- 无标题文档
查看论文信息

论文中文题名:

 太阳能与辅助热源互补转轮除湿空调系统优化研究    

姓名:

 陈闯    

学号:

 20203053014    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 081404    

学科名称:

 工学 - 土木工程 - 供热、供燃气、通风及空调工程    

学生类型:

 硕士    

学位级别:

 工学硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 能源学院    

专业:

 土木工程    

研究方向:

 制冷与空调节能技术    

第一导师姓名:

 陈柳    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-14    

论文答辩日期:

 2023-06-05    

论文外文题名:

 Optimization Study of Solar Energy and Auxiliary Heat Source Complementary Desiccant Wheel Air Conditioning System    

论文中文关键词:

 转轮除湿 ; 太阳能 ; 能源互补 ; 空调系统 ; 系统优化    

论文外文关键词:

 Desiccant wheel ; Solar energy ; Air conditioning system ; Energy complementary ; System optimization    

论文中文摘要:

太阳能转轮除湿空调系统具有清洁且可持续性的优点,并且能够很好地匹配建筑热湿负荷,从而引起了越来越多的关注。但由于太阳能能流密度低、不稳定等缺点,太阳能转轮除湿空调系统需要辅助热源互补。本文提出了太阳能为主,其它热源为辅的太阳能与辅助热源互补转轮除湿空调系统。系统采用两级转轮除湿机进行除湿,有效地降低了系统的再生温度。利用以太阳能为主的热源互补方式,弥补了单一太阳能作为系统驱动热源的缺陷,显著提高了系统的性能。具体研究内容与结果如下:

提出了太阳能与辅助热源互补转轮除湿空调系统,对系统进行了热力学分析。根据系统再生热源的互补方式,构成太阳能与电能互补、太阳能与水源热泵互补、太阳能与空气源热泵互补三种转轮除湿空调系统。建立了互补转轮除湿空调系统各部件的数学模型,选取了系统的性能评价指标,确定了系统的优化算法。

提出了太阳能与电能互补转轮除湿空调系统,利用TRNSYS软件模拟研究了该系统应用于广州某办公建筑的可行性以及系统的动态特性。结果表明:空调房间的温度和含湿量分别在24.5~26.4 ℃和11.5~12.0 g/kg(相对湿度为55%~59%),满足热舒适要求。系统制冷季平均COPth和平均COPe分别为1.47和1.89。应用粒子群-模式搜索法对系统优化参数进行同步优化。结果表明:当集热器面积为222 m2,蓄热水箱容积为11.0 m3,辅助电加热器制热功率为24 kW时,系统的生命周期成本达到最小值且为146.5万元。相比于优化前系统,优化后系统制冷季平均节能率提高了10.4%,平均COPe提高了13.2%。

提出了太阳能与水源热泵互补转轮除湿空调系统,系统采用自然冷源为水源热泵提供热源,也为空气冷却器提供冷源。研究了系统的热力性能,对系统优化参数进行同步优化,对比分析了优化前后系统性能。结果表明:当再生温度为60 ℃时,系统的显热回收量为2.41kW。当集热器面积为168 m2,蓄热水箱容积为11.4 m3,水源热泵制热功率为5.6 kW时,系统的生命周期成本达到最小值。优化后系统制冷季平均节能率提高了4.93%。优化后系统的COPe均高于优化前系统,系统的性能得到提高。

提出了太阳能与空气源热泵互补转轮除湿空调系统,系统通过两级转轮除湿机降低处理空气的湿球温度,再利用蒸发冷却器制备冷风和冷水。研究了系统的热力性能,对系统优化参数进行同步优化,对比分析了优化前后系统性能。结果表明:当气水比为1.4时,系统制备的冷水温度达到最低且为15.9 ℃。当集热器面积为170 m2,蓄热水箱容积为11.5 m3,空气源热泵制热功率为9.6 kW时,系统的生命周期成本达到最小值。优化后系统制冷季平均节能率提高了5.70%。优化后系统各月的COPe分别为6.3,7.3,7.4和6.7。

将优化后的太阳能与电能互补转轮除湿空调系统、太阳能与水源热泵互补转轮除湿空调系统以及太阳能与空气源热泵互补转轮除湿空调系统三个空调系统的经济效益、节能效益、环保效益进行对比分析。结果表明:相比于太阳能与电能互补转轮除湿空调系统,太阳能与水源热泵互补转轮除湿空调系统和太阳能与空气源热泵互补转轮除湿空调系统的费用年值分别降低了44.3%和36.1%,节能率分别为70.6%和68.2%,CO2减排量分别为31316.1 kg和 30253.5 kg。

论文外文摘要:

The solar desiccant wheel air conditioning system has the advantages of cleanliness and sustainability, and can well match the building heat and moisture load, which has attracted more and more attention. However, due to the shortcomings of low solar energy density and instability, the solar desiccant wheel air conditioning system requires complementary auxiliary heat sources. In this paper, a solar energy and auxiliary heat source complementary desiccant wheel air conditioning system is proposed, which is dominated by solar energy and supplemented by other heat sources. The system uses a two-stage rotary dehumidifier for dehumidification, which effectively reduces the regeneration temperature of the system. The use of solar energy-based heat source complementarity makes up for the shortcomings of a single solar energy as a system-driven heat source, and significantly improves the performance of the system. The specific research contents and results are as follows:

The solar energy and auxiliary heat source complementary desiccant wheel air conditioning system is proposed, and the thermodynamic analysis of the system is carried out. According to the complementary mode of the regeneration heat source of the system, three kinds of desiccant wheel air conditioning systems are composed of solar energy and electric energy complementary, solar energy and water source heat pump complementary, solar energy and air source heat pump complementary. The mathematical model of each component of the complementary desiccant wheel air conditioning system is established, the performance evaluation index of the system is selected, and the optimization algorithm of the system is determined.

The solar energy and electric energy complementary desiccant wheel air conditioning system is proposed. The feasibility of the system applied to an office building in Guangzhou and the dynamic characteristics of the system are simulated by TRNSYS software. The results show that the temperature and the humidity ratio of the air-conditioned room are at 24.5~26.4 °C and 11.5~12.0 g/kg (relative humidity is 55%~59%), respectively, which meets the thermal comfort requirements. The average COPth and average COPe of the system during the cooling season are 1.47 and 1.89, respectively. The particle swarm optimization-Hooke-Jeeves method is used to optimize the system optimization parameters simultaneously. The results show that when the collector area is 222 m2, the volume of the heat storage tank is 11.0 m5, and the heating power of the auxiliary electric heater is 24 kW, the life cycle cost of the system reaches the minimum value of 1.465 million yuan. Compared with the system before optimization, the average energy saving rate of the optimized system during the cooling season is increased by 10.4%, and the average COPe is increased by 13.2%.

The solar energy and water source heat pump complementary desiccant wheel air conditioning system is proposed. The system uses natural cold source to provide heat source for water source heat pump and cold source for air cooler. The thermal performance of the system is studied, the optimization parameters of the system are optimized simultaneously, and the system performance before and after optimization is compared and analyzed. The results show that when the regeneration temperature is 60 ℃, the sensible heat recovery of the system is 2.41 kW. The life cycle cost of the system reaches the minimum when the collector area is 168 m2, the heat storage tank volume is 11.4 m3, and the water source heat pump heating power is 5.6 kW. After optimization, the average energy saving rate of the system during the cooling season is increased by 4.93%. The monthly COPe of the optimized system is higher than that before optimization, and the performance of the system is improved.

The solar energy and air source heat pump complementary desiccant wheel air conditioning system is proposed. The system reduces the wet bulb temperature of the treated air through a two-stage wheel dehumidifier, and then uses an evaporative cooler to prepare chilled air and chilled water. The thermal performance of the system is studied, the optimization parameters of the system are optimized simultaneously, and the system performance before and after optimization is compared and analyzed. The results show that when the air-to-water ratio is 1.4, the chilled water temperature prepared for the system reaches a minimum and is 15.9 ℃. The life cycle cost of the system reaches the minimum when the collector area is 170 m2, the heat storage tank volume is 11.5 m3, and the air source heat pump heating power is 9.6 kW. After optimization, the average energy saving rate of the system during the cooling season is increased by 5.70%. The monthly COPe of the optimized system is 6.3, 7.3, 7.4 and 6.7, respectively.

The economic benefits, energy saving benefits and environmental benefits of the three air conditioning systems of the optimized solar energy and electric energy complementary desiccant wheel air conditioning system, the optimized solar energy and water source heat pump complementary desiccant wheel air conditioning system and the optimized solar energy and air source heat pump complementary desiccant wheel air conditioning system are compared and analyzed. The results show that compared with the solar energy and electric energy complementary desiccant wheel air conditioning system, the annual cost of solar energy and water source heat pump complementary desiccant wheel air conditioning system and solar energy and air source heat pump complementary desiccant wheel air conditioning system are reduced by 44.3 % and 36.1 % respectively, the energy saving rates are 70.6% and 68.2% respectively, and the CO2 emission reductions are 31316.1 kg and 30253.5 kg respectively.

参考文献:

[1]张朝晖, 刘璐璐, 王若楠, 等. “双碳”目标下制冷空调行业技术发展的思考[J]. 制冷与空调, 2022, 22(01):1-10.

[2]简晓敏. 新能源和可再生能源在暖通空调系统中的应用[J]. 江西建材, 2020, No.255(04):78-79.

[3]张朦静, 贾玲玉, 韩好许. 可再生能源在暖通空调系统中的具体应用分析[J]. 科技创新与应用, 2022, 12(20):168-171.

[4]姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10):524-535.

[5]Wu W, Wang X Y, Xia M, et al. A novel composite PCM for seasonal thermal energy storage of solar water heating system[J], Renewable Energy, 2020, 161(07):457-469.

[6]张朝晖, 王若楠, 高钰, 等. 热泵技术的应用现状与发展前景[J]. 制冷与空调, 2018, 18(01):1-8.

[7]彭金梅, 罗会龙, 崔国民, 等. 热泵技术应用现状及发展动向[J]. 昆明理工大学学报(自然科学版), 2012, 37(05):54-59.

[8]杨灵艳, 徐伟, 朱清宇, 等. 国际热泵技术发展趋势分析[J]. 暖通空调, 2012, 42(08):1-8.

[9]Long J B, Xia K M, Zhong H H, et al. Study on energy-saving operation of a combined heating system of solar hot water and air source heat pump[J]. Energy Conversion and Management, 2021, 299(12):113624.

[10]Wang C L, Gao Y Z, Dai Z F, et al. Experimental investigation and performance evaluation on a direct expansion solar-air source heat pump system[J], International Journal of Refrigeration, 2023, 145(01):168-176.

[11]Zheng X, Shi R, You S, et al. Experimental study of defrosting control method based on image processing technology for air source heat pumps[J], Sustainable Cities and Society, 2019, 51(07):101667.

[12]Yang B, Dong J, Zhang L, et al. Heating and energy storage characteristics of multi-split air source heat pump based on energy storage defrosting[J]. Applied Energy, 2019, 238(03):303-310.

[13]Abd-Elhady M M, Salem M S, Hamed A M, et al. Solid desiccant-based dehumidification systems: A critical review on configurations, techniques, and current trends[J]. International Journal of Refrigeration, 2022,133(01): 337-352.

[14]Sultan M, El-Sharkawy I I, Miyazaki T, et al. An overview of solid desiccant dehumidification and air conditioning systems[J]. Renewable and Sustainable Energy Reviews, 2015, 46(06):16-29.

[15]万鑫. 转轮除湿空调系统再生能耗研究进展[J]. 洁净与空调技术, 2014(01):77-79+82.

[16]刘星. 夏热冬冷地区太阳能转轮除湿空调系统运行模拟分析[D]. 沈阳:沈阳建筑大学, 2016.

[17]黎娇. 太阳能驱动的转轮干燥冷却空调系统节能潜力研究[D]. 湖南:湖南科技大学, 2012.

[18]Qureshi B A, Zubair S M. The effect of refrigerant combinations on performance of a vapor compression refrigeration system with dedicated mechanical sub-cooling[J]. International Journal of Refrigeration, 2012, 35(01):47-57.

[19]Pennington N A. Humidity changer for air-conditioning[P]. USA, Patent No.2700537; 1955.

[20]Jain S, Dhar P L, Kaushik S C. Evaluation of solid-desiccant-based evaporative cooling cycles for typical hot and humid climates[J]. International Journal of Refrigeration, 1995, 18(05):287-296.

[21]Collier R, F Arnold, Barlow R. Overview of Open-Cycle Desiccant Cooling Systems and Materials[J]. Office of Scientific & Technical Information Technical Reports, 1981.

[22]Pesaran A A, Penney T R, Czanderna A W. Desiccant cooling: state-of-the-art assessment[J]. National Renewable Energy Lab, 1992.

[23]La D, Dai Y J, Li Y, et al. Technical development of rotary desiccant dehumidification and air conditioning: A review[J]. Renewable & Sustainable Energy Reviews, 2010, 14(01):130-147.

[24]Kiatsirirroat T, Tachajapong W. Analysis of a heat pump with solid desiccant tube bank[J]. International Journal of Energy Research, 2002, 26(06):527-542.

[25]Jia C X, Dai Y J, Wu J Y, et al. Analysis on a hybrid desiccant air-conditioning system[J]. Applied Thermal Engineering, 2006, 26(17-18):2393-2400.

[26]Niu J L, Zhang L Z, Zuo H G. Energy savings potential of chilled-ceiling combined with desiccant cooling in hot and humid climates[J]. Energy and Buildings, 2002, 34(5):487-495.

[27]Dai Y J, Wang R Z, Xu Y X. Study of a solar powered solid adsorption-desiccant cooling system used for grain storage[J]. Renewable Energy, 2002, 25(03): 417-430.

[28]葛天舒. 转轮式两级除湿空调理论与实验研究[D]. 上海:上海交通大学, 2009.

[29]侯小兵, 邹同华, 代咪咪. 两级转轮除湿空调系统性能的试验研究[J]. 流体机械, 2018, 46(03):84-88+77.

[30]Henning H M, Erpenbeck T, Hindenburg C, et al. The potential of solar energy use in desiccant cooling cycles[J]. International Journal of Refrigeration, 2001, 24(03):220-229.

[31]Hürdoan E, Büyükalaca O, Yılmaz T, et al. Investigation of solar energy utilization in a novel desiccant based air conditioning system[J]. Energy & Buildings, 2012, 55(12):757-764.

[32]Fong K F, Chow T T, Lee C K, et al. Advancement of solar desiccant cooling system for building use in subtropical Hong Kong[J]. Energy & Buildings, 2010, 42(12):2386-2399.

[33]Bourdoukan P, Wurtz E, Joubert P. Experimental investigation of a solar desiccant cooling installation[J]. Solar Energy, 2009, 83(11):2059-2073.

[34]Angrisani G, Roselli C, Sasso M, et al. Dynamic performance assessment of a solar-assisted desiccant-based air handling unit in two Italian cities[J]. Energy Conversion & Management, 2016, 113(04):331-345.

[35]Chaudhary G Q, Ali M, Sheikh N A, et al. Integration of solar assisted solid desiccant cooling system with efficient evaporative cooling technique for separate load handling[J]. Applied Thermal Engineering, 2018, 140(07):696–706.

[36]郝红, 张于峰, 邓娜, 等. 转轮热泵耦合式空调系统的节能性研究[J]. 太阳能学报, 2009, 30(01):45-50.

[37]葛凤华, 王剑, 郭兴龙, 等. 热泵废热再生转轮除湿空调系统的性能研究[J]. 太阳能学报, 2016, 37(09):2326-2331.

[38]Sheng Y, Zhang Y, Zhang G. Simulation and energy saving analysis of high temperature heat pump coupling to desiccant wheel air conditioning system[J]. Energy, 2015, 83(04):583-596.

[39]胡晓微. 新型干式工业空调系统的研究[D]. 天津:天津大学, 2014.

[40]王涛. 自我再生转轮除湿空调系统的性能研究[D]. 天津:天津商业大学, 2014.

[41]Jeong J, Yamaguchi S, Saito K, et al. Performance analysis of desiccant dehumidification systems driven by low-grade heat source[J]. International Journal of Refrigeration, 2011, 34(04):928-945.

[42]Casas W, Schmitz G. Experiences with a gas driven, desiccant assisted air conditioning system with geothermal energy for an office building[J]. Energy and Buildings, 2005, 37(05):493-501.

[43]Goodarzia G, Thirukonda N, Heidari S, et al. Performance Evaluation of Solid Desiccant Wheel Regenerated by Waste Heat or Renewable Energy[J]. Energy Procedia, 2017, 110(03):434-439.

[44]Angrisani G, Roselli C, Sasso M, et al. Dynamic performance assessment of a micro-trigeneration system with a desiccant-based air handling unit in Southern Italy climatic conditions[J]. Energy Conversion & Management, 2014, 80(04):188-201.

[45]Heidarinejad G, Rayegan S, Pasdarshahri H. Dynamic simulation of a solar desiccant cooling system combined with a ground source heat exchanger in humid climates[J]. Journal of Building Engineering, 2020, 28(03):101048.

[46]Guo J, Bilbao J I, Sproul A B. A novel solar cooling cycle – A ground coupled PV/T desiccant cooling (GPVTDC) system with low heat source temperatures[J]. Renewable Energy, 2020, 162(12):1273-1284.

[47]Chen L, Tan Y. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable Energy, 2020, 146(02):2142-2157.

[48]Liang J D, Kao C L, Tsai L K, et al. Performance investigation of a hybrid ground-assisted desiccant cooling system[J]. Energy Cnversion & Management, 2022, 265(08): 115765.

[49]腊栋. 开式冷水型转轮除湿空调理论与实验研究[D]. 上海:上海交通大学,2013.

[50]Chen L, Deng W, Chu Y. Experimental study on desiccant evaporative combined chilled air/chilled water air conditioning systems[J], Applied Thermal Engineering, 2021, 199(11):117534.

[51]Heidari, A, Roshandel R, Vakiloroaya V. An innovative solar assisted desiccant based evaporative cooling system for co-production of water and cooling in hot and humid climates[J]. Energy Conversion and Management, 2019, 185(04):396-409.

[52]Zhou X. Thermal and energy performance of a solar-driven desiccant cooling system using an internally cooled desiccant wheel in various climate conditions[J]. Applied Thermal Engineering, 2020, 185(02):116077.

[53]Karami M, Delfani S, Noroozi A. Performance characteristics of a solar desiccant/M-cycle air-conditioning system for the buildings in hot and humid areas[J]. Asian Journal of Civil Engineering, 2020, 21(02):189-199.

[54]El-Agouz S A, Kabeel A E. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions[J]. Energy Conversion & Management, 2014, 88(12):464-475.

[55]Liu Y, Chen Y, Wang D, et al. Performance evaluation of a hybrid solar powered rotary desiccant wheel air conditioning system for low latitude isolated islands[J]. Energy and Buildings, 2020, 224(10):110208.

[56]Speerforck A, Ling J, Aute V, et al. Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system[J]. Energy, 2017, 141(12):2321-2336.

[57]Rayegan S, Motaghian S, Heidarinejad G, et al. Dynamic simulation and multi-objective optimization of a solar-assisted desiccant cooling system integrated with ground source renewable energy[J]. Applied Thermal Engineering, 2020, 173(06):115210.

[58]Tian S, Su X, Li H, et al. Using a coupled heat pump desiccant wheel system to improve indoor humidity environment of nZEB in Shanghai: Analysis and optimization[J]. Building and environment, 2021, 206(12):108391.

[59]Ge T S, Dai Y J, Wang R Z, et al. Performance of two-stage rotary desiccant cooling system with different regeneration temperatures[J]. Energy, 2015, 80(1):556-566.

[60]Jurinak J J. Open cycle desiccant cooling-component models and system simulations[D]. Madison: University of Wisconsin, 1982.

[61]邓文杰, 陈柳, 褚于颉. 太阳能驱动除湿转轮与蒸发冷却复合空调系统性能研究[J]. 流体机械, 2022, 50(09):43-50+57.

[62]Kennedy J, Berhart R C. Particle swarm optimization(C). IEEE International Conference on Neural Networks, Perth, Australia, 1995: 1942-1948.

[63]陈宝林. 最优化理论与算法(第2版)[M]. 北京:清华大学出版社, 2005:332-336.

[64]Wetter M. GenOpt, generic optimization program-user manual, version3.0.0. Technical report LBNL-5419[EB/OL]. Lawrence Berkeley National Laboratory, 2009.

[65]徐亮, 董自安, 许道金, 等. 基于Meteonorm气象参数的建筑热负荷模拟[J]. 建筑热能通风空调, 2022, 41(09):44-47.

[66]黄翔. 空调工程[M]. 北京:机械工业出版社, 2017.

[67]卢文倩. 太阳能与燃气壁挂炉联合供暖系统实验研究[D]. 天津:天津大学环境科学与工程学院, 2017.

[68]李琛. 太阳能与空气源热泵复合热源生活热水供应系统性能研究[D]. 天津:天津大学, 2020.

[69]徐成良, 雷艳杰, 张军, 等. 某地下水源热泵系统运行策略优化研究[J]. 制冷学报, 2018, 39(05):72-76.

[70]刘长清, 吴荣华, 展浩. 太阳能-水源热泵系统运行调控优化[J]. 流体机械, 2022, 50(07):98-104.

[71]解苗苗, 党相兵, 关欣. 直膨式太阳能热泵系统性能分析及优化[J]. 能源研究与信息, 2014, 30(02):73-78.

[72]车继刚. 直膨式太阳能热泵热水系统热力性能研究[D]. 西安:西安建筑科技大学, 2019.

[73]李振兴. 直膨式太阳能热泵热水系统性能的优化分析[D]. 青岛:山东科技大学, 2010.

[74]夏洪涛. 高原机场太阳能与水源热泵联合供暖系统设计应用分析[J]. 暖通空调, 2018, 48(05):72-77.

[75]李至远. 夏热冬冷地区实现近零能耗住宅的太阳能热泵系统的研究[D]. 杭州:浙江大学, 2018.

[76]曲世琳, 王东旭, 董家男, 等. 基于TRNSYS的太阳能水源热泵系统优化研究[J]. 南京理工大学学报, 2015, 39(04):494-499.

[77]李海林, 李绍勇, 韩喜莲, 等. 串、并联式太阳能空气源热泵供热系统性能数值研究与对比[J]. 制冷与空调(四川), 2019, 33(04):425-432.

[78]马洪亭, 张传龙, 宋肖, 等. 太阳能-水源热泵多能互补供暖系统实验研究[J]. 太阳能学报, 2014, 35(11):2152-2158.

[79]原鹏丽, 尹洪超, 英鹏. 太阳能-海水源热泵联合供暖系统的模拟研究[J]. 节能, 2014, 33(04):25-28+2.

[80]王博渊. 基于太阳能与水源热泵的多能源耦合供热技术研究[D]. 北京:中国建筑科学研究院, 2018.

[81]曾乃晖. 西昌地区空气源热泵辅助太阳能热水系统优化研究[D]. 成都:西南交通大学, 2017.

[82]路建岭, 赵惠忠, 邹志军, 等. 喷雾冷却塔气水比和截面风速对冷却效率的影响[J]. 流体机械, 2009, 37(12):68-71.

[83]白延斌, 黄翔, 孙铁柱, 等. 气水比对蒸发冷却高温冷水机组出水温度的影响[J]. 流体机械, 2011(10):83-86.

[84]A A F, B Z M. A simplified model for analysis of heat and mass transfer in a direct evaporative cooler[J]. Applied Thermal Engineering, 2011, 31(05):932-936.

[85]王其良, 周恩泽, 屠丽娟, 等. 基于太阳能补热的多源互补供暖系统优化研究[J]. 太阳能学报, 2021, 42(11):178-185.

[86]白冰. 太阳能-污水源热泵耦合系统运行模拟研究[D]. 沈阳:沈阳建筑大学,2016.

中图分类号:

 TU831.5    

开放日期:

 2023-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式