- 无标题文档
查看论文信息

论文中文题名:

 基于依赖度的属性约简算法研究    

姓名:

 江立程    

学号:

 19201103015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070102    

学科名称:

 理学 - 数学 - 计算数学    

学生类型:

 硕士    

学位级别:

 理学硕士    

学位年度:

 2022    

培养单位:

 西安科技大学    

院系:

 理学院    

专业:

 应用数学    

研究方向:

 计算智能    

第一导师姓名:

 冯卫兵    

第一导师单位:

 西安科技大学    

论文提交日期:

 2022-06-20    

论文答辩日期:

 2022-06-09    

论文外文题名:

 Research on attribute reduction algorithm based on dependency    

论文中文关键词:

 粗糙集 ; 属性约简 ; 属性依赖度 ; 三支决策 ; 动态信息系统    

论文外文关键词:

 Rough set ; Attribute reduction ; Attribute dependency ; Three way decision-making ; Dynamic information system    

论文中文摘要:

属性约简是粗糙集理论研究最广泛的一个问题,目前在粗糙集属性约简算法方面研究存在着一些不足,比如,大多数约简算法都存在着时间复杂度高、只能处理静态数据等情况。本文以经典粗糙集模型为出发点,以各属性之间的依赖度为启发信息对数据集提出了求解约简的高效算法,具体内容如下:

首先,在传统的基于依赖度约简算法中,不同的属性集在约简过程中起的作用大小不同,如果遍历整个属性集合之间的依赖度势必会造成时间和空间上的浪费。本文在将等价关系下的依赖度方法扩展到属性集合之间的相互依赖度基础上,提出了一种依赖度排序约简算法,该算法只保留对约简的必要属性集。实例对比分析表明:改进后的算法能有效地去除冗余属性,从而获得相对较优的约简结果。

其次,针对经典的基于属性重要度的约简方法在约简过程中仅仅考虑到单个属性之间的重要性,而忽略了各属性之间的相关性可能会导致约简结果不完备的情况,将信息论中的互信息引入算法中用来度量各条件属性的相关性,在此基础上提出了一种最优依赖度约简算法。通过对6个经典数据集在约简后属性数量、约简精度两方面对比实验,实验结果表明,新算法充分考虑到了各属性之间相关性,约简结果更为完备。

最后,针对传统的约简算法大多只能处理静态数据的不足,将属性间相对依赖度作为启发信息,融入动态三支决策计算模型,以动态数据集中单样本增加为基础,证明了样本增加三支区域更新机制,提出了一种基于相对依赖度的三支决策增量属性约简算法。通过案例分析以及UCI数据实验验证表明:在复杂动态的大数据环境中,改进算法比经典非增量三支决策约简算法具有更低的时间复杂度和更高的约简效率,同时算法也具备较强的稳健性和和有效性。

论文外文摘要:

Attribute reduction is the most in-depth problem of rough set theory. At present, there are deficiencies in the research of attribute reduction algorithms of rough set. For example, most reduction algorithms have high time complexity and can only deal with static data. Taking the classical rough set model as the starting point and the dependency between attributes as the heuristic information, this paper proposes an efficient algorithm for solving and reducing the data set. The specific contents are as follows:

Firstly, in the traditional dependency based reduction algorithm, different attribute sets play different roles in the reduction process. If the dependency between the whole attribute set is traversed, it is bound to cause a waste of time and space. On the basis of extending the dependency method under equivalence relationship to the interdependence between attribute sets, this paper proposes a dependency ranking reduction algorithm, which only retains the necessary attribute sets for reduction. The comparative analysis of examples shows that the improved algorithm can effectively remove redundant attributes and obtain relatively better reduction results.

Secondly, aiming at the situation that the classical reduction method based on attribute importance only considers the importance of a single attribute in the reduction process and ignores the correlation between attributes, which may lead to incomplete reduction results, the mutual information in information theory is introduced into the algorithm to measure the correlation of conditional attributes. On this basis, an optimal dependency reduction algorithm is proposed. The experimental results show that the new algorithm fully considers the correlation between attributes, and the reduction results are more complete.

Finally, in view of the deficiency that most traditional reduction algorithms can only deal with static data, the relative dependency between attributes is used as heuristic information and integrated into the dynamic three way decision calculation model. Based on the increase of single sample in the dynamic data set, the three way regional update mechanism of sample increase is proved, and a three branch decision incremental attribute reduction algorithm based on relative dependency is proposed. The case analysis and UCI data experimental verification show that in the complex and dynamic big data environment, the improved algorithm has lower time complexity and higher reduction efficiency than the classical non incremental three way decision reduction algorithm. At the same time, the algorithm also has strong robustness and effectiveness.

参考文献:

[1]bertini D F . Communicating useful information in the era of big data[J]. Journal of Assisted Reproduction and Genetics, 2020, 37(2):241-242.

[2]XiaH ,LeiT , Liu H. Embracing Information Explosion without Choking: Clustering and Labeling in Microblogging[J]. IEEE Transactions on Big Data, 2015, 1(1):35-46.

[3]Z. Pawlak. Rough sets.International Journal of Computer and Information Science,1982,11(05):341-356.

[4]Zimmerman H J.Fuzzy set theory[J]. Wiley interdisciplinary reviews: computational statistics, 2010, 2(3): 317-332.

[5]Kai L C. A course in probability theory[J]. Journal of the Royal Statistical Society: Series D (The Statistician), 2003, 52(2):239-239.

[6]He Z, Zhang H, Zhao J, et al. Classification of power quality disturbances using quantum neural network and DS evidence fusion[J]. European Transactions on Electrical Power, 2012, 22(4): 533-547.

[7]Wang T, Liu W, Zhao J, et al. A rough set-based bio-inspired fault diagnosis method for electrical substations[J]. International Journal of Electrical Power & Energy Systems, 2020, 119(2):105-111.

[8]Chouchoulas A, Shen Q. Rough set-aided keyword reduction for text categorization[J]. Applied artificial intelligence, 2001, 15(9): 843-873.

[9]Hassan, Yasser, F .Rough set machine translation using deep structure and transfer learning[J]. Journal of intelligent & fuzzy systems: Applications in Engineering and Technology, 2018, 34(6):4149-4159.

[10]Huang Z G , Zhu C X , Fan X , et al. Information Retrieval Based on Probability Rough Set Model[J]. Computer Engineering, 2008, 34(23): 193-195.

[11]王宁,刘海园,周雪珂.基于粗糙集的应急案例中概率规则挖掘方法[J].运筹与管理,2018,27(12):84-94.

[12]孙秉珍,马卫民,赵海燕.基于双论域模糊粗糙集的应急决策模型与方法[J]. 运筹与管理,2014,23(02):41-48.

[13]张明,陈楚言,尹杰,梁兵,刘君,吴婧宇,徐艳凤.综合指数与粗糙集联用法在 评价人群血常规指标健康风险水平的应用[J].国际检验医学杂志,2022,43(01):83-89.

[14]Augeri M G, Cozzo P. Dominance-based rough set approach: An application case study for setting speed limits for vehicles in speed controlled zones[J]. Knowlede-Based Systems, 2015, 89:288-300.

[15]邵为爽,李晓红,张天抒,王焱.基于粗糙集理论的数据挖掘法在房地产选址决策中的应用[J].数学的实践与认识,2019,49(19):97-103.

[16]Li F, Liu X R. Application of rough set theory in emergency response of tourism emergencies [J]. Technical Economy, 2019, 38(3): 78-87.

[17]Asadi Y, Neysani S N , Kiavarz M M .seismic vu1nerabi1ity assessment of urban bui1dings using the rough set theory and weighted 1inear combination[J]. Journal of Mountain Science, 2022, 19(3):849-861.

[18]苗夺谦,李道国.粗糙集理论算法与应用[M].北京:清华大学出版社,2008,4.

[19]林哲,程龙生.基于粗糙集的马田系统改进及其在分类中的应用[J].数学的实践与认识,2015,45(04):134-143.

[20]Gang X , Zhang J , Lai K K , et al. Variable precision rough set for group decision-making: An application[J]. International Journal of Approximate Reasoning, 2008, 49(2):331-343.

[21]Ziarko. Probabilistic approach to rough sets[J].International Journal of Approximate Reasoning, 2008, 49( 2):272-284.

[22]Wang Y F . Mining stock price using fuzzy rough set system[J]. Expert Systems with Applications, 2003, 24(1):13-23.

[23]邓维斌, 王国胤, 胡峰. 基于优势关系粗糙集的自主式学习模型[J]. 计算机学报, 2014, 37(12):11-22.

[24]张文修, 吴伟志. 基于随机集的粗糙集模型 (I)[J]. 西安交通大学学报, 2000, 34(12): 75-79.

[25]Chen T M , Wang W X . Image Shadow Detection and Classification Based on Rough Sets[J]. Computer Science, 2007:12(3):123-135.

[26]Gong Z ,Zhang X .Variable precision intuitionistic fuzzy rough sets model and its application[J]. International Journal of Machine Learning & Cybernetics, 2014, 5(2):263-280.

[27]Yu J , Zhang X , Zhao Z , et al. Uncertainty measures in multigranulation with different grades rough set based on dominance relation1[J]. Journal of Intelligent &Fuzzy Systems, 2016, 31(2):1133-1144.

[28]Yao Y.Probabilistic rough set approximations[J].International Journal of Approximate Reasoning, 2008, 49( 2):255-271.

[29]Wu H , Wu Y , Luo J . An interval type-2 fuzzy rough set model for attribute reduction[J]. IEEE Transactions on Fuzzy Systems, 2009,17(2):301-315.

[30]Zhang Q, Shen W. Research on attribute reduction algorithm with weights[J]. Journal of Intelligent & Fuzzy Systems, 2014, 27(2): 1011-1019.

[31]秦奕青, 杨炳儒, 徐章艳. 基于Skowron分明矩阵的有效属性约简算法[J].北京科技大学学报, 2009, 031(003):398-404.

[32]周勇, 杨兴江, 徐扬. 属性约简的依赖度算法研究[J]. 计算机工程与应用, 2004, 40(4):3-9.

[33]李然,曾黄麟.基于依赖度的启发式约简算法[J].四川理工学院学报(自然科学版),2006(02):19-22.

[34]孟庆全,金传山,梅灿华,胡学钢.基于依赖度求解属性约简的方法[J].安徽大学学报(自然科学版),2008(04):32-35.

[35]翟兴隆,李续武.基于模糊粗糙依赖度的连续值属性约简[J].计算机工程与应用,2010,46(17):136-138.

[36]Min L , Deng S B , Feng S , et al. Quick Attribute Reduction Based on Approximation Dependency Degree[J]. Journal of Computers, 2013, 8(4):125-134.

[37]王世强,张登福,毕笃彦,张立东.基于模糊粗糙集依赖度的两步属性约简方法[J].北京工业大学学报,2013,39(06):828-834.

[38]刘春英.基于属性依赖度的缺失值顺序填充算法[J].计算机应用与软件,2013,30(09):215-218.

[39]陈鑫影,李冠宇,刘彦含.基于决策依赖度的粗糙集约简模型研究[J].系统工程理论与实践,2016,36(02):505-516.

[40]Lang G , Li Q. Discernibility matrix simplification with new attribute dependency functions for incomplete information systems[J]. Knowledge and Information Systems, 2013, 37(3):611-638.

[41]徐波,张贤勇,冯山.邻域粗糙集的加权依赖度及其启发式约简算法[J].模式识别与人工智能,2018,31(03):256-264.

[42]李法朝,任夜星,靳晨霞.基于双属性综合依赖度的属性约简方法研究[J].山西大学学报(自然科学版),2020,43(04):795-802.

[43]唐鹏飞,张贤勇,莫智文.基于依赖度的区间集决策信息表属性约简[J].计算机应用研究,2021,38(11):3300-3309.

[44]Li D C , Lin L S , Peng L J . Improving learning accuracy by using synthetic samples for small datasets with non-linear attribute dependency[J]. Decision Support Systems, 2014, 59(1):286-295.

[45]Yao Y Y, Decision T W. An interpretation of rules in rough set theory[J]. Lecture Notes in Computer Science, 2009, 5589: 642-649.

[46]Qha B , Tla B , Yh C , et al. Incremental three-way neighborhood approach for dynamic incomplete hybrid data - Science Direct[J]. Information Sciences, 2020, 541:98-122.

[47]Zhang X, Chen L, Wang Y, et al. Improving Incremental Nonnegative Matrix Factorization Method for Recommendations Based on Three-Way Decision Making[J]. Cognitive Computation, 2021: 1-19.

[48]Wang F ,Wei W , Liang J . A group incremental approach for feature selection on hybrid data[J]. Soft Computing, 2022, 26(8):3663-3677.

[49]Hao G , Cy B , Yi X C .Incremental updating three-way regions with variations of objects and attributes in incomplete neighborhood systems- Science Direct[J]. Information Sciences, 2022:1065-1078.

[50]Shu W, Qian W, Xie Y. Incremental feature selection for dynamic hybrid data using neighborhood rough set[J]. Knowledge-Based Systems, 2020, 194: 105-116.

[51]Chen Y , Zhu P . Extending characteristic relations on an incomplete data set by the three-way decision theory-Science Direct[J]. International Journal of Approximate Reasoning, 2020, 119:108-121.

[52]Hu C , Zhang L . Incremental updating probabilistic neighborhood three-way regions with time-evolving attributes[J]. International Journal of Approximate Reasoning, 2020, 120:1126-1135.

[53]Wei W , Song P , Liang J , et al. Accelerating incremental attribute reduction algorithm by compacting a decision table[J]. International journal of machine learning and cybernetics, 2019, 10(9):2355-2373.

[54]Jing Y , Li T , Fujita H , et al. An incremental attribute reduction approach based on knowledge granularity with a multi-granulation view[J].Information Sciences, 2017,24(3):45-53.

[55]Yang Y , Chen D , Wang H , et al. Fuzzy rough set based incremental attribute reduction from dynamic data with sample arriving[J]. Fuzzy Sets & Systems, 2017, 312(12):12-17.

[56]Ma F , Ding M , Zhang T , et al. Compressed Binary Discernibility Matrix Based Incremental Attribute Reduction Algorithm for Group Dynamic Data[J]. Neurocomputing, 2019, 344(7):20-27.

[57]Yang Y, Chen D,Zhang X, et al. Covering rough set-based incremental feature selection for mixed decision system[J]. Soft Computing, 2022, 26(6):2651-2669.

[58]Ma X A, Yao Y. Three-way decision perspectives on class-specific attribute reducts[J]. Information Sciences, 2018, 450: 227-245.

[59]Gao C, Lai Z, Zhou J, et al. Maximum decision entropy-based attribute reduction in decision-theoretic rough set model[J]. Knowledge-Based Systems, 2018, 143: 179-191.

[60]Ma X A. Fuzzy entropies for class-specific and classification-based attribute reducts in three-way probabilistic rough set models[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(2): 433-457.

[61]Zhang X, Yao H, Lv Z, et al. Class-specific information measures and attribute reducts for hierarchy and system aticness[J].Information Sciences,2021, 563: 196-225.

中图分类号:

 O29    

开放日期:

 2022-06-20    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式