论文中文题名: | 铁基金属有机框架/氧化铝对硅橡胶泡沫阻燃抑烟性能影响研究 |
姓名: | |
学号: | 20220089025 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083700 |
学科名称: | 工学 - 安全科学与工程 |
学生类型: | 硕士 |
学位级别: | 工学硕士 |
学位年度: | 2023 |
培养单位: | 西安科技大学 |
院系: | |
专业: | |
研究方向: | 消防科学与工程 |
第一导师姓名: | |
第一导师单位: | |
论文提交日期: | 2023-06-19 |
论文答辩日期: | 2023-06-07 |
论文外文题名: | Effect of Fe based organometallic framework/alumina on flame retardancy and smoke suppression of silicone rubber foam |
论文中文关键词: | |
论文外文关键词: | silicone foam ; metal-organic framework ; Al2O3 ; smoke release properties ; flame retardant and smoke suppression mechanism |
论文中文摘要: |
硅橡胶泡沫(SiFs)作为密封或隔火阻燃层在航空航天、新能源汽车电池包等特殊领域应用时,要求阻燃材料面对各种极端条件的考验时保持稳定。而SiFs在高温或遇火条件下会发生收缩龟裂,形成的炭层强度低、烟密度较高。因此须提升SiFs的阻燃抑烟性能。金属有机框架(MOFs)是一种由金属离子或簇与有机配体相互作用形成的具有多孔结构的有机骨架材料。这种材料具有优异的物理化学性质和良好的热稳定性。MOFs由于有序的多孔结构和活性金属中心,因此在高分子复合材料中添加MOFs后,其在燃烧过程中表现出明显的阻燃抑烟效果。为此,本研究以提高SiFs复合材料本质安全的目标为需求牵引,基于MOFs的阻燃抑烟和催化成炭性质,制备两种铁基金属有机框架MIL-101和MIL-88A,而后选取有优异性能的MIL-88A与具有高熔点和催化吸附特性的Al2O3复配,制备出MIL-88A/Al2O3/SiFs材料,最后优选出最佳配比的MIL-88A/Al2O3/SiFs,揭示其阻燃抑烟机理。主要结果如下: (1)通过扫描电子显微镜(SEM)、X射线衍射(XRD)和傅里叶转换红外光谱(FTIR)三种表征手段对制备样品表征,表明MIL-101和MIL-88A制备成功。通过对比MIL-88A和MIL-101对SiFs的热释放特性、烟释放特性和力学性能的影响,优选出MIL-88A型铁基金属有机框架为SiFs材料的初选阻燃抑烟剂。 (2)对Al2O3/SiFs和MIL-88A/Al2O3/SiFs样品的阻燃抑烟性能和力学性能进行了氧指数测试、锥形量热仪分析、烟密度检测以及万能拉伸试验机测试。Al2O3加入到SiFs中降低了热释放速率和热释放总量,MIL-88A加入到Al2O3/SiFs有效改善了单一Al2O3对SiFs热释放速率的影响,并明显减缓了烟释放速率和烟释放总量,MIL-88A和Al2O3两种材料添加对CO和CO2产量的抑制效果明显强于单一Al2O3组分添加。通过分析热释放性能、烟释放性能和力学性能的影响,得到双组份复配的最佳比例的SiFs复合材料为3%MIL-88A/3%Al2O3/SiFs。 (3)利用数码相机、SEM、热重分析(TGA)和热重红外联用(TG-FTIR)对SiFs、3%MIL-88A/SiFs、3%Al2O3/SiFs和3%MIL-88A/3%Al2O3/SiFs的宏观与微观残炭形貌、热稳定性和热解产物进行研究,发现MIL-88A对材料分子的加固和Al2O3对SiFs材料的包覆在SiFs分子表面形成保护层,防止进一步燃烧,并从而达到了阻燃抑烟效果。MIL-88A与Al2O3都可以提高SiFs的热分解温度,改善其热稳定性,Al2O3在凝聚相中发挥了强有力的催化作用,MIL-88A和Al2O3对热解产物中的CO、CO2和CH4有明显的抑制作用。 (4)得到MIL-88A/Al2O3/SiFs的阻燃抑烟机理,由Al2O3包裹和MIL-88A加固的炭层,会抑制燃烧时产生的热和烟气向外逸出,降低热辐射的同时将MIL-88A和SiFs热解产生的H2O、CO2保留在SiFs基体内部,有效稀释SiFs热解产生的CH4等可燃气体的浓度。Al2O3在SiFs材料中与MIL-88A热解出的带有H+的酸性气体反应生成H2O能够降低燃烧区域的温度,并且吸附SiFs燃烧产生的烟尘,达到阻燃抑烟效果。 |
论文外文摘要: |
Silicone rubber foam (SiFs) is used as a sealing or fire-resistant layer in special fields such as aerospace and new energy vehicle battery packs. It required to remain stable when facing various extreme conditions. SiFs, on the other hand, will undergo shrinkage and cracking under high temperature or fire conditions, resulting in a low strength and high smoke density carbon layer. Therefore, it is necessary to improve the flame retardancy and smoke suppression performance of SiFs. Metal organic frameworks (MOFs) are organic framework materials with porous structures formed by the interaction of metal ions or clusters with organic ligands. This material has excellent physical and chemical properties and good thermal stability. Due to the ordered porous structure and active metal centers, MOFs added to polymer composites exhibit significant flame retardancy and smoke suppression effects during the combustion process. Therefore, this study aims to improve the intrinsic safety of SiFs composite materials. Based on the flame retardancy, smoke suppression, and catalytic carbonization properties of MOFs, two iron based metal organic frameworks MIL-101 and MIL-88A were prepared. Then, MIL-88A with excellent performance was selected to blend with Al2O3 with high melting point and catalytic adsorption properties to prepare MIL-88A/Al2O3/SiFs materials. Finally, the optimal ratio of MIL-88A/Al2O3/SiFs was selected to reveal their flame retardancy and smoke suppression mechanism. The main results are as follows: (1) The prepared samples were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR), indicating successful preparation of MIL-101 and MIL-88A. By comparing the effects of MIL-88A and MIL-101 on the thermal release characteristics, smoke release characteristics, and mechanical properties of SiFs, MIL-88A was selected as the primary flame retardant and smoke suppressant for SiFs materials. (2) The flame retardant and smoke suppression properties, as well as the mechanical properties of Al2O3/SiFs and MIL-88A/Al2O3/SiFs samples, were tested using oxygen index, cone calorimeter, smoke density, and universal tensile testing machine. Adding Al2O3 to SiFs reduced the thermal release rate and total thermal release amount of SiFs. Adding MIL-88A to Al2O3/SiFs effectively improved the single Al2O3's impact on the thermal release rate of SiFs and significantly reduced the smoke release rate and total smoke release. The addition of both MIL-88A and Al2O3 had a greater inhibitory effect on CO and CO2 production compared to adding only Al2O3. By analyzing the effects on thermal release performance, smoke release performance, and mechanical properties, the optimal ratio of the two-component composite SiFs material was determined to be 3% MIL-88A/3%Al2O3/SiFs. (3) The macroscopic and microscopic char morphology, thermal stability, and pyrolysis products of SiFs, 3%MIL-88A/SiFs, 3%Al2O3/SiFs, and 3%MIL-88A/3%Al2O3/SiFs were studied using a digital camera, SEM, TGA, and TG-FTIR. It was found that MIL-88A reinforces the molecular structure of the material and Al2O3 forms a protective layer on the surface of SiFs molecules, preventing further combustion and achieving flame retardancy and smoke suppression effects. Both MIL-88A and Al2O3 can increase the thermal decomposition temperature of SiFs, improve its thermal stability, and Al2O3 exerts a strong catalytic effect in the condensed phase. MIL-88A and Al2O3 have significant inhibitory effects on CO, CO2, and CH4 in the pyrolysis products. (4) The flame retardant and smoke suppression mechanism of MIL-88A/Al2O3/SiFs was obtained. The carbon layer reinforced by MIL-88A and wrapped by Al2O3 can inhibit the heat and smoke generated during combustion from escaping to the outside, reduce the heat radiation, and retain H2O and CO2 produced by the thermal decomposition of MIL-88A and SiFs within the SiFs matrix, effectively diluting the concentration of flammable gases such as CH4 generated by the thermal decomposition of SiFs. Al2O3 reacts with the acidic gas containing H+ produced by the thermal decomposition of SiFs and MIL-88A to generate H2O, which can lower the temperature of the combustion area and adsorb the smoke generated by the combustion of SiFs, achieving flame retardancy and smoke suppression effects. |
参考文献: |
[2] 王峰, 彭丹, 牟秋红, 等.笼型低聚倍半硅氧烷/硅橡胶复合材料的制备及性能进展[J]. 材料导报, 2020, 34(21):192-202. [3] 张贤珍, 姜其斌, 颜渊巍, 等.有机硅泡沫材料的制备及性能研究进展[J]. 橡胶工业, 2020, 67(1):73-79. [5] 邱兴娜. 硅纳米管包覆CNTs对硅橡胶热氧稳定性影响及机理研究[D]. 天津: 天津大学, 2016. [6] 来国桥, 幸松民. 有机硅产品合成工艺及应用.第2版[M]. 化学工业出版社, 2010. [10] Jones G M. Silicone Foam Masses[P]. USA:USP 4 888 217,1989-11-19. [11] 严玉, 段佳巍, 郑家青, 等. 阻燃型 RTV硅胶泡沫的制备[J]. 有机硅材料, 2014, (3):153-156. [12] 李洋, 翟文涛, 张利华, 等. 氧化石墨烯增强硅橡胶复合泡沫材料的性能[J].合成橡胶工业, 2016, 39(2):125-128. [13] 马砺, 刘西西, 刘志超, 等. 改性水滑石的制备及在SiFs阻燃抑烟中的应用[J].高分子材料科学与工程, 2020, 36(10):58-65. [14] 邓军, 康付如, 吴长林, 等. 环保型硅胶泡沫阻燃抑烟及热分解特性[J]. 高分子材料科学与工程, 2018, 34(12):90-94, 100. [15] 邓军, 康付如. 含微胶囊SiFs阻燃抑烟特性[J]. 湖南科技大学学报:自然科学版, 2019, 34(1):1-6. [28] Férey G. Hybrid Porous Solids: Past, Present, Future [J]. Chem. Soc. Rev.2008, 37: 191-214. [29] Zhu Q. L. Xu Q. Metal-Organic Framework Composites [J]. Chem. Soc. Rev. 2014, 43: 5468-5512. [56] 张艳. 基于二维碳化钛的纳米复合薄膜与涂层功能材料的设计及电磁屏蔽性能研究[D]. 中国科学技术大学, 2020. [57] 赵怀远. 金属有机框架衍生材料的制备及应用[D].浙江大学,2021. [60] 皮红, 郭少云. 过渡金属氧化物对 PVC 抑烟机理的 ESCA 研究[J]. 高分子材料科学与工程, 2005, 21: 164-168. [70] 高亮, 葛宇凯, 许志美, 刘涛, 赵玲. ZDP/纳米Al2O3阻燃改性PET挤出发泡材料的研制[J]. 工程塑料应用, 2019, 47(07):14-21. [80] 王天强, 闫宁, 周静, 邹百军, 熊婷. SiFs材料的研究进展[J]. 橡胶工业, 2017,64(05):315-319. [83] 马砺, 刘志超, 肖旸, 等. 含无机阻燃剂SiFs的阻燃及热分解特性研究[J]. 材料导报, 2019, 33(11):1836-1841. [84] 金满洁, 王发鹏, 吕森强, 等. 新型复合氮-磷-硫阻燃剂对于竹基材料的阻燃效果研究[J]. 世界竹藤通讯, 2019, 17(06):21-24. [85] 周冬杰. 热硫化SiFs用补强填料的研究进展[J]. 有机硅材料, 2018, 32(04):319-322. [86] 苏培循, 林志, 蒋浩, 李佳奇, 孙鑫阳.基于火灾烟气蔓延规律设置的城市地下快速路逃生通道间距[J].现代隧道技术,2021,58(S1):471-478. [87] 张玉涛, 车博, 张玉杰. 烟囱效应作用下火灾烟气蔓延规律模拟研究[J]. 安全与环境学报:1-10. [88] 洪瑶, 康建宏, 符策基. 基于PID方法的倾斜隧道中火灾烟气控制数值模拟[J]. 中国矿业大学学报, 2021, 50(04):701-708. [89] 鲁杰. 液体硅橡胶阻燃泡沫材料制备工艺及性能研究[D].西安科技大学,2018. [90] 林琳. 地铁站台火灾烟气流动模拟及排烟研究[D].大连交通大学,2010. [91] 张龙, 晁华, 胡曼, 宁宾华. 汽车内饰材料烟密度等级测定影响因素研究[J]. 消防科学与技术, 2021, 40(08):1129-1132. [92] 刘鑫鑫, 叶南飚, 郑一泉, 常欢, 朱秀梅, 苏榆钧. 不同环保溴系阻燃剂对ABS阻燃性能和力学性能的影响[J]. 塑料工业, 2021, 49(10):115-119. |
中图分类号: | TQ333.93 |
开放日期: | 2023-06-19 |