腐蚀行为;采用扫描电镜(SEM)、X-射线衍射仪(XRD)、能谱仪(EDS)等,对Fe-Cr-Ni-B合金的组织及冲蚀机理进行了研究,主要结论如下:

(1)铸态Fe-17Cr-0.5Ni-B合金和Fe-17Cr-2Ni-B合金组织均由马氏体和两种类型硼碳化物构成,其中M2(B,C) 硼碳化物呈网状形态分布于晶界,M7(B,C)3硼碳化物呈杆状或粒状分布于晶粒内部。铸态Fe-18Cr-9Ni-B合金组织由奥氏体基体和M2(B,C)硼碳化物构成。三种合金经热处理后,Fe-17Cr-0.5Ni-B合金基体由马氏体转变为铁素体,晶粒内部析出M23(B,C)6颗粒;Fe-17Cr-2Ni-B和Fe-18Cr-9Ni-B合金热处理前后组织构成相同。

(2)对于三种Fe-Cr-Ni-B合金和Cr28高铬铸铁,浆料的高流动速率导致四种合金冲刷腐蚀失重量增加,耐冲蚀性能下降;随着浆料冲击角度的增加,四种合金的冲蚀失重量均呈现先升高再降低的变化规律,且在45º冲击角测试条件下,四种合金的冲蚀失重量均达到最大值;在相同冲蚀测试条件下,三种Fe-Cr-Ni-B合金的冲蚀失重量均低于Cr28高铬铸铁,其中Fe-18Cr-9Ni-B合金的冲蚀失重量最低,耐冲蚀性能最好。

(3)Fe-Cr-Ni-B合金的耐冲蚀性能由基体和硼碳化物共同决定。浆料高速流动导致基体冲刷腐蚀损伤,致使基体周围硼碳化物裸露,在浆料中石英砂颗粒的冲击作用下硼碳化物破碎剥落,留下硼碳化物坑洞。Fe-18Cr-9Ni-B合金具有优良耐蚀性是由于奥氏体基体能够有效抵抗浆料腐蚀,进而充分发挥对硼碳化物的支撑作用,使硼碳化物充分发挥对浆料的抵抗能力,因此Fe-18Cr-9Ni-B合金具备最优的耐冲蚀性能;Fe-18Cr-9Ni-B合金冲刷腐蚀交互失重量占比大于纯冲刷或纯腐蚀失重占比,冲刷与腐蚀交互作用是导致合金冲蚀损伤的关键因素。

(4)Fe-Cr-Ni-B合金组织及其耐冲蚀性能研究,不仅可以阐明在液固两相流冲蚀条件下基体和硬质相的失效行为本质,还将为新型耐冲刷腐蚀材料的开发提供重要的理论与实践基础。Fe-Cr-Ni-B合金的耐冲刷腐蚀性能优于传统Cr28高铬铸铁,具有潜在的工程应用价值。

论文外文摘要:

ABSTRACT

Flow passage components are used as the key parts of material transfer in industrial production. Its performance directly affects the efficiency and cost of industrial production. At present, high chromium cast iron is used as the main material to manufacture impeller of slurry pump and guard plate. However, it has the disadvantages of high chromium content, low toughness, poor erosion-corrosion resistance. In the process of material transmission, strong erosion and corrosion will occur to the flow passage components. Therefore, the development of new high-performance erosion-corrosion resistant materials to improve the performance of the flow passage components has become a key problem to be solved urgently. As a new wear-resistant material, Fe-B alloy has been widely paid attention because of its excellent wear resistance and impact toughness.

Based on Fe-B alloy, Fe-Cr-Ni-B alloy was prepared by adding Cr and Ni elements. And, it was tested to the hardness, impact toughness and erosion-corrosion resistance of the alloy. The erosion-corrosion behavior of the three kinds of alloy was mainly studied under different impingement angles and stirring rates. The microstructure and erosion-corrosion mechanism of Fe-Cr-Ni-B alloy were investigated by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The main conclusions are as follows:

(1) The as-cast microstructure of Fe-17Cr-0.5Ni-B alloy and Fe-17Cr-2Ni-B alloy were consisted of martensite and two kinds of borocarbides. The borocarbide at the grain boundary is M2(B,C)-type, which is in the form of the network. The morphology of M7(B,C)3-type borocarbide in the intragranular is a tiny rod-shaped and granula. The as-cast microstructure of Fe-18Cr-9Ni-B alloy consisted of austenite and M2(B,C)-type borocarbide. Three kinds of alloy after heat treatment, the matrix of Fe-17Cr-0.5Ni-B was transformed from martensite to ferrite, and a lot of granular M23(B,C)6-type borocarbide precipitated in the intragranular. It is the same to the microstructure of Fe-17Cr-2Ni-B and Fe-18Cr-9Ni-B alloys after heat treatment.

(2) For three kinds of Fe-Cr-Ni-B alloy and Cr28 high chromium cast iron, the high stirring rates of slurry leads to the increase of weight loss and the decline of the erosion-corrosion resistance of four kinds of alloy. With the increase of the slurry impingement angle, the erosion-corrosion weight loss of the four alloys all increased first and then decreased, and under the test condition of 45 impingement angle, the erosion-corrosion weight loss of the four alloys all reached the maximum. Under the same erosion-corrosion test conditions, it is lower to the weight loss of three kinds of Fe-Cr-Ni-B alloys than that of Cr28 high chromium cast iron, and the weight loss of Fe-18Cr-9Ni-B alloy is the lowest and has the best erosion-corrosion resistance.

(3) It is determined to the erosion-corrosion resistance of Fe-Cr-Ni-B alloy by the matrix and borocarbide. The high stirring rates of the slurry leads to erosion and corrosion damage of the matrix, resulting in the exposed borocarbide around the matrix. Under the impact of the quartz particles in the slurry, the borocarbide is broken and peeled off, leaving the borocarbide pits. The austenite matrix of Fe-18Cr-9Ni-B alloy has excellent corrosion resistance, which can effectively resist the erosion-corrosion of the slurry, and give full play to the supporting role of borocarbide, so that the borocarbide fully shows the erosion-corrosion resistance for the slurry. So the Fe-18Cr-9Ni-B alloy exhibits best erosion-corrosion resistance. The erosion-corrosion interaction weight loss ratio of Fe-18Cr-9Ni-B alloy is greater than that of pure erosion or pure corrosion, and the erosion-corrosion interaction is the key factor leading to erosion-corrosion damage of alloy.

(4) The study of microstructure and erosion-corrosion resistance of Fe-Cr-Ni-B alloy can not only clarify the failure behavior of matrix and hard phase under the condition of liquid-solid two-phase erosion-corrosion, but also provide important theoretical and practical basis for the development of new erosion-corrosion resistant materials. The erosion-corrosion resistance of Fe-Cr-Ni-B alloy is better than that of traditional Cr28 high chromium cast iron, and it has potential engineering application value.

参考文献:

参考文献

[1] 卢中原.“十一五”期间至2020年中国经济社会发展的突出矛盾、基本任务、前景展望和政策取向[J].中国发展评论:中文版,2005,7(2):4-8.

[2] 庄贵阳.节能减排与中国经济的低碳发展[J].气候变化研究进展, 2008, 4(5):303-308.

[3] 袁小晶,李鹏远.中国铬资源全球布局分析[J].中国矿业,2019,28(2):60-64.

[4] Gahr K H Z, Eldis G T. Abrasive wear of white cast irons[J]. Wear, 1980, 64(1): 175-194.

[5] Zhang J, Liu J, Liao H, et al. A review on relationship between morphology of boride of Fe-B alloys and the wear/corrosion resistant properties and mechanisms[J]. Journal of Materials Research and Technology, 2019, 8(6): 6308-6320.

[6] 方坦纳,格林,左景伊.腐蚀工程(第二版) [M].北京: 化学工业出版社,1982:71-84.

[7] Burson T C B, Wood R J K . Developments in erosion-corrosion Over the Past 10 Years[J]. Journal of Bio- and Tribo-Corrosion, 2017, 3(2): 14.

[8] Wood R J K, Hutton S P. The synergistic effect of erosion and corrosion trends in published results[J]. Wear, 1990, 140(2): 387-394.

[9] Stack M M, Abdelrahman S M. A CFD model of particle concentration effects on erosion-corrosion of Fe in aqueous conditions [J]. Wear, 2011, 273(1): 38-42.

[10] Hu X, Barker R, Neville A. Case study on erosion-corrosion degradation of pipework located on an offshore oil and gas facility[J]. Wear, 2011, 271(9-10): 1295-1301.

[11] Meng H, Hu X, Neville A. A systematic erosion-orrosion of two stainless steels in marine conditions via experimental design[J]. Wear, 2007, 263(1-6): 355-362.

[12] Neville A, Reyes M, Hodgkiess T. Mechanisms of wear on a cobase alloy in liquid-solid slurries[J]. Wear, 2000, 238(2): 138-150.

[13] Hu X, Neville A. The electron chemical response of stainless steels in liquid-solid impingement[J]. Wear, 2005, 258(1-4): 641-648.

[14] Flores J F, Neville A, Kapur N, et al. An experimental study of the erosion-corrosion behavior of plasma transferred arc MMCs[J]. Wear, 2009, 267(1-4): 213-222.

[15] Souza V A D, Neville A. Corrosion and synergy in a WC-Co-Cr HVDF thermal spray coating understanding their role in erosion-corrosion degradation[J]. Wear, 2005, 259 (1-6): 171-180.

[16] Shahali H, Ghasemi H M, Abedini M. Contributions of corrosion and erosion in the erosion-corrosion of Sanicro[J]. Materials Chemistry and Physics, 2019, 233: 366-377.

[17] 郑玉贵,姚志铭,柯伟.冲刷腐蚀的研究近况[J].中国科学院金属腐蚀与防护研究所,1992,10(3):21-26.

[18] 李强,唐晓,李焰.冲刷腐蚀研究方法进展[J].中国腐蚀与防护学报,2014,34(5):399-409.

[19] 朱娟,张乔斌,陈宇,等.冲刷腐蚀的研究现状[J].中国腐蚀与防护学报,2014,34(3):199-210.

[20] 丁一刚,韩秀丽,郑家燊.液固流动引起的腐蚀和磨损的数学描述[J].郑州大学学报,2002,23(2):63-66.

[21] 杨刚毅, 汪冰峰,刘源,等.铸造铜合金冲刷腐蚀及机理研究[J].矿冶工程,2019,39(1):125-127.

[22] 康俊鹏.机坪输油管道冲刷腐蚀研究[J].云南化工,2019,46(1):151-154.

[23] 刘威.Al合金化β-Ta5Si3纳米晶涂层的冲刷腐蚀与空泡腐蚀性能研究[D].南京航空航天大学,2018:1-15.

[24] 田成.酸性浸滤液中超级马氏体不锈钢冲刷腐蚀行为研究[D].2014:3-21.

[25] 刘晓翠,张转转,刘锟,等.Cu、Cr、Ni元素对高强耐候钢腐蚀稳定性的影响[J].轧钢,2019,36(6):17-21.

[26] 文九巴.金属材料学[M].北京:机械工业出版社,2011:3-30+168.

[27] Yang Y, Qu J, Shao H. Mechanical-chemical effect of corrosive wear of materials[J]. Advanced Materials, 1994, 93: 195-198.

[28] 徐洪敏,杨燕,陈虎,等.NaCl对X80管线钢冲刷腐蚀行为的影响[J].油气田地面工程,2018,37(03):69-72.

[29] 王雅婵,王瑞芳,马心语,等.温度和含水量对P110钢在[Bim]Cl/CuCl离子液体中电化学腐蚀性能的影响[J]. 材料保护,2018,51(11):41-46.

[30] 邵荷生,曲敬信.摩擦与磨损[M].北京:煤炭工业出版社,1992.

[31] Yi D, Li C, Shi Y, Chen J. A study on microstructure and erosion-corrosion performance of Fe-Cr-Ni-B alloy[J]. Materials Research Express, 2020, 7(5).

[32] 丁一刚,刘宏芳,付朝阳,等. 硅湿法磷酸体系中不锈钢的冲刷腐蚀研究[J]. 材料保护,2002,35(9):17-19.

[33] 邢建东,高义民,张国赏.不锈钢与高碳钢的冲刷腐蚀磨损试验研究[J]. 西安交通大学学报,2004,38(5):469-473.

[34] 易大伟,师玉璞,陈进,等.Fe-C-Ni-B合金耐冲刷腐蚀性能研究[J].环球市场信息导报.2017,(47):124.

[35] 贺琦,张凤雷,魏俊俊,等.自支撑金刚石膜冲蚀磨损研究[J].金刚石与磨料磨具工程,2007,(4):8-12.

[36] Richardson R C D. The wear of metals by hard abrasives[J]. Wear, 1967, 10: 291-309.

[37] Husain H. Erosion-corrosion of duplex stainless steel under kuwait marine condition [J]. Desalination, 2005, 183(1-3): 227-234.

[38] 姜伟之.工程材料的力学性能[M].北京航空航天大学出版社,1991.

[39] 尹承军.B10合金在模拟海水中的冲刷腐蚀研究[D].哈尔滨工程大学, 2012:10.

[40] 陈平,马峰,梅华锋,等.高铝微珠/环氧树脂复合材料冲蚀磨损特性[J]. 北京科技大学学报,2014,36(2):218-225.

[41] 刘树博,田青亮,樊红丽,等.酚醛环氧乙烯基树脂复合涂料的制备及性能研究[J].广东化工,2020,47(09):81-82.

[42] 李魁寝.铸造工艺设计基础[M].北京:机械工业出版社,1981.

[43] 瞿铁.高铬铸铁在大型自磨机衬板中的应用[J].矿山机械,2021,49(04):42-46.

[44] 翟晨晨,苏恒渤,郭嘉,等.Cr/C比对中铬铸铁复合抗磨辊圈组织和耐磨性的影响[J].铸造技术,2019,40(02):8-11+29.

[45] 姜晓霞,赵洪星.高铬铸铁(钢)中碳化物的研究[J].理化检验-物理分册,1985,(3):13-17.

[46] 魏海鸿,张腾,董立新.热处理对高铬铸钢组织和性能的影响[J].电焊机,2021,51(02):41-45+111.

[47] 郭健,杨丽娜,郝雷,等.热处理工艺对高铬铸铁轧辊组织与性能的影响[J].铸造设备与工艺,2020(06):39-41+60.

[48] 赵培峰,国秀花,宋克兴.高锰钢的研究与应用进展[J].材料开发与应用,2008,23(4):85-88+94.

[49] 黄盛,宋志刚,郑文杰,等.固溶处理对00Cr27Ni7Mo5N不锈钢的组织力学性能的影响[J].钢铁,2011,46(12):71-75.

[50] Ozdemir O, Usta M, Bindal C, et al. Hard iron boride (Fe2B) on 99.97 wt. % pure iron[J]. Vacuum, 2006, 80: 1391-1395.

[51] Ulutan M, Yildirim M M, Elik O N, et al. Tribological properties of borided AISI 4140 steel with the powder pack-boriding method[J]. Tribology Letters, 2010, 38(3): 231-239.

[52] 本溪钢铁公司第一炼钢厂.硼钢[M].北京:冶金工业出版社.1977:2-43.

[53] Priyan M S. Wear and corrosion studies of Fe-B-Cr alloy coating on en 24 steel by HVOF thermal spray method[J]. Surface Engineering & Applied Electrochemistry, 2017, 53(6): 580-586.

[54] Priyan H, Çömez N, Gül, et al. Wear performance of Fe-Cr-C-B hardfacing coatings: Dry sand/rubber wheel test and ball-on-disc test[J]. International Journal of Refractory Metals & Hard Materials. 2018, 77: 37-43.

[55] 龚建勋,李丹,肖逸锋,等.Fe-Cr-B-C堆焊合金的显微组织及耐磨性[J].材料热处理学报,2010,31(3):139-144.

[56] 汪圣林,崔丽,贺定勇,等.亚共晶Fe-Cr-B-C系堆焊合金的组织及耐磨性[J].热加工工艺,2016,45(1):30-33.

[57] Kukuy D, Nevar N, Fasevich Y. The effect of boron on the structure and properties of a cast steel[C]//Gyeongju: Proceeds of the 65th World Foundry Congress, 2002, 247-352.

[58] Ren X, Fu H, Xing J, et al. Effect of boron concentration on microstructures and properties of Fe-B-C alloy steel[J]. Journal of Materials Research, 2017, 32(16): 1-11.

[59] Sun Y, Yuta A, Hiroaki M, et al. Mechanical and thermal properties of Zr-B and Fe-B alloys[J]. Journal of Nuclear Science and Technology. 2020, 57(8):917-925.

[60] 崔功军,杨振伟,王文杰,等.高温条件下Fe(Cr)-B合金的摩擦学性能 [J].中南大学学报,2019,26(10):2643-2650.

[61] Yi D, Xing J, Ma S, et al. Investigations on microstructures and two-body abrasive wear behavior of Fe-B cast alloy[J]. Tribology Letters, 2012, 45(3): 427-435.

[62] Yi D, Xing J, Fu H, et al. Effect of Fe2B boride orientation on abrasion wear resistance of Fe-B cast alloy[J]. China Foundry, 2017, 14(4): 272-278.

[63] Natalia Y F, Alexandra N G. Liquidus surface and spinodal of Fe-B-C alloys[J]. East European Journal of Physics. 2020, (1): 75-82.

[64] 郑开宏,张琦,王海艳,等.机械振动对变质Fe-B-C合金组织和性能的影响[J].铸造,2017,66(09):970-975.

[65] Xu J, Chen L, Sun Z. Effects of Cr and La elements on the brittleness of Fe2B Phase[J]. Thermal Process Technology, 2007, 36(20): 4-6.

[66] Jeonghyeon D, Changwoo J, Choongnyun P K, et al. Effects of (Cr, Fe)2B borides on hardness in powder-injection-molded product fabricated with Fe-based alloy powders[J]. Materials Science & Engineering A, 2012, 556: 366-372.

[67] Zhang J, Gao Y, Xing J, et al. Effects of chromium addition on microstructure and abrasion resistance of Fe-B cast alloy[J]. Tribology Letters, 2011, 44(1): 31-39.

[68] Tian Y, Ju J, Fu H, et al. Effect of Chromium content on microstructure hardness and wear resistance of as-cast Fe-Cr-B alloy[J]. Journal of Materials Engineering and Performance, 2019, 28(6): 6428-6437.

[69] 赵尚丽,张月霞,王守忠.铸造高强韧性Fe-Cr-B-C合金的试验研究[J].铸造,2019,68(9):977-981.

[70] 张佳彬,李莎,程祥,等.Pr-Fe-B合金的相转变及微观组织研究[J].稀有金属与硬质合金,2020,48(04):37-41.

[71] 叶祥,胡贤君,黄伟光,等.Al元素添加对离子型混合稀土MM-Fe-B合金的磁性能影响[J].功能材料与器件学报,2020,26(02):108-112.

[72] 许磊,柯庆进,李莎,等.La-Fe-B合金的微观组织及物相转变研究[J].稀有金属与硬质合金,2020,48(01):31-34+46.

[73] Ling Z, Chen W, Xu W, Zhang X, et al. The influence of a Mo addition on the interfacial morphologies and corrosion resistances of novel Fe-Cr-B alloys immersed in molten aluminum[J]. Materials, 2019, 12 (256): 1-15.

[74] 于震,符寒光,蒋业华,等.铝含量对Fe-Cr-B-Al合金组织性能影响的研究[J].中国铸造装备与技术,2012(4):40-44.

[75] 郭长庆,王彩东,程军,等.铈变质处理Fe-Cr-B合金组织和机械性能研究[J]. 稀土,2009,30(4):95-111.

[76] 高圆,邢建东,马胜强,等.含Cr、Ni的Fe-B合金耐锌液腐蚀性能的研究[J].装备制造,2013,13(3):208-215.

[77] American society for testing and materials, ASTM E384–08, standard test method for microindentation hardness of materials, American Society for Testing and Materials, West Conshohocken, PA, 2008.

[78] Ma S, Xing J, Liu G, et al. Effect of chromium concentration on microstructure and properties of Fe-3.5B alloy[J]. Materials Science & Engineering A, 2010, 527(26): 6800-6808.

[79] Liu Z, Chen X, Li Y, et al. Effect of chromium on microstructure and properties of high boron white cast iron[J]. Metallurgical & Materials Transactions A, 2008, 39(3): 636-641.

[80] 陈华辉.耐磨材料应用手册[M].北京:机械工业出版社,2006:155-157.

[81] Li Y, Gao Y. Three-body abrasive wear behavior of CC/high-Cr WCI composite and its interfacial characteristics[J]. Wear, 2008, 268: 511-518.

中图分类号:

 TG178.1    

开放日期:

 2021-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式