- 无标题文档
查看论文信息

论文中文题名:

 基于E类逆变的三线圈磁耦合谐振式无线电能传输系统研究    

姓名:

 万光一    

学号:

 20206227084    

保密级别:

 保密(1年后开放)    

论文语种:

 chi    

学科代码:

 085207    

学科名称:

 工学 - 工程 - 电气工程    

学生类型:

 硕士    

学位级别:

 工程硕士    

学位年度:

 2023    

培养单位:

 西安科技大学    

院系:

 电气与控制工程学院    

专业:

 电气工程    

研究方向:

 无线电能传输    

第一导师姓名:

 赵永秀    

第一导师单位:

 西安科技大学    

论文提交日期:

 2023-06-20    

论文答辩日期:

 2023-06-01    

论文外文题名:

 Research on Three-Coil Magnetically Coupled Resonant Wireless Power Transmission System Based on Class E Inverter    

论文中文关键词:

 E类逆变 ; 三线圈 ; 磁耦合谐振 ; 最优轴向位置 ; 动态负载    

论文外文关键词:

 Class-E inverter ; Magnetic coupling resonance ; Three coil ; Optimal axial position ; Dynamic load    

论文中文摘要:

加入中继线圈的三线圈高频磁耦合谐振式无线电能传输(Magnetically-Coupled ResonantWireless Power Transfer,MCR-WPT)系统可有效增强能量传输能力,但实际应用中存在变负载情况下中继线圈轴向位置对耦合结构能量传输能力影响较大和逆变电路输出不稳定的问题。因此,研究不同负载工况下的中继线圈最优轴向位置,并对 E类逆变结构进行优化设计,提高系统的效辜和稳定性,具有重要的现实意义与工程实用价值。

通过对无线电能传输(Wireless Power Transfer,WPT)系统四种基本补偿拓扑结构的特性与适用性进行分析,选择串联电容型补偿结构并应用电路互感耦合模型对传统双线圈结构与三线圈结构进行建模研究,得出了系统能量传输能力与互感、负载、频率等参数之间的约束关系。推导得到了三种不同形式耦合结构同轴和接收线圈径向偏移时的互感表达式,验证了圆形-圆形耦合结构具有更强的能量传输能力和抗偏移能力。对比研究了三线圈结构与双线圈结构的能量传输能力、频率分裂特性和电磁辐射抑制能力,推导得出了三线圈系统的最大功率与最大效率传输条件,仿真验证了系统在不同负载工况下的中继线圈最优轴向位置。深入分析E类逆变的工作过程,针对传统E类逆变结构动态负载适应性较差的问题,提出了一种动态负载的 E类逆变优化方法,仿真验证表明优化后E类逆变结构可在输出阻抗变化时输出电压稳定,并保证开关管的软开关。

搭建了 1MHz 磁合谐振式无线电能传输系统实验平台,验证了理论分析与设计方法的正确性。实验结果表明:当接收端负载与发射端输入阻抗相等时,中继线圈位于糯合结构中间位置系统可获得最大传输功率,靠近发射线圈一侧可获得最大传输效率,中继线圈的最优轴向位置会随负载的增大向接收线圈一侧偏移:相比双线圈结构,三线圈结构具有更强的能量传输能力,且可抑制由于接收线圈偏移造成的发射部分高电磁辐射:优化后 WPT 系统可在较宽的负载范围内实现开关管的软开关,并使 E 类逆变维持较稳定的输出电压,在接收功率20W,传输距离30cm 时,系统传输效率可达 70.45%

论文外文摘要:

The three coil high-frequency magnetic coupled resonant wireless power transfer (MCR-WPT) system with a relay coil can effectively enhance energy transmission capability. However,in practical applications, there are issues such as the significant impact of the axial position of the relay coil on the energy transmission capability of the coupling structure and unstable output of the inverter circuit under variable load conditions. Therefore, studying the optimal xial position of the relay coil under different load conditions and ptimizing the design of Class E inverter structure to improve the efficiency and stability of the system has important practical significance and engineering practical value.

 By analyzing the characteristics and applicability of four basic compensation topologies in Wireless Power Transfer (WPT) systems, a series capacitor compensation structure was selected and a circuit mutual inductance coupling model was applied to model and study the traditional dual coil and triple coil structures. The constraint relationship between the system's energy transmission capacity and parameters such as mutual inductance, load, and frequency was obtained. The mutual inductance expressions of three different forms of coupling structures for coaxial and receiving coil radial offset were derived, verifying that the circular circular coupling structure has stronger energy transmission ability and anti offset ability. A comparative study was conducted on the energy transmission ability, frequency splitting characteristics, and electromagnetic radiation suppression ability of the three coil structure and the double coil structure. The maximum power and maximum efficiency transmission conditions of the three coil system were derived, and the optimal axial position of the relay coil in the system under different load conditions was verified through simulation. An in-depth analysis of the working process of Class-E inverters is conducted. In response to the problem of poor dynamic load adaptability of traditional Class-E inverter structures, a dynamic load Class-E inverter optimization method is proposed. Simulation verification shows that the optimized Class-E inverter structure can stabilize the output voltage when the output impedance changes and ensure the soft switching of the switch.

A 1MHz magnetic coupling resonant radio energy transmission system experimental platform was built to verify the correctness of theoretical analysis and design methods. The experimental results show that when the load on the receiving end is equal to the input impedance of the transmitting end, the relay coil located in the middle of the coupling structure can achieve maximum transmission power, and the side close to the transmitting coil can achieve maximum transmission efficiency. The optimal axial position of the relay coil will shift towards the receiving coil side as the load increases; Compared to the double coil structure, the three coil structure has stronger energy transmission ability and can suppress high electromagnetic radiation in the emitting part caused by the offset of the receiving coil; The optimized WPT system can achieve soft switching of the switching transistor over a wide load range, and maintain a relatively stable output voltage for Class E inverters. When receiving power of 20W and transmission distance of 30cm, the system transmission efficiency can reach 70.45%.

参考文献:

[1] 郭海潮, 张献, 杨庆新等. 空间全向无线电能传输技术研究与应用综述[J].中国电机工程学报, 2022, 42(24): 9006-9022.

[2] 范兴明, 高琳琳, 莫小勇等. 无线电能传输技术的研究现状与应用综述[J]. 电工技术学报, 2019, 34(07): 1353-1380.

[3] 苏玉刚, 侯信宇, 戴欣. 磁耦合无线电能传输系统异物检测技术综述[J]. 中国电机工程学报, 2021, 41(02): 715-728.

[4] Cetin S, Demirci Y E. High‐efficiency LC‐S compensated wireless power transfer charging converter for implantable pacemakers[J]. International Journal of Circuit Theory and Applications, 2022, 50(1): 122-134.

[5] 李阳, 石少博, 刘雪莉等. 磁场耦合式无线电能传输耦合结构综述[J]. 电工技术学报, 2021, 36(S2): 389-403.

[6] Zhong W X, Lee C K, Hui S Y R. General Analysis on the Use of Tesla's Resonators in Domino Forms for Wireless Power Transfer[J]. IEEE Trans. Industrial Electronics, 2013, 60(1): 261-270.

[7] 闫荣格, 马文喆, 杨庆新等. 磁耦合谐振式无线电能传输系统功效失步优化[J]. 中国电机工程学报, 2023, 43(04): 1517-1525.

[8] 杨庆新, 张献, 章鹏程. 电动车智慧无线电能传输云网[J]. 电工技术学报, 2023, 38(01):1-12.

[9] Ahn D, Mercier P P. Wireless Power Transfer With Concurrent 200-kHz and 6.78-MHz Operation in a Single-Transmitter Device[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 5018-5029.

[10] Assawaworrarit S, Fan S. Robust and efficient wireless power transfer using a switch-mode implementation of a nonlinear parity–time symmetric circuit[J]. Nature Electronics, 2020,3(5): 273-279.

[11] 李阳, 张雅希, 杨庆新等. 磁耦合谐振式无线电能传输系统最大功率效率点分析与实验验证[J]. 电工技术学报, 2016, 31(02): 18-24.

[12] Zhao J J, Xing Y Q, Sun Z L, et al. Transmission characteristics analysis of an MCR-WPT system with SP resonance structure based on harmonic current influence[J]. IEICE Electronics Express, 2019, 16(17): 1-6.

[13] 李艳红, 刘国强, 宋显锦等. 宽频磁耦合谐振式无线电能传输系统特性分析[J].电工技术学报, 2015, 30(19):7-11.

[14] 焦宇峰, 李锐杰, 宋国兵. 磁耦合谐振无线传输系统传输特性的研究及优化[J].电力系统保护与控制, 2020, 48(09): 112-120.

[15] Tae-Hyung K, Yun G H, Yong L W, et al. Asymmetric Coil Structures for Highly Efficient Wireless Power Transfer Systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2018, 66(7): 3443-3451.

[16] Zhong W X, Zhang C, Liu X, et al. A Methodology for Making a Three-Coil Wireless Power Transfer System More Energy Efficient Than a Two-Coil Counterpart for Extended Transfer Distance[J]. IEEE Transactions on Power Electronics, 2015, 30(2): 933-942.

[17] 王兆延, 丘东元, 张波等. 具有恒功率恒效率输出特性的三线圈 WPT系统[J]. 中国电机工程学报, 2022, 42(20): 7332-7343.

[18] 张淑美, 李媛, 程泽. 三线圈无线电能传输系统传输特性的研究[J]. 湖南大学学报(自然科学版), 2021, 48(08): 68-77.

[19] 亢凯, 侯信宇, 左志平等. 多中继模式无线电能传输系统建模与传输效率分析[J]. 电器与能效管理技术, 2019, 578(17): 50-55.

[20] Wen F, Chu X, Li Q, et al. Optimization on Three-Coil Long-Range and Dimension-Asymmetric Wireless Power Transfer System[J]. IEEE Transactions on Electromagnetic Compatibility, 2020, PP(99): 1-10.

[21] Reddy G K, Mishra D, Devi L N. Optimal Relay Coil Placement in Magnetic Resonant Coupling based Power Transfer[J]. IEEE Communications Letters, 2021, PP(99): 1-1.

[22] 李新恒, 龚立娇, 冯力等. 三线圈磁耦合谐振式无线电能传输系统频率特性分析[J]. 工矿自动化, 2018, 44(03): 91-96.

[23] Jeon S J, Seo D W. Maximum Output Power Improvement Using Negative Coil in Over-Coupled WPT System[J]. IEEE Microwave and Wireless Components Letters, 2020, PP(99):1-4.

[24] Li J, Lu Y, Liu F, et al. Optimization Method of Magnetic Coupling Resonant Wireless Power Transfer System with Single Relay Coil[J]. Progress In Electromagnetics Research M,2019, 80: 57-70.

[25] Oh H, Lee W, Koo H, et al. 6.78 MHz Wireless Power Transmitter Based on a Reconfigurable Class–E Power Amplifier for Multiple Device Charging[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5907-5917.

[26] Oh H, Lee W, Koo H, et al. 6.78 MHz Wireless Power Transmitter Based on a Reconfigurable Class-E Power Amplifier for Multiple Device Charging[J]. IEEE Transactions on Power Electronics, 2020, 35(6): 5907-5917.

[27] Belau S, Domingos F C, Freitas S, et al. Characterization of a resonant capacitively coupled wireless power transfer system for communication purposes at 6 MHz[J]. IET Science, Measurement and Technology, 2021,15(3): 241-248.

[28] Fu M F, Yin H, Liu M, et al. A 6.78 MHz Multiple-Receiver Wireless Power Transfer System With Constant Output Voltage and Optimum Efficiency[J]. IEEE Transactions on Power Electronics, 2018, 33(6): 5330-5340.

[29] Aldhaher S, Yates D C, Mitcheson P D. Load-Independent Class E/EF Inverters and Rectifiers for MHz-Switching Applications[J]. IEEE Transactions on Power Electronics, 2018, 33(10): 8270-8287.

[30] 陈飞彬, 麦瑞坤, 李勇等. 基于调频控制的三线圈结构无线电能传输系统效率优化研究[J]. 电工技术学报, 2018, 33(S2): 313-320.

[31] 刘旭, 宋翔昱, 原熙博等. 一种利用可切换补偿电容的三线圈无线电能传输系统互感识别及效率优化方法[J]. 中国电机工程学报, 2022, 42(22): 8309-8321.

[32] A A K, B J D J, B M S. Efficient wireless non-radiative mid-range energy transfer[J]. Annals of Physics, 2008, 323(1): 34-48.

[33] Hui S Y R, Zhong W, Lee C K. A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer[J]. IEEE Transactions on Power Electronics, 2014, 29(9): 4500-4511.

[34] Ye Z H, Sun Y, Dai X, et al. Efficiency Analysis of U-Coil Wireless Power Transfer System[J]. IEEE Transactions on Power Electronics, 2016, 31(7): 4809-4817.

[35] 管乐诗, 肖扬雲, 王懿杰等. 一种基于 PCB 平面螺旋线圈的自补偿多中继无线电能传输系统设计[J/OL]. 中国电机工程学报, 2022, 42(24): 8984-8995.

[36] 程少宇, 王钰博, 张雪莹等. 带有大中继线圈的无线充电磁耦合器抗偏移特性研究[J].电力自动化设备, 2023, 43(04): 213-219.

[37] 陈飞彬, 麦瑞坤, 李勇等. 基于中继线圈切换的三线圈结构 WPT系统效率优化研究[J].中国电机工程学报, 2019, 39(21): 6373-6383.

[38] 王维, 黄学良, 周亚龙等. 双中继无线电能传输系统建模及传输效率分析[J]. 电工技术学报, 2014, 29(09): 1-6.

[39] Zhong W X, Zhang C, Liu X, et al. A Methodology for Making a Three-Coil Wireless Power Transfer System More Energy Efficient Than a Two-Coil Counterpart for Extended Transfer Distance[J]. IEEE Transactions on Power Electronics, 2014, 30(2): 933-942.

[40] 田子健, 杜欣欣, 樊京等. 不对称磁耦合谐振式无线输电系统中继线圈研究[J]. 工况自动化, 2015, 41(12): 35-39.

[41] Lu F, Zhang H, Li W G, et al. A High-Efficiency and Long-Distance Power-Relay System With Equal Power Distribution[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2020, 8(2): 1419-1427.

[42] Wang W, Huang X, Guo J, et al. Power Stabilization Based on Efficiency Optimization for WPT Systems With Single Relay by Frequency Configuration and Distribution Design of Receivers[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 7011-7024.

[43] Darvish P, Mekhilef S, Illias H. A Novel S-S-LCLCC Compensation for Three-Coil WPT to Improve Misalignment and Energy Efficiency Stiffness of Wireless Charging System[J]. IEEE Transactions on Power Electronics, 2020, PP(99): 1-1.

[44] Oh K K. Design and voltage regulation of inductively coupled wireless power transfer circuits with an intermediate coil[J]. IET Power Electronics, 2019, 12(13): 3488-3498.

[45] Lee J, Lee K, Cho D H. Stability Improvement of Transmission Efficiency Based on a Relay Resonator in a Wireless Power Transfer System[J]. IEEE Transactions on Power Electronics, 2017, 32(5): 3297-3300.

[46] Rashid N A, Yasin M, Kamardin K, et al. A study on Relay Effect via Magnetic Resonant Coupling for Wireless Power Transfer[J]. MATEC Web of Conferences, 2016, 78: 01095.

[47] Nguyen V T, Kang S H, Choi J H, et al. Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications[J]. IEEE Transactions on Consumer Electronics, 2015, 61(2): 160-166.

[48] Seo D W. Comparative Analysis of Two- and Three-Coil WPT Systems Based on Transmission Efficiency[J]. IEEE Access, 2019, 7: 151962-151970.

[49] Mou X L, Gladwin D T, Zhao R, et al. Survey on magnetic resonant coupling wireless power transfer technology for electric vehicle charging[J]. IET Power Electronics, 2019, 12(12):3005-3020.

[50] Tebianian H, Salami Y, Jeyasurya B, et al. A 13.56-MHz Full-Bridge Class-D ZVS Inverter With Dynamic Dead-Time Control for Wireless Power Transfer Systems[J]. IEEE Transactions on Industrial Electronics, 2019, 67(2): 1487-1497.

[51] Jiang L, Costinett D. A High-Efficiency GaN-Based Single-Stage 6.78 MHz Transmitter for Wireless Power Transfer Applications[J]. IEEE Transactions on Power Electronics, 2019,34(8): 7677-7692.

[52] 谭畅. 磁耦合谐振式无线电能传输 E类逆变的设计与实现[D]. 南京理工大学, 2017.

[53] Liu S K, Liu M, Yang S N, et al. A Novel Design Methodology for High-Efficiency Current-Mode and Voltage-Mode Class-E Power Amplifiers in Wireless Power Transfer systems[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4514-4523.

[54] 李应智, 魏业文, 王琦婷等. 应用于磁耦合谐振式无线电能传输系统的高效率 E类逆变电源设计方法[J]. 电工技术学报, 2019, 34(02): 219-225.

[55] Fu M F, Yin H, Liu M, et al. Loading and Power Control for a High-Efficiency Class E PA-Driven Megahertz WPT System[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 6867-6876.

[56] Pinuela M, Yates D C, Lucyszyn S, et al. Maximizing DC-to-Load fficiency for Inductive Power Transfer[J]. IEEE Transactions on Power Electronics, 2013, 28(5): 2437-2447.

[57] Surakitbovorn K, Rivas-Davila J M. A Method to Eliminate Discrete Inductors in a Class-E Inverter used in Wireless Power Transfer Applications[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019.

[58] 韩冲, 张波. 谐振式无线电能传输系统中高频逆变器的特性分析和参数设计[J]. 电工技术学报, 2018, 33(21): 5036-5050.

[59] Zheng Z J, Wang N, Ahmed S. Adaptive Frequency Tracking Control with Fuzzy PI Compound Controller for Magnetically Coupled Resonant Wireless Power Transfer[J]. International Journal of Fuzzy Systems, 2021, 23(6): 1-14.

[60] Corrado F, Franco M, Paolo R P, et al. Theoretical and Numerical Design of a Wireless Power Transmission Link With GaN-Based Transmitter and Adaptive Receiver[J]. IEEE Transactions on Microwave Theory and Techniques, 2014, 62(4): 931-946.

[61] 赵进国, 赵晋斌, 张俊伟等. 无线电能传输系统中有源阻抗匹配网络断续电流模式最大效率跟踪研究[J]. 电工技术学报, 2022, 37(01): 24-35.

[62] Zhang Y M, Yan Z C, Kan T Z, et al. Modeling and Analysis of a Strongly Coupled Series–Parallel-Compensated Wireless Power Transfer System[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2019, 7(2): 1364-1370.

[63] 刘帼巾, 白佳航, 崔玉龙等. 基于双 LCL 变补偿参数的磁耦合谐振式无线充电系统研究[J]. 电工技术学报, 2019, 34(08): 1569-1579.

[64] Qi J J. Analysis, design, and optimisation of an LCC/S compensated WPT system featured with wide operation range[J]. IET Power Electronics, 2020, 13(9): 1819-1827.

[65] 陈庆彬, 杨丰钢, 陈为. 具有可变增益恒压特性的三线圈 WPT系统补偿网络结构及参数确定新方法[J]. 中国电机工程学报, 2021, 41(06): 2277-2289.

[66] 麦建伟, 曾宪瑞, 刘治钢等. 基于 S/SP 补偿拓扑的强抗偏移感应式无线电能传输系统[J]. 中国电机工程学报, 2023, 43(04): 1525-1537.

[67] Wang H M, Chen Y, Zhang H, et al. Characteristic analysis of new hybrid compensation topology for wireless charging circuits[J]. Journal of Power Electronics, 2021, 21(9): 1-13.

[68] 王懿杰, 姚友素, 刘晓胜等. 无线电能传输用 S/CLC补偿拓扑分析[J]. 电工技术学报, 2017, 32(22): 34-41.

[69] 肖静, 高立克, 吴宁等. 磁耦合无线电能传输系统平面盘式线圈优化设计[J]. 电器与能效管理技术, 2019(17): 42-49.

[70] 吴德会, 何天府, 王晓红等. 感应电能传输中矩形螺线线圈互感耦合的解析建模与分析[J]. 电工技术学报, 2018, 33(03): 680-688.

[71] 田子建, 林越, 杨洪文等. 具有中继谐振线圈的磁耦合谐振无线电能传输系统[J]. 电工技术学报, 2015, 30(S1): 168-174.

[72] 李阳, 张雅希, 闫卓等. 磁耦合谐振式无线电能传输系统阻抗分析与匹配电路设计方法[J]. 电工技术学报, 2016, 31(22): 12-18.

[73] Miao Z, Liu D, Chen G. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, PP(5): 1-11.

[74] Huang Y, Shinohara N, Mitani T. Impedance Matching in Wireless Power Transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2017, 65(2): 582-590.

[75] 元士强, 崔玉龙, 王景芹等. 磁耦合谐振式无线电能传输系统的阻抗匹配方法研究[J].工矿自动化, 2019, 45(01): 81-86.

[76] Liu M, Fu M F, Ma C B, et al. Parameter Design for a 6.78-MHz Wireless Power Transfer System Based on Analytical Derivation of Class E Current-Driven Rectifier[J]. IEEE Transactions on Power Electronics, 2016, 31(6): 4280-4291.

中图分类号:

 TM724    

开放日期:

 2024-06-25    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式